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We present the first fully nonlinear calculation of inflaton decay. We map inflaton decay ont
equivalent classical problem and solve the latter numerically. In thelf4 model, we find that parametric
resonance develops slower and ends at smaller values of fluctuating fields, as compared to e
existing in literature. We also observe a number of qualitatively new phenomena, including a sta
semiclassical thermalization, during which the decay of inflaton is essentially as effective as durin
resonance stage. [S0031-9007(96)00641-2]
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Amplification of quantum fluctuations and transition
semiclassical behavior are familiar subjects in inflation
cosmology (for a review of the latter, see Ref. [1
Semiclassical fluctuations produced during inflation c
explain the observed large scale structure of the Unive
[2]. The theory of their production is by now we
developed; for a recent rather general presentation,
Ref. [3]. After inflation ends, the scalar field (inflaton
that was driving it begins to oscillate. These oscillatio
are thought to lead to particle production, inflaton dec
and eventually to reheating of the Universe.

It was only recently realized that phenomena rela
to large occupation numbers of Bose particles produ
by inflaton decay, such as parametric resonance, ca
significant in the reheating process [4–6]. That mea
that semiclassical phenomena may play as importan
role in reheating as they do in the structure formation.
course, the eventual thermalized state will include mo
with small occupation numbers, which are essentia
quantal, but initial stages of the reheating process sho
admit a semiclassical description.

However, semiclassical description of fluctuatio
produced by inflaton decay has not been obtained.
existing treatments of parametric amplification [4–
employ the standard methods of analyzing particle p
duction, based on Bogoliubov transformation. The
methods allow one to take into accountsome of the
backreaction effects of produced particles on the
cillating zero-momentumsk ­ 0d mode, such as time
dependence of the frequency of oscillations, but can
reliably take into account many other nonlinear effects t
become important certainly no later than the frequen
change. These effects include scattering of produ
particles off thek ­ 0 mode, which knocks particles ou
of the k ­ 0 state; rescattering of the produced particl
which populates nonresonant modes as well as ret
particles back tok ­ 0 (Bose condensation) [7], etc. W
generically refer to these effects asrescattering; we will
see that they begin as essentially classical interactions
0031-9007y96y77(2)y219(4)$10.00
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Order of magnitude estimates of the amplitude squa
of produced fluctuationssdfd2 at the end of the reso
nance stage were obtained in Refs. [4–6]. It is import
to know sdfd2 more precisely, because in realistic i
flationary models, its magnitude determines whether
symmetries are restored in the nonthermal regime a
the resonance stage [8]. This, in turn, requires tak
into account all rescattering effects. After the parame
resonance ends, rescattering leads to chaotic behavio
begins to thermalize the system, while it is still in t
semiclassical regime. This semiclassical thermalizat
which should proceed rather fast due to the still large
cupation numbers, is very important for determining
reheating temperature. However, it is completely abs
from the standard treatment [4,5], as well as from the
augmented by time-dependent Hartree approximation
(in the Hartree approximation, chaotic behavior charac
istic of a nonlinear classical system is lost).

It is clear, on the other hand, that if one succeeds
finding an adequate semiclassical description of fluc
tions produced by inflaton decay the decay can be stu
via the classicalequations of motion and thus treated
a fully nonlinear problem, without any further assum
tions. That classical problem can be turned over t
computer. To obtain the semiclassical description,
has to find the initial conditions for the classical equatio
of motion, corresponding to the original quantum sta
We find these initial conditions using the following obse
vation. Because inflationary models have small coup
constants, fluctuating modes can grow to large occupa
numbers before their interactions become important.
other words, the transition to classical behavior occur
a linear regime with respect to fluctuations. We can th
use the linear theory of quantum-to-classical transiti
[3] to obtain the initial conditions for subsequent nonl
ear classical evolution. Possibility of a semiclassical f
mulation of the problem of inflaton decay was noted in
recent paper by Son [9]; however, the correct initial co
ditions for the classical problem were not obtained the
© 1996 The American Physical Society 219
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In this Letter we report the first results of our numeric
study of the semiclassical decay of the inflaton, for t
simplest model of a real scalar field with thelf4y4
potential. Initial conditions were chosen to correspo
to conformal vacuum for fluctuations at the end
inflation [10]. Numbers for various quantities of physic
interest are presented below; because ours is the
fully nonlinear treatment of the problem, they differ from
estimates existing in the literature. We also observe
number of qualitatively new phenomena, including t
stage of inflaton decay when the resonance peaks in po
spectrum begin to interact and smear out; we call t
stage semiclassical thermalization. We find that, dur
semiclassical thermalization, inflaton decay is essenti
as effective as during the stage of parametric resonanc

We consider a real scalar field minimally cou
pled to gravity, in a Friedmann-Robertson-Walk
universe. We work with rescaled variables: timet,
such that astddt ­

p
l f0s0das0ddt, coordinate j ­p

l f0s0das0dx, and fieldw ­ fastdyf0s0das0d, where
astd is the scale factor, andf0s0d is the zero-momentum
mode att ­ t ­ 0. In this Letter we consider only the
massless inflaton case. (The method itself applies
other models, as well as to various laboratory system
The action for the scalar field is

S ­
1
l

Z
d3jdt

"
1
2

µ
Ùw 2

Ùa
a

w

∂2

2
s=jwd2

2
2

w4

4

#
, (1)

where dots denote derivatives with respect tot. The
parameter Ùaya ; h is the rescaled Hubble paramete
hstd ­ Hstdy

p
l f0s0d. For the massless inflaton

Hs0d ,
p

l f
2
0s0dyMPl, so thaths0d is independent ofl

and is of order 1. The equation of motion following from
(1) is

ẅ 2 =2
jw 2

ä
a

w 1 w3 ­ 0 . (2)

Although the couplingl does not appear in (2), i
appears in the action and hence regulates the magni
of initial quantum fluctuations in nonzero modes relati
to the magnitude of the zero mode. We have chec
numerically that in the massless case the condition fo
semiclassical regime to occur is precisely the smalln
of the couplingl. The zero mode is semiclassical fro
the beginning. Its initial value isw0s0d ­ 1, by virtue
of our rescaling. We choose the first time whenÙw0 ­ 0
as the definition of momentt ­ 0 when the oscillations
of inflaton start. We have verified that after that mome
the Universe in our model is radiation dominated to ve
good accuracy, so we can setä ­ 0 in Eq. (2). We
make no further assumptions about the zero mode:
time dependence will come out of the solution to the f
nonlinear problem, once we specify the initial conditio
for nonzero modes.
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According to the preceding discussion, to obtain the i
tial data for the classical problem, we can linearize Eq.
with respect to fluctuations. The linearized equation
motion for the Fourier transform of the fluctuation fie
(comoving momentumk fi 0) is

ẅk 1 v2
k stdwk ­ 0 , (3)

where v
2
kstd ­ 3w

2
0 std 1 k2. The operator solution to

Eq. (3) iswkstd ­ fkstdbks0d 1 fp
k stdby

2ks0d, wherec-
number functionfkstd satisfies Eq. (3) and the initia
conditions

fks0d ­

µ
l

2vks0d

∂1y2

,

Ùfks0d ­ f2ivks0d 1 hs0dg fks0d . (4)

Operatorsby andb are the creation and annihilation op
erators defined at zero time and normalized according
fbk, b

y
k0g ­ dsk 2 k0d. A mode becomes semiclassic

if the corresponding functionfkstd grows (exponentially)
for larget (and so does, then, the corresponding occu
tion number). In that case, it can be shown [3] that
to exponentially small corrections,fk at larget can be
made real by a time-independent phase rotation. W
the exponentially small terms are neglected,wkstd and
its canonical momentum commute, and thereforewkstd at
large times can be regarded as a random classical varia
This is the semiclassical description.

The distribution of values ofwkstd is obtained from the
solution to the linearized quantum problem. It depen
on the quantum state for fluctuations existing at the e
of inflation. Below we present results obtained usi
conformal vacuum as the original quantum state, wh
should be a good approximation for allk * 1 (subhorizon
modes) [10]. The corresponding classical distributi
function at large times is, cf. Ref. [3],

F fw, Ùw; tg ­ N exp

µ
2

Z 0 jwkj2

j fkstdj2
d3k

∂
3 dsss fkstd Ùwk 2 Ùfkstdwkddd , (5)

where the delta function is a shorthand for the prod
of functional delta functions for real and imaginary par
and the prime on the integral reminds us that the integ
is taken over half of the values ofk (since these give
all independentwk) and does not includek ­ 0; N is
a time-independent normalization. A useful point here
that (5) satisfies the classical Liouville equation during t
entire linear stage. So, we can evolve it back and use
an initial condition att ­ 0, wherefk and its derivative
are given by Eq. (4).

We thus use a discretized version of the distribution

P fws0dg ­ N exp

µ
2

2
l

Z 0

vks0djwks0dj2d3k

∂
(6)

to generate random initial values ofwk. Once a value
of wk is generated, the corresponding initial “velocity
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is determined uniquely, according to Eqs. (4) and (
as Ùwks0d ­ f2ivks0d 1 hs0dgwks0d. Together with the
initial conditions for the zero mode, this forms (after a
inverse Fourier transform) an initial data problem for t
fully nonlinear equation (2).

We have integrated numerically Eq. (2) in a box
finite sizeL with the above initial conditions. We hav
varied the size of the box and the number of grid poi
N in a box of a given size to make sure that w
are close to the continuum limit. We have varied t
coupling constantl over the range10210 1. Here we
present the results forL ­ 16p , N ­ 1283, and l ­
1024. All quantities we measured are averages over m
coordinate or momentum points; for these quantities, th
is no need in further averaging over initial conditions.

One important quantity that can be measured is
power spectrum of fluctuations,Pskd. It is proportional
to w

p
kwk averaged over the direction ofk and is nor-

malized in such a way that Parseval’s theorem reR
d3kPskd ­ L23

R
d3jfwsjd 2 w0g2. Thus normalized

power spectrum does not depend on the size of the (la
box. It is presented in Fig. 1 for several moments of tim
Resonance peaks develop att , 200 in the following or-
der: first atk ø 1, somewhat later atk close to zero, and
still later at larger momenta. For comparison, we have
the problem linearized with respect to fluctuations. On
the initial development of the first peak was unaffected
linearization. The peak atk ø 2 was barely visible, the
others were not seen at all. We conclude that all pe
in Fig. 1, except the one atk ø 1, are due to rescattering
The peak atk close to zero is not expected from the a
proximate linear analysis based on the Mathieu equat
We interpret it as a result of the rescattering process
which a particle from the first peak transfers some of
momentum to a particle from thek ­ 0 condensate [11].
The positions of thek ø 2 and higher peaks are close
those predicted by the Mathieu equation, but their wid
and magnitudes are not. By suppressing the initial fl
tuations fork . 1.75, we have verified that these pea
are due mainly to rescattering processes1 1 1 ! 0 1 2,
1 1 2 ! 0 1 3, etc., where 0 denotes a particle from t

FIG. 1. Power spectrum of fluctuations at successive mom
of time.
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condensate, and 1, 2, 3 particles form the first, seco
and third peaks, respectively. Thus, the rescattering p
cesses already start to play some role at the param
resonance stage.

Another interesting quantity is the integral of the pow
spectrum of produced fluctuations over all (nonzero)k.
This is simply the variance Varswd ­ kfwsxd 2 kwlg2l
and can be measured independently. The brackets de
averaging over the spatial lattice, sokfl is just the
zero-momentum mode. The lattice effectively subtra
contribution of high-momentum modes, so at smalll

our Varswd approximates an already subtracted continu
quantity, equal to the continuum Varswd minus its value at
zero time. The behavior of Varswd with time is shown in
Fig. 2. Initially it grows exponentially; this is the stage o
parametric resonance. Using logarithmic plots, we ha
found the following analytical fit for this stage:

ln Varswd ­ 2mt 1 lnl 2 8 . (7)

Because Varswd oscillates, the choice of constant here
somewhat arbitrary; we chose it in such a way that
line (7) passes through the maximum of the amplitude
Varswd at the end of the resonance stage (located att ;
tp ø 200 if l ­ 1024). For the rate of the exponentia
growth 2m, we obtain2m ­ 0.07 for all small enough
l. This value is smaller than the one obtained fro
the Mathieu equation arising when the time depende
of the zero mode (an elliptic function in this regime)
replaced by sine with the same period. When we ma
this replacement in our program, we obtain for the rate
value of 0.11, in our time units, as expected. As anot
test, we have varied the size of the box and verified t
we do not miss the fastest growing mode.

The value of Varswd in the maximum at the end o
the resonance stage is approximately0.07 and does not
depend onl when l ø 1. Thus, for general (small)l
the resonance ends at timetp ­ 76 2 14.3 lnl. Extrap-
olating to a realistic valuel ­ 10213, we findtp ø 500.
To obtain the variance of the physical fieldf at time t,
we need, at larget, to multiply Varswd by 3M2

Ply2pt2.
Hence, the maximum variance off, at the end of the

FIG. 2. Variance of the scalar field as a function of time.
221
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resonance stage, is

Varsfd ­ 1 3 1027M2
Pl . (8)

For the effective temperatureTeff, defined by equating (8
to T 2

effy12, this givesTeff ­ 1 3 1023MPl. Notice that
Teff does not depend on the initial value of the inflat
field after inflation. The smallness ofTeff is a result of
two factors not taken into account previously: Varswd ø

1 and very largetp. In realistic models, including more
fields, Teff determines if any symmetries are restor
in the nonthermal regime after the resonance stage
(Ref. [12] considers nonthermal symmetry restoration
first-order inflation). If, in those models,Teff remains
3 orders of magnitude lower than the Planck scale, th
for example, nonthermal restoration of grand unifi
theory symmetry may be prevented. On the other ha
we see thatTeff is much larger than the reheatin
temperature that would be obtained if one neglected
effect of large occupation numbers, which confirms t
main point of Ref. [8].

Finally, the time dependence of the zero-moment
mode is shown in Fig. 3. We can see that, after
creasing during the parametric resonance, it reboun
twice during time t ­ 200 to 300. We attribute this
to Bose condensation caused by rescattering. Comp
son of Figs. 2 and 3 suggests that it is Bose conden
tion that terminates parametric resonance. However,
magnitude of the zero mode continues to decrease sig
icantly, approximately ast21y3 (as opposed to a slowe
t21y6 ~ t21y12 decay found in Ref. [4]). Returning to
Fig. 1, we see that the peaks smear out at this stage.
is the onset of classical chaos or, in the language of p
ticle physics, stimulated scattering, decay, and annih
tion due to large occupation numbers. This process
rather effective. In our model the energy scales as
fourth power of the field. So, forl ­ 1024, at time
t ø 400 about 70% of energy is in fluctuations. Fo
smallerl, the onset of this chaotic regime, which we c
semiclassical thermalization, is delayed, but its rate w
respect to timet does not decrease. The reason is that
strength of rescattering is determined not byl itself but
by the product ofl and a relevant occupation number.

FIG. 3. Time dependence of the zero-momentum mode
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In conclusion, we have done the first fully nonline
calculation of inflaton decay. We have mapped t
inflaton decay onto an equivalent classical problem a
solved the classical problem numerically. In thelf4

model, we have found that parametric resonance deve
slower and ends at smaller values of fluctuating fields,
compared to estimates existing in the literature. We h
also observed a number of qualitatively new phenome
including a stage of semiclassical thermalization (chao
during which the decay of inflaton is essentially
effective as during the resonance stage.
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