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Classical Decay of the Inflaton
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We present the first fully nonlinear calculation of inflaton decay. We map inflaton decay onto an
equivalent classical problem and solve the latter numerically. Inthtmodel, we find that parametric
resonance develops slower and ends at smaller values of fluctuating fields, as compared to estimates
existing in literature. We also observe a number of qualitatively new phenomena, including a stage of
semiclassical thermalization, during which the decay of inflaton is essentially as effective as during the
resonance stage. [S0031-9007(96)00641-2]

PACS numbers: 98.80.Cq, 05.70.Fh

Amplification of quantum fluctuations and transition to  Order of magnitude estimates of the amplitude squared
semiclassical behavior are familiar subjects in inflationaryof produced fluctuationgé ¢)> at the end of the reso-
cosmology (for a review of the latter, see Ref. [1]). nance stage were obtained in Refs. [4—6]. Itis important
Semiclassical fluctuations produced during inflation carto know (§¢)> more precisely, because in realistic in-
explain the observed large scale structure of the Universiationary models, its magnitude determines whether any
[2]. The theory of their production is by now well symmetries are restored in the nonthermal regime after
developed; for a recent rather general presentation, sébe resonance stage [8]. This, in turn, requires taking
Ref. [3]. After inflation ends, the scalar field (inflaton) into account all rescattering effects. After the parametric
that was driving it begins to oscillate. These oscillationsresonance ends, rescattering leads to chaotic behavior and
are thought to lead to particle production, inflaton decaybegins to thermalize the system, while it is still in the
and eventually to reheating of the Universe. semiclassical regime. This semiclassical thermalization,

It was only recently realized that phenomena relatedvhich should proceed rather fast due to the still large oc-
to large occupation numbers of Bose particles producedupation numbers, is very important for determining the
by inflaton decay, such as parametric resonance, can lieheating temperature. However, it is completely absent
significant in the reheating process [4—6]. That mean$rom the standard treatment [4,5], as well as from the one
that semiclassical phenomena may play as important augmented by time-dependent Hartree approximation [6]
role in reheating as they do in the structure formation. Ofin the Hartree approximation, chaotic behavior character-
course, the eventual thermalized state will include modesstic of a nonlinear classical system is lost).
with small occupation numbers, which are essentially It is clear, on the other hand, that if one succeeds in
quantal, but initial stages of the reheating process shoulfinding an adequate semiclassical description of fluctua-
admit a semiclassical description. tions produced by inflaton decay the decay can be studied

However, semiclassical description of fluctuationsvia the classicalequations of motion and thus treated as
produced by inflaton decay has not been obtained. Tha fully nonlinear problem, without any further assump-
existing treatments of parametric amplification [4—6]tions. That classical problem can be turned over to a
employ the standard methods of analyzing particle procomputer. To obtain the semiclassical description, one
duction, based on Bogoliubov transformation. Thesehas to find the initial conditions for the classical equations
methods allow one to take into accousbme of the  of motion, corresponding to the original quantum state.
backreaction effects of produced particles on the osWe find these initial conditions using the following obser-
cillating zero-momentumk = 0) mode, such as time vation. Because inflationary models have small coupling
dependence of the frequency of oscillations, but cannatonstants, fluctuating modes can grow to large occupation
reliably take into account many other nonlinear effects thahumbers before their interactions become important. In
become important certainly no later than the frequencyther words, the transition to classical behavior occurs in
change. These effects include scattering of produced linear regime with respect to fluctuations. We can then
particles off thek = 0 mode, which knocks particles out use the linear theory of quantum-to-classical transitions
of thek = 0 state; rescattering of the produced particles]3] to obtain the initial conditions for subsequent nonlin-
which populates nonresonant modes as well as returrear classical evolution. Possibility of a semiclassical for-
particles back t&k = 0 (Bose condensation) [7], etc. We mulation of the problem of inflaton decay was noted in a
generically refer to these effects esscattering we will  recent paper by Son [9]; however, the correct initial con-
see that they begin as essentially classical interactions. ditions for the classical problem were not obtained there.
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In this Letter we report the first results of our numerical According to the preceding discussion, to obtain the ini-
study of the semiclassical decay of the inflaton, for thetial data for the classical problem, we can linearize Eq. (2)
simplest model of a real scalar field with thep*/4  with respect to fluctuations. The linearized equation of
potential. Initial conditions were chosen to correspondmotion for the Fourier transform of the fluctuation field
to conformal vacuum for fluctuations at the end of(comoving momentunk # 0) is
inflation [10]. Numbers for various quantities of physical .. 2 _
interest are presented below; because ours is the first b + (1o =0, (3
fully nonlinear treatment of the problem, they differ from where wz(7) = 3¢3(7) + k%. The operator solution to
estimates existing in the literature. We also observe &q. (3) is ¢k (7) = fi(7)bi (0) + f,f(fr)bik(O), wherec-

number of qualitatively new phenomena, including thenumber functionf;(r) satisfies Eq. (3) and the initial
stage of inflaton decay when the resonance peaks in powepnditions

spectrum begin to interact and smear out; we call this

1/2
stage semiclassical thermalization. We find that, during fx(0) = <L> ,
semiclassical thermalization, inflaton decay is essentially _ 204(0)
as effective as during the stage of parametric resonance. fx0) = [—iwi(0) + A(0)] f£(0). ()]

We consider a real scalar field minimally cou- . L
. . ) T -
pled to gravity, in a Friedmann-Robertson-Walker OPeratorsh ' and b are the creation and annihilation op

universe. We work with rescaled variables: time erators defined at zero time and normalized according to

such that a(r)dr = VA ¢o(0)a(0)ds, coordinate & = _[bk, bf:,] =45k - Kk'). A_mode becomes semlclr?lssmal
VA $0(0)a(0)x, and fieldg = pa(r)/po(0)a(0), where if the corresponding functioffi,(7) grows (expoqentlally)
a(7) is the scale factor, ang(0) is the zero-momentum for large (and so does, then, the corresponding occupa-
mode atr = 7 = 0. In this Letter we consider only the 10N number_). In that case, it can be shown [3] that up
massless inflaton case. (The method itself applies t& exponentially small correctiongy at larger can be
other models, as well as to various laboratory systems.'t""de real by a time-independent phase rotation. When
The action for the scalar field is the exponentially small terms are neglecteq,(v) and

1 ) B 2 its canonical momentum commute, and therefpgér) at
S == f d%d{—({o - = ¢,> large times can be regarded as a random classical variable.
A 2 a This is the semiclassical description.
(Veo)? o* The distribution of values op (1) is obtained from the
T2 4 (1) solution to the linearized guantum problem. It depends

o ] on the quantum state for fluctuations existing at the end
where dots denote derivatives with respectrto The  of inflation. Below we present results obtained using
parametera/a = h is the rescaled Hubble parameter, conformal vacuum as the original quantum state, which
h(r) = H(1)/YA ¢0(0). For the massless inflaton, snould be a good approximation for &ll= 1 (subhorizon

2 . .
H(0) ~ A ¢(0)/Mp, so thath(0) is independent oA modes) [10]. The corresponding classical distribution
and is of order 1. The equation of motion following from f,nction at large times is, cf. Ref. [3],

s " el
.. LTl = N ex%—f d3k>
p-Vie- Lo+ ed-0. @) Fle. o] TRGE
Although the couplingA does not appear in (2), it X ([ = filT)ex), ()

appears in the action and hence regulates the magnitug¢here the delta function is a shorthand for the product
of initial quantum fluctuations in nonzero modes relativeof functional delta functions for real and imaginary parts,
to the magnitude of the zero mode. We have checkeénd the prime on the integral reminds us that the integral
numerically that in the massless case the condition for & taken over half of the values df (since these give
semiclassical regime to occur is precisely the smallnessll independentyy) and does not includ& = 0; N is

of the couplingA. The zero mode is semiclassical from a time-independent normalization. A useful point here is
the beginning. Its initial value ig((0) = 1, by virtue  that (5) satisfies the classical Liouville equation during the
of our rescaling. We choose the first time whggn= 0  entire linear stage. So, we can evolve it back and use it as
as the definition of moment = 0 when the oscillations an initial condition atr = 0, wheref; and its derivative

of inflaton start. We have verified that after that momentare given by Eq. (4).

the Universe in our model is radiation dominated to very We thus use a discretized version of the distribution
good accuracy, so we can si&t= 0 in Eq. (2). We 5 [

make no further assumptions about the zero mode: Its P[¢(0)] = Nexp(— = ] wk(0)|¢k(0)|2d3k> (6)
time dependence will come out of the solution to the full A

nonlinear problem, once we specify the initial conditionsto generate random initial values gf,. Once a value
for nonzero modes. of ¢k is generated, the corresponding initial “velocity”
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is determined uniquely, according to Egs. (4) and (5)condensate, and 1, 2, 3 particles form the first, second,
as ¢ (0) = [—iwi(0) + h(0)]ek(0). Together with the and third peaks, respectively. Thus, the rescattering pro-
initial conditions for the zero mode, this forms (after ancesses already start to play some role at the parametric
inverse Fourier transform) an initial data problem for theresonance stage.
fully nonlinear equation (2). Another interesting quantity is the integral of the power
We have integrated numerically Eqg. (2) in a box ofspectrum of produced fluctuations over all (nonzeko)
finite size L with the above initial conditions. We have This is simply the variance Vap) = (¢ (x) — (¢)]*)
varied the size of the box and the number of grid pointsand can be measured independently. The brackets denote
N in a box of a given size to make sure that weaveraging over the spatial lattice, @) is just the
are close to the continuum limit. We have varied thezero-momentum mode. The lattice effectively subtracts
coupling constantx over the rangel0~'°-1. Here we contribution of high-momentum modes, so at small
present the results fof. = 1677, N = 128, and A =  our Var¢) approximates an already subtracted continuum
1074, All quantities we measured are averages over manguantity, equal to the continuum \War) minus its value at
coordinate or momentum points; for these quantities, thereero time. The behavior of V&p) with time is shown in
is no need in further averaging over initial conditions. Fig. 2. Initially it grows exponentially; this is the stage of
One important quantity that can be measured is th@arametric resonance. Using logarithmic plots, we have
power spectrum of fluctuation®(k). It is proportional found the following analytical fit for this stage:
to ¢k averaged over the direction & and is nor- .
malized in such a way that Parseval's theorem reads In Var(e) = 2ur +InA — 8. (7)
[d?kP(k) = L3 [d*&[@(€) — @o]*. Thus normalized Because Vdk) oscillates, the choice of constant here is
power spectrum does not depend on the size of the (larggbmewnhat arbitrary; we chose it in such a way that the
box. Itis presented in Fig. 1 for several moments of timeline (7) passes through the maximum of the amplitude of
Resonance peaks developrat 200 in the following or-  Var(e) at the end of the resonance stage (located at
der: first atk = 1, somewhat later at close to zero, and 7, =~ 200 if A = 10™%). For the rate of the exponential
still later at larger momenta. For comparison, we have rugrowth 2u, we obtain2u = 0.07 for all small enough
the problem linearized with respect to fluctuations. Onlyx. This value is smaller than the one obtained from
the initial development of the first peak was unaffected bythe Mathieu equation arising when the time dependence
linearization. The peak & ~ 2 was barely visible, the of the zero mode (an elliptic function in this regime) is
others were not seen at all. We conclude that all peakseplaced by sine with the same period. When we make
in Fig. 1, except the one &t~ 1, are due to rescattering. this replacement in our program, we obtain for the rate the
The peak ak close to zero is not expected from the ap-value of 0.11, in our time units, as expected. As another
proximate linear analysis based on the Mathieu equationest, we have varied the size of the box and verified that
We interpret it as a result of the rescattering process ive do not miss the fastest growing mode.
which a particle from the first peak transfers some of its The value of Vafy) in the maximum at the end of
momentum to a particle from the = 0 condensate [11]. the resonance stage is approximatél§y7 and does not
The positions of th& = 2 and higher peaks are close to depend omh when A < 1. Thus, for general (small}
those predicted by the Mathieu equation, but their widthshe resonance ends at time = 76 — 14.3 InA. Extrap-
and magnitudes are not. By suppressing the initial flucelating to a realistic valug = 10~'3, we find 7. = 500.
tuations fork > 1.75, we have verified that these peaks To obtain the variance of the physical fiefd at time 7,
are due mainly to rescattering processes 1 — 0 + 2,  we need, at large,, to multiply Vare) by 3M3, /2772
1 +2— 0 + 3, etc., where 0 denotes a particle from theHence, the maximum variance @f, at the end of the
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FIG. 1. Power spectrum of fluctuations at successive moments
of time. FIG. 2. Variance of the scalar field as a function of time.
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resonance stage, is In conclusion, we have done the first fully nonlinear
_ 742 calculation of inflaton decay. We have mapped the

var(¢) =1 X 10" Mp . (8) inflaton decay onto an equivalent classical problem and

For the effective temperatut®y, defined by equating (8) solved the classical problem numerically. In the*

to T2;/12, this givesT. = 1 X 107>Mp;. Notice that model, we have found that parametric resonance develops

T does not depend on the initial value of the inflatonslower and ends at smaller values of fluctuating fields, as

field after inflation. The smallness at;; is a result of compared to estimates existing in the literature. We have

two factors not taken into account previously: gy << also observed a number of qualitatively new phenomena,

1 and very larger.. In realistic models, including more including a stage of semiclassical thermalization (chaos),

fields, T.;s determines if any symmetries are restoredduring which the decay of inflaton is essentially as

in the nonthermal regime after the resonance stage [8fffective as during the resonance stage.

(Ref. [12] considers nonthermal symmetry restoration for . T. thanks A. Riotto for discussions. The work of

first-order inflation). If, in those modeld.;; remains S.K. was supported in part by the U.S. Department of

3 orders of magnitude lower than the Planck scale, therEnergy under Grant DE-FG02-91ER40681 (Task B), by

for example, nonthermal restoration of grand unifiedthe National Science Foundation under Grant PHY 95-

theory symmetry may be prevented. On the other hand)1458, and by the Alfred P. Sloan Foundation. The

we see thatT.s is much larger than the reheating work of I.T. was supported by DOE Grant DE-ACO02-

temperature that would be obtained if one neglected thg6ER01545 at Ohio State.

effect of large occupation numbers, which confirms the

main point of Ref. [8].
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