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Time-Dependent Calculation of Photoelectron Spectra in Mg Involving Multiple Continua
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We report the first successful attempt at the time-dependent nonperturbative calculation of
multiphoton ionization and above threshold ionization in the presence of several open channels leaving
the ion in excited states. After an outline of the theoretical approach based on a discretized basis
constructed in terms aB-splines, we also present illustrative results on atomic magnesium. [S0031-
9007(96)01144-1]

PACS numbers: 32.30.—r

The photoelectron energy spectrum of an atom untime-dependent nonperturbative treatment of this problem,
der a strong laser pulse, especially in connection witlincluding specific results on Mg.
above threshold ionization (ATI) [1,2], contains the im- Discrete atomic bases obtained inside a finite space have
print of nonperturbative behavior expected above cerbeen used to carry out nonperturbative time-dependent cal-
tain intensities. Although much has been learned aboutulations in He [10,11]. The main difference between the
this behavior in the single active electron (SAE) approxi-two atoms is the inner-shell electrons, Mg having 10 of
mation, where all but one of the electrons are assumethem. These core electrons are relatively inactive in the
frozen and unaffected by the field, very little is known laser intensity range we are considering, so we treat them
theoretically about the expected behavior beyond that ams frozen in their Hartree-Fock orbitals. The outer two
proximation. Yet, it has been known for quite some timevalence electrons are treated in the same way as the two
that, in the alkaline earths, under the appropriate combielectrons in He [12]. The boundary condition we use at
nation of intensity and frequency, significant double electhe outer boundary of the box i#(r = Ry.x) = 0. This
tron excitation takes place, leaving the ion not only in thecondition selects continuum orbitals, resulting in the dis-
ground but also in excited states [3—5]. Even in perturbaeretization, and modifies slightly the bound orbitals [13].
tion theory in single-photon processes this is a difficultWith unit normalization, the discretization is equivalent to
problem as it involves several open channels (contin-
ua) [6-9].

In previous preparatory work, we have developed the
essentials of the approach and have studied the ATI spec
trum of He, where, however, the ionized electron is hardly
affected by the other electron which is left in the ionic
ground state. This was not totally unexpected since, in i
He, correlation is not very strong, being most important
in the ground state. Thus the energy gap between the
two thresholds is relatively large, as a consequence of
which, for optical or even UV photons, most of the ob-
servable ATI peaks are produced between the two thresh:
olds, with negligible influence of correlation. In Mg and 3+
the other alkaline earth atoms, on the other hand, the situ-
ation is quite different. Continua associated with more
than one ionization threshold lie much closer to the lowest
one (see Fig. 1) which makes them much more accessible ¥+
at intensities, frequencies, and pulse durations currently
available. That is why excited ionic states have been ob-
served in such atoms. An important question therefore is:
How does one calculate branching ratios in photoelectron
spectra corresponding to different ionization channels un-
der strong-field multiphoton excitation, and how do they
depend on laser intensity? In other words, what is the % : Dev
nonperturbative behavior of processes with several opepig. 1. Mg energy level diagram, solid numbers are experi-
channels? lItis the purpose of this paper to present the firgtental values and dotted numbers are calculated values.
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a numerical quadrature for a single continuum [14]. ThelCr(r — «)|?, corresponding to leaving the ion in state
criterion for the “box” size is that it be large enough for all with k?/2 = E — E},.
physics of interest to be confined within the box, during the Before we discuss the relation between the discrete
interaction time. For MgRn.x = 800 a.u. is necessary, basis functions and the correct wave functions satisfy-
and we obtain 700 one-electron radial orbitals for eacting Eg. (2), we first look at the relation between the
angular momentum component of the ionic state by diagoeigenchannels used in the multichannel quantum defect
nalizing the single electron Hamiltonian on a set of 2 (MQDT) theory [16,17] and the desired wave functions
splines defined i® = [0, Ry.x]- By contrast, a larger box with an outgoing spherical wave in one channel and an in-
would be required if higher ATI contributions are signifi- coming spherical wave in all channels. The MQDT eigen-
cant, as, for example, in He at higher intensity. channel wave functions can be written as

Two-electron states are antisymmetrized products of r—so0 I
one-electron orbitals obtained in the box, and we select the Vp— ZI: Upi®; sin(0; + 8p). )

configuration space to bésnl + 3pnl + 4snl + 3dnl. They relate to the channel wave functions, each corre-

Higher ionization thresholds are left out. As long as we . . . .
) ; . ._~sponding to an outgoing spherical wave in one channel
focus on the study of branching ratios below and mcludmghnd an incoming wave in all channels, through a linear

the 3d threshold, this basis is sufficient. Including more

and more high lying thresholds is important if we are totransformatlon ' '

study the double electron ejection. This extension presents Y = Z(Uiﬁe"‘sﬁ)wﬁ , (5)
a major challenge to any method, both mathematically and B

computationally. We limit ourselves to the study of sin- o= 1 <(I){ei6i _ ZS“(I)/.(N,,) (6)
gle electron ionization in this paper. The resulting two- 20\ ! - v '

electron eigenstates can be denotedjas(¥i, 7>, (M =
0)). We use only the/ = 0 states, because we are inter-
ested in linearly polarized laser fields. A chosen s¢tbf

The physical nature of th&-fold continua determines that
there should bev linearly independent solutions at each

defines a basis. The time-dependent Schroédinger equgpergy. _Therefore, in prin_ciple, any linear transformation
tion can then bé solved on this basis set. as described | the eigenchannel solutions leads to an alternative set
[10,11,15], providing the time-dependent “exact” (within gi Se?:gﬂgzi'elgon&der now an arbitrary *rotation” of the
the finite space) wave functiod(z). 9 '

The extraction of the photoelectron energy spectrum xX¢ = ZA%W, @)
from W(¢) in the region of the multiple continua is neither B
evident nor straightforward. The reason is that now we 5> BEd!sing; + 87) (8)

need to find the partial photoelectron spectra associated
with different ionization thresholds, but each discrete two-.l.hese solutions differ from the eigenchannel solutions
electron state at a pgrtlcular energy IS a box-dependem that there is no characteristic phase shift associated
superposition qf physical states. In OtheI’.WOITdS, We Wanfuih each channel. Any one of these solutions (for a
LO e_xpand the time-dependent wave function in the ProP€Lertain a) can be understood as having behavior similar
asts, to one discrete state in the basis. If one can fivd

. - linearly independent basis functions at each energy, they
W(r) = ZL:C”L(ZWEM + Z ]CE(I)ME dE, (1) can be transformed to the desired final wave functions
" ' exactly. Consequently, the time-dependent coefficients

wherei indicates the ionization channel associated withcan be found as

the ith threshold,®; represents the corresponding ionic i ., _ i— | La\pal i— | @\ pe
state and the angular momentum factor. Asymptotically, Ci(?) %W | x£)CE (1) ;W | )CR(1)BY .

9
. r—o 1 2 1 ; —7 . H H H
E—— 1= 5 <<I>,»e’5kf - ZS,-.,CI)A,-e ’ka>, (2) Unfortunately, the discrete basis with a fixed boundary
r\ ki 2i j condition does not possess tNefold degeneracy, simply
because the energies of two discretized states of different

where channels in the continuum would coincide only acciden-
1 1 tally. In fact, it is safe to say that practically there is
O, = kir — ) limm — k INQkir) +arg I'( 1 +1—i & no degeneracy at all. This can be seen clearly even in

the structure of uncoupled channels. Since each single
(3)  electron continuum is discretized approximately quadrati-
is the Coulomb phase shift in the nuclear field of chargecally, continua associated with different thresholds have
1, and S;; are matrix elements of the matrix that different discretization at a given two-electron energy.
determine the interaction between the channeland [Neglecting the complicated behavior of the wave func-
j. The photoelectron energy spectrum is then given byion near the nucleus, we havgR..x = 7n, SO that
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Mg I=1x10" W/em’, E,,=2ev, 7=10 cycles Mg I=5x10" W/em’, E,,,=2ev, t=10 cycles

Photoelectron energy (eV) Photoelectron energy (eV)

FIG. 3. Photoelectron energy spectra lab = 2 eV, I =

FIG. 2. Photoelectron energy spectra /ab =2eV, Iy = 5% 10 W/cm?.

10> W/cm?. The vertical axis is population per energy in
(1/a.u.).

s - ) _ s case, the spectrum associated with fhe threshold is
E, = ky;/2 = m*n”/(2Ry,,), proportional ton®] Note  aimost completely hidden under the dominant contribution
that we do not know the projection coefficie@t' | ")  related to thés threshold. This overlap can be attributed

within our discretized basis, since we do not kngw. o the fact that the3s and 3p thresholds are about

Even if we know it, we still cannot regenerate the lost4.27 eV apart, so the first photoelectron peak above the

degeneracy. 3p threshold has only 0.27 eV energy less than the first
To circumvent that difficulty, instead of the transforma- peak above thas threshold.

tionin Eq. (9), we replace the summation oveby a sum- The spectra under the same conditions as Fig. 2 but

mation weighted by a window function over neighboringwith higher peak intensityy X 10'2 W/cm? are shown

states in Fig. 3. It can be seen that different branches of

ICL(1)> = Z W(E; — E) ICE/(t)Bi(Ej)IZ. (10) the spectra _shift relative to each othgr compared to the
; lower intensity case. And the branching ratios are also

This approximation implies an interpolation between dis_changeq; qpntributions from hig'her thresho'lds become
ore significant. Recall that, in perturbation theory,

cretized states, which can be understood as recovering the X ! ) ; )
degeneracy within a small energy interval. As long aéaranch_lng ratios are mdependent of intensity. . .
the window width is comparable to the energy spacing, _At different photon energies, spectra assoc_lated with
the resulting spectra are not very sensitive to the width, adifferent thresholds may be well separated in energy.
we have verified numerically. The window function we
use here is a Lorentzian type of function normalized to
unity [18].

Using this method, we have studied photoelectron
energy spectra in Mg. The time-dependent calculation is o= |
performed as described in Ref. [11]. We show only the
interaction Hamiltonian here,

V) ==& (i + pAG. (A1)

e

Mg I=1x10" W/en?, E oon=5€V, =10 cycles

10°

- 38+

where theA(r)> term has been transformed awady,is
the polarization vector of the electric field and the vector
potential A(r) = Ay exp{—%(t/r)z] codwt), wherer is
approximately the HWHM for the electric field. We  10°
integrate the time-dependent differential equations from
—37 to +37. » A

In Fig. 2, we show the total and partial photoelectron ' o 5 10 15
energy spectra at the end of a Gaussian pulse ef Photoelectron energy (eV)

10 optical cycles at photon energy2eV. The peak F|G. 4. Photoelectron energy spectra /ab = 5 eV, I, =
intensity of the laser pulse i40'> W/cm?. In this 102 W/cm?2.
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An example is shown in Fig. 4, calculated for photonresolution, constrained by the energy spacing, but it is
energy 5 eV. The last example we show in Fig. 5, for yetstill superior to the typical experimental resolution. A
another photon energy, has more interesting features. (Famore serious related shortcoming is that the photoelectron
viewing purposes, we show only the two most importantangular distribution cannot be calculated, since the phase
partial spectra.) Namely, not only are the two spectranformation cannot be extracted from the averaging. Also,
related to the3s and 3p thresholds well separated in obtaining a sufficiently high density of states becomes
energy, but, also, each of them shows a splitting. The&umbersome owing to the quadratic discretization.

origin of this splitting is the near resonant two-photon The above difficulty can, however, be overcome by
coupling of the ground state to th@s5s)'S state. In  restructuring the construction of the discrete basis. We
fact, at this photon frequency, there is also a three-photohave been able to show that, by choosing different
resonance between the ground state and(8pets)'P  boundary conditions, the continuum can be discretized
autoionizing state, but this process is completely maskedniformly which restores the necessary degeneracy. This
by the two-photon resonance transition. involves a number of technical details that will be

To the best of our knowledge, this is the first successfupresented elsewhere. For the moment, it should suffice
attempt at one of the long standing problems in strondo say that we have developed a method in two stages:
field interactions. The advantage of our approach is thaa more straightforward one providing everything except
it is relatively straightforward to build the basis, since all photoelectron angular distributions and a more demanding
states with a given angular momentuimare obtained in but tested stage that provides angular distributions and
one diagonalization. A minor disadvantage is the limiteda somewhat more refined ATI spectra. This has also
allowed us to verify in yet another way the reliability of
the results reported here.

The intensities and photon energies employed in all
10° ' 1 of our examples are readily available. It should not be
too surprising that nonperturbative effects in Mg set in at
intensities as low a§ X 10'> W/cm?, as it is a rather

Mg I=1x10" W/em®, E,o,=3.12ev, =10 cycles

-2
10" r n 1 soft atom compared to He.
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