
VOLUME 77, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 9 SEPTEMBER1996

1110,

2

Time-Dependent Calculation of Photoelectron Spectra in Mg Involving Multiple Continua
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We report the first successful attempt at the time-dependent nonperturbative calculation of
multiphoton ionization and above threshold ionization in the presence of several open channels leaving
the ion in excited states. After an outline of the theoretical approach based on a discretized basis
constructed in terms ofB-splines, we also present illustrative results on atomic magnesium. [S0031-
9007(96)01144-1]
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The photoelectron energy spectrum of an atom
der a strong laser pulse, especially in connection w
above threshold ionization (ATI) [1,2], contains the im
print of nonperturbative behavior expected above c
tain intensities. Although much has been learned ab
this behavior in the single active electron (SAE) appro
mation, where all but one of the electrons are assum
frozen and unaffected by the field, very little is know
theoretically about the expected behavior beyond that
proximation. Yet, it has been known for quite some tim
that, in the alkaline earths, under the appropriate com
nation of intensity and frequency, significant double el
tron excitation takes place, leaving the ion not only in
ground but also in excited states [3–5]. Even in pertur
tion theory in single-photon processes this is a diffic
problem as it involves several open channels (con
ua) [6–9].

In previous preparatory work, we have developed
essentials of the approach and have studied the ATI s
trum of He, where, however, the ionized electron is har
affected by the other electron which is left in the ion
ground state. This was not totally unexpected since
He, correlation is not very strong, being most import
in the ground state. Thus the energy gap between
two thresholds is relatively large, as a consequence
which, for optical or even UV photons, most of the o
servable ATI peaks are produced between the two thr
olds, with negligible influence of correlation. In Mg an
the other alkaline earth atoms, on the other hand, the
ation is quite different. Continua associated with mo
than one ionization threshold lie much closer to the low
one (see Fig. 1) which makes them much more acces
at intensities, frequencies, and pulse durations curre
available. That is why excited ionic states have been
served in such atoms. An important question therefore
How does one calculate branching ratios in photoelec
spectra corresponding to different ionization channels
der strong-field multiphoton excitation, and how do th
depend on laser intensity? In other words, what is
nonperturbative behavior of processes with several o
channels? It is the purpose of this paper to present the
186 0031-9007y96y77(11)y2186(4)$10.00
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time-dependent nonperturbative treatment of this probl
including specific results on Mg.

Discrete atomic bases obtained inside a finite space
been used to carry out nonperturbative time-dependent
culations in He [10,11]. The main difference between
two atoms is the inner-shell electrons, Mg having 10
them. These core electrons are relatively inactive in
laser intensity range we are considering, so we treat t
as frozen in their Hartree-Fock orbitals. The outer t
valence electrons are treated in the same way as the
electrons in He [12]. The boundary condition we use
the outer boundary of the box iscsr ­ Rmaxd ­ 0. This
condition selects continuum orbitals, resulting in the d
cretization, and modifies slightly the bound orbitals [1
With unit normalization, the discretization is equivalent

FIG. 1. Mg energy level diagram, solid numbers are exp
mental values and dotted numbers are calculated values.
© 1996 The American Physical Society
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a numerical quadrature for a single continuum [14]. T
criterion for the “box” size is that it be large enough for
physics of interest to be confined within the box, during
interaction time. For Mg,Rmax ­ 800 a.u. is necessary
and we obtain 700 one-electron radial orbitals for e
angular momentum component of the ionic state by dia
nalizing the single electron Hamiltonian on a set of 702B-
splines defined inR ­ f0, Rmaxg. By contrast, a larger bo
would be required if higher ATI contributions are signi
cant, as, for example, in He at higher intensity.

Two-electron states are antisymmetrized products
one-electron orbitals obtained in the box, and we selec
configuration space to be3snl 1 3pnl 1 4snl 1 3dnl.
Higher ionization thresholds are left out. As long as
focus on the study of branching ratios below and includ
the 3d threshold, this basis is sufficient. Including mo
and more high lying thresholds is important if we are
study the double electron ejection. This extension pres
a major challenge to any method, both mathematically
computationally. We limit ourselves to the study of s
gle electron ionization in this paper. The resulting tw
electron eigenstates can be denoted ascnLsss$r1, $r2, sM ­
0dddd. We use only theM ­ 0 states, because we are inte
ested in linearly polarized laser fields. A chosen set offnLg
defines a basis. The time-dependent Schrödinger e
tion can then be solved on this basis set, as describe
[10,11,15], providing the time-dependent “exact” (with
the finite space) wave functionCstd.

The extraction of the photoelectron energy spectr
from Cstd in the region of the multiple continua is neith
evident nor straightforward. The reason is that now
need to find the partial photoelectron spectra associ
with different ionization thresholds, but each discrete tw
electron state at a particular energy is a box-depen
superposition of physical states. In other words, we w
to expand the time-dependent wave function in the pro
basis,

Cstd ­
X
n,L

CnLstdcEnL 1
X

i

Z
Ci

Estdc i2
E dE , (1)

where i indicates the ionization channel associated w
the ith threshold,Fi represents the corresponding ion
state and the angular momentum factor. Asymptotica

c i2
E

r!`
!

1
r

s
2

pki

1
2i

µ
Fie

iuki 2
X

j

SijFje2iukj

∂
, (2)

where

uki ­ kir 2
1
2

lip 2
1
ki

lns2kird 1 arg

∑
G

µ
li 1 1 2 i

1
ki

∂∏
(3)

is the Coulomb phase shift in the nuclear field of cha
1, and Sij are matrix elements of theS matrix that
determine the interaction between the channelsi and
j. The photoelectron energy spectrum is then given
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Est ! `dj2, corresponding to leaving the ion in statei

with k2
i y2 ­ E 2 Ei

th.
Before we discuss the relation between the discr

basis functions and the correct wave functions satis
ing Eq. (2), we first look at the relation between t
eigenchannels used in the multichannel quantum de
(MQDT) theory [16,17] and the desired wave functio
with an outgoing spherical wave in one channel and an
coming spherical wave in all channels. The MQDT eige
channel wave functions can be written as

cb
r!`

!
X

i

UbiF
0
i sinsui 1 dbd . (4)

They relate to the channel wave functions, each co
sponding to an outgoing spherical wave in one chan
and an incoming wave in all channels, through a lin
transformation

c i2 ­
X
b

sUibe2idb dpb , (5)

r!`
!

1
2i

µ
F0

ie
iui 2

X
j

SijF0
je2i=j

∂
. (6)

The physical nature of theN-fold continua determines tha
there should beN linearly independent solutions at eac
energy. Therefore, in principle, any linear transformati
of the eigenchannel solutions leads to an alternative
of solutions. Consider now an arbitrary “rotation” of th
eigenchannels,

xa ­
X
b

Aa
bcb , (7)

r!`
!

X
i

Ba
i F0

i sinsui 1 da
i d . (8)

These solutions differ from the eigenchannel solutio
in that there is no characteristic phase shift associa
with each channel. Any one of these solutions (for
certaina) can be understood as having behavior sim
to one discrete state in the basis. If one can findN
linearly independent basis functions at each energy, t
can be transformed to the desired final wave functio
exactly. Consequently, the time-dependent coefficie
can be found as

Ci
Estd ­

X
a

kc i2 j xa
E lCa

E std ­
X
a

kc i2jca
i lCa

E stdBa
i .

(9)

Unfortunately, the discrete basis with a fixed bounda
condition does not possess theN-fold degeneracy, simply
because the energies of two discretized states of diffe
channels in the continuum would coincide only accide
tally. In fact, it is safe to say that practically there
no degeneracy at all. This can be seen clearly eve
the structure of uncoupled channels. Since each sin
electron continuum is discretized approximately quadr
cally, continua associated with different thresholds ha
different discretization at a given two-electron energ
[Neglecting the complicated behavior of the wave fun
tion near the nucleus, we haveknRmax ø pn, so that
2187
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FIG. 2. Photoelectron energy spectra ath̄v ­ 2 eV , I0 ­
1012 Wycm2. The vertical axis is population per energy
(1ya.u.).

En ­ k2
ny2 ­ p2n2ys2R2

maxd, proportional ton2.] Note
that we do not know the projection coefficientkc i2 j c

a
i l

within our discretized basis, since we do not knowc i2.
Even if we know it, we still cannot regenerate the lo
degeneracy.

To circumvent that difficulty, instead of the transform
tion in Eq. (9), we replace the summation overa by a sum-
mation weighted by a window function over neighborin
states

jCi
Estdj2 ­

X
j

WsEj 2 Ed jCEj
stdBisEjdj2. (10)

This approximation implies an interpolation between d
cretized states, which can be understood as recovering
degeneracy within a small energy interval. As long
the window width is comparable to the energy spaci
the resulting spectra are not very sensitive to the width
we have verified numerically. The window function w
use here is a Lorentzian type of function normalized
unity [18].

Using this method, we have studied photoelectr
energy spectra in Mg. The time-dependent calculatio
performed as described in Ref. [11]. We show only t
interaction Hamiltonian here,

V std ­ 2
e

me
ê ? s $p1 1 $p2dAstd , (11)

where theAstd2 term has been transformed away,ê is
the polarization vector of the electric field and the vec
potential Astd ­ A0 expf2 1

2 stytd2g cossvtd, wheret is
approximately the HWHM for the electric field. W
integrate the time-dependent differential equations fr
23t to 13t.

In Fig. 2, we show the total and partial photoelectr
energy spectra at the end of a Gaussian pulse oft ­
10 optical cycles at photon energy­2eV . The peak
intensity of the laser pulse is1012 Wycm2. In this
2188
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FIG. 3. Photoelectron energy spectra ath̄v ­ 2 eV , I0 ­
5 3 1012 Wycm2.

case, the spectrum associated with the3p threshold is
almost completely hidden under the dominant contribut
related to the3s threshold. This overlap can be attribute
to the fact that the3s and 3p thresholds are abou
4.27 eV apart, so the first photoelectron peak above
3p threshold has only 0.27 eV energy less than the fi
peak above the3s threshold.

The spectra under the same conditions as Fig. 2
with higher peak intensity5 3 1012 Wycm2 are shown
in Fig. 3. It can be seen that different branches
the spectra shift relative to each other compared to
lower intensity case. And the branching ratios are a
changed; contributions from higher thresholds beco
more significant. Recall that, in perturbation theor
branching ratios are independent of intensity.

At different photon energies, spectra associated w
different thresholds may be well separated in ener

FIG. 4. Photoelectron energy spectra ath̄v ­ 5 eV , I0 ­
1012 Wycm2.
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An example is shown in Fig. 4, calculated for phot
energy 5 eV. The last example we show in Fig. 5, for
another photon energy, has more interesting features.
viewing purposes, we show only the two most import
partial spectra.) Namely, not only are the two spec
related to the3s and 3p thresholds well separated
energy, but, also, each of them shows a splitting. T
origin of this splitting is the near resonant two-phot
coupling of the ground state to thes3s5sd1S state. In
fact, at this photon frequency, there is also a three-pho
resonance between the ground state and thes3p4sd1P
autoionizing state, but this process is completely mas
by the two-photon resonance transition.

To the best of our knowledge, this is the first succes
attempt at one of the long standing problems in stro
field interactions. The advantage of our approach is
it is relatively straightforward to build the basis, since
states with a given angular momentumL are obtained in
one diagonalization. A minor disadvantage is the limi

FIG. 5. Photoelectron energy spectra ath̄v ­ 3.12 eV , I0 ­
1012 Wycm2.
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resolution, constrained by the energy spacing, but it
still superior to the typical experimental resolution. A
more serious related shortcoming is that the photoelectro
angular distribution cannot be calculated, since the pha
information cannot be extracted from the averaging. Also
obtaining a sufficiently high density of states become
cumbersome owing to the quadratic discretization.

The above difficulty can, however, be overcome by
restructuring the construction of the discrete basis. W
have been able to show that, by choosing differen
boundary conditions, the continuum can be discretize
uniformly which restores the necessary degeneracy. Th
involves a number of technical details that will be
presented elsewhere. For the moment, it should suffic
to say that we have developed a method in two stage
a more straightforward one providing everything excep
photoelectron angular distributions and a more demandin
but tested stage that provides angular distributions an
a somewhat more refined ATI spectra. This has als
allowed us to verify in yet another way the reliability of
the results reported here.

The intensities and photon energies employed in a
of our examples are readily available. It should not b
too surprising that nonperturbative effects in Mg set in a
intensities as low as5 3 1012 Wycm2, as it is a rather
soft atom compared to He.
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