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Three-Jet Cross Section in Hadron Collisions at Next-to-Leading Order:
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The next-to-leading order three-jet cross section in hadron collisions is calculated in the sim
case when the matrix elements of all QCD subprocesses are approximated by the pure gluon
element. The longitudinally invariantk' jet-clustering algorithm is used. The important property
reduced renormalization and factorization scale dependence of the next-to-leading order physic
section as compared to the Born cross section is demonstrated. [S0031-9007(96)01101-5]

PACS numbers: 13.87.Ce, 12.38.Bx
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The structure of hadronic final states in high ene
collisions may be described in terms of jet characteris
Nowadays, jet cross section data are used for both pre
quantitative tests of QCD—such as measurement of
strong couplingas and QCD scaleLMS —and looking
for signs of new physics beyond the standard mo
Both of these objectives have been studied extensive
e1e2 annihilation [1] that is characterized by a fixed hi
energy scale, namely, the machine energy. One wo
also like to analyze the data of scattering processe
the highest available energy scale, where the sign
new physics are expected to be the most profound.
highest scale is, in general, found in hadron collisio
Unfortunately, there are important ambiguities which lim
our ability to perform high precision quantitative studi
with the jet cross sections observed in hadron collisio
In experiments, ambiguities arise from the question
how to define a jet and from the systematic uncertain
of jet energy measurements. On the theoretical side, a
from the ubiquitous and ever decreasing uncertainty in
parton density functions [2], there still remains uncertai
in the choice of renormalization and factorization sca
the magnitude of the higher order corrections and
question of how to match the theoretical and experime
jet definitions. The theoretical ambiguity coming fro
these points can be decreased if the next-to-leading o
corrections are calculated.

The most easily calculated next-to-leading order corr
tions to cross sections in hadron collisions are those to
inclusive one-jet and two-jet cross sections which h
been available for some time [3,4]. These results have
ready proven to be extremely important: The signific
enhancement in the experimental one-jet cross sec
over the result of the theory in the rangep

jet
T . 200 GeV

may be interpreted as a signal of physics beyond the s
dard model [5].

In order to be able to calculate next-to-leading
der corrections for more complex final states than
ones mentioned above—such as the three-jet cross
tion in hadron collisions—two obstacles had to be ov
come. Firstly, there was the issue of loop matrix eleme
0031-9007y96y77(11)y2182(4)$10.00
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which only recently have become available for all fiv
parton processes [6–8] necessary for a three-jet anal
Secondly, the algorithm for the cancellation of infrare
divergences applied in Ref. [4] was not directly applic
ble to processes with more complex final state kinemat
Recently, a number of general schemes have been
posed for achieving the cancellation of final state infrar
singularities and mass factorization in the framework
both “phase space slicing” method [9] and “subtractio
method [10–12].

In this Letter we present a brief summary of a
analysis of three-jet cross sections using the algorit
of Ref. [12], but in the simplified case when all squar
matrix elements are approximated with that of the pu
gluon subprocess. Thus the results shown are inten
only for demonstrating the applicability of the subtractio
scheme of Ref. [12] in the case of hadron collisions rat
than a serious theoretical description of the data.
anticipate, however, similar conclusions as those dra
here will hold once the complete analysis with quar
included is finished.

According to the factorization theorem, the next-t
leading order infrared safe physical cross section at or
a

sN11d
s is a sum of two integrals,

s ­ I f2 ! Ng 1 I f2 ! N 1 1g , (1)

where, in the case of the pure gluon approximation for
squared matrix element, these integrals have the form

I f2 ! ng ­
Z

dxAfeffs g, xAd
Z

dxBfeffs g, xBd

3
1

2xAxBs
1
n!

Z
dGsndsp

m
1 , . . . , pm

n d

3 kjM s g 1 g ! ngdj2lSnsp
m
1 , . . . , pm

n d .

(2)

In this equation,dGsnd is the usualn-particle phase space
measure. There are two possibilities for the choice of
effective gluon densities. One can either imagine collidi
glueballs [3], use a reference gluon density at a fix
© 1996 The American Physical Society
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sis,
m0 scale and evolve it to other scales withNf ­ 0, or,
alternatively, one can use the effective gluon density [1

feffs g, xd ­ fs g, xd 1
4
9

X
q

f fs g, xd 1 fsq̄, xdg .

(3)

Our choice will be the latter one. There is still the quest
of what sort of strong couplingassmd one should use
in the pure gluonkjM s g 1 g ! ngdj2l squared matrix
elements. We use the two-loop formula for the stro
coupling with Nf ­ 0 and the QCD scale parameter
the modified minimal subtraction scheme,LMS chosen to
be 1600 MeV so asass50 GeVd . 0.13 is consistent with
the value ofass50 GeVd observed in the real world with
quarks. In this way we ensure that the relative size
the next-to-leading order correction is similar to that
the full QCD case. Note, however, when we comp
the orderasN11d

s cross section to the results of the Bor
level calculation, we compute the Born cross section us
the one-loop formula foras with the LMS ­ 1100 MeV,
which makesass50 GeVd about 15% and the Born-leve
three-jet cross section about 50% bigger.

The functionSn in Eq. (2) represents the physical qua
tity to be calculated. Among the numerous infrared s
physical quantities one can calculate with the techni
presented in Ref. [12], an explicit example, that we use
the present analysis, is the next-to-leading order three
cross section in hadron collisions defined using the lon
tudinally invariantk' jet-clustering algorithm [14]. Fo
hadron collisions the jet-clustering algorithm is a tw
stage process, each characterized by a scale. The
step is the preclustering of hadrons into hard final s
jets and beam jets. One sets the hardness scale of th
to dcut. Then, for every final state hadronhk and for ev-
ery pair hk ,hl , one computes the corresponding value
the resolution variablesdkB and dkl. There are severa
possibilities for the definition of the resolution variable
For instance, we may choose

d2
kB ­ p2

k , d2
kl ­ minsp2

k , p2
l dR2

kl , (4)

whereRkl is the distance insh, fd space,

Rkl ­
q

shk 2 hld2 1 sfk 2 fld2 , (5)

and spk , uk, fkd are the cylindrical coordinates of th
three-momentum of hadronhk with respect to the beam
axis, with hk ­ 2 ln tansuky2d being the correspondin
pseudorapidity. (For other possibilities see Ref. [14
Having calculated the resolution variables, one consid
the smallest value amonghdkB, dklj. If dij is the smallest
value anddij , dcut, then hi and hj are combined into
a single cluster with momentump

m

sijd according to a
recombination prescription, and the algorithm starts ag
with hadronshi and hj deleted from the final state an
the “pseudoparticle” of momentump

m

sijd added to the fina
state. If diB is the smallest value anddiB , dcut, then
hadronhi is deleted from the final state and is includ
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in the beam jets, and the algorithm starts again. T
algorithm stops if the smallest value is larger than
hardness scaledcut. At the end of the algorithm, one
has two beam jets and several hard final state jets.
second step of the algorithm is the resolution of t
event structure into subjets. For this step, one defi
a resolution parameterycut, ycut ­ Q2

0yd2
cut # 1. Using

this resolution parameter and the set of final state had
momenta preclustered into the hard final state jets
performs ak' jet-clustering algorithm already familia
from studies in e1e2 annihilation. For the sake o
simplicity, here we chooseycut ­ 1. With this choice
we focus our attention to hard final state jets only, a
suppress the second step of the clustering algorithm.

The principle of parton-hadron duality implies th
we use the same clustering algorithm at parton leve
defined at hadron level. Thus the measurement funct
used for the next-to-leading order perturbative calculat
of N hard final state jet production are

SN11sp
m
1 , . . . , p

m
N11d ­ QsdsN11d

min . dcutd

1 QsdsN11d
min , dcutd

3 QsdsN11!Nd
min . dcutd (6)

and

SN sp
m
1 , . . . , p

m
N d ­ QsdsNd

min . dcutd , (7)

where

d
snd
min ­ minshp2

i , dijj : i, j ­ 1, . . . , n, i fi jd , (8)

and d
sN11!Nd
min is the minimal value of the resolutio

variables after one clustering step. In Eq. (6) the first te
represents thesN 1 1d-jet production, while the secon
one represents the production ofN jets and either a sof
parton or a hard parton collinear with the beam ax
thus included in the beam jets orN-jet production such
that all final state patrons are hard, but two of them
collinear, thus combined into a single jet. It is not difficu
to check that these measurement functions are infra
safe if any sensible recombination scheme [14] is appl
In our analysis, we use thept-weighted recombination
In this scheme the transverse momentum, pseudorapi
and azimuth of the pseudoparticlesijd are defined as

ptsijd ­ pti 1 ptj , (9)

htsijd ­
ptihti 1 ptjhtj

ptsijd
, (10)

ftsijd ­
ptifti 1 ptjftj

ptsijd
. (11)

We remark that any other experimental cut, such as a
in the rapidity window, or apt trigger should also be
included in the measurement functions. In our analy
we required that, for the rapidity of jets,jhj , 3 and the
2183
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FIG. 1. Total three-jet cross sectionssdcut ­ 70 GeVd vs m
at the Born anda4

s level.

sum of the transverse momenta of the observed part
psum

t . 100 GeV.
We now turn to the description of our results whi

were obtained at
p

s ­ 1800 GeV machine energy an
using the HMRS(B) [15] parton distributions. In Fig.
we plot the total three-jet cross section both at Born le
and at next-to-leading order for a fixed value ofdcut ­
70 GeV vs m which is the common renormalization an
factorization scale. This plot demonstrates that ove
wide range ofm values the theoretical uncertainty comi
from the scale dependence is sizably reduced in the n
to-leading order result as compared to the result of a B
calculation. In particular, one expects on general grou
that m should be chosen of the order of the hard sc

FIG. 2. Differential three-jet cross sectiond3
cutdsyddcut vs

dcut for 0.5dcut , m , 2dcut at Born level (gray band) an
at next-to-leading order (black band).
2184
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dcut. If one variesm in the range ofdcuty2 , m , 2dcut,
then the change in the next-to-leading order cross sec
is less than1y6 of the change in the Born-level resu
Thus the inclusion of the higher order correction decrea
the uncertainty in the theoretical prediction by a factor
larger than 6. Similar conclusion can be drawn from pl
at otherdcut values in the range of20 , dcut , 200 GeV.
This can also be seen from Fig. 2, where the ove
size of the three-jet cross section can be read off fr
a differential cross sectiond3

cutdsyddcut plotted vsdcut.
The wide gray band shows the result of a Born-le
calculation withm varied betweendcuty2 , m , 2dcut,
while the narrower black band inside is the next-
leading order result with the same scale variation.

In order to give the reader some feeling about the er
of the Monte Carlo integrations, in Fig. 3 we plot th
size of the Born-level cross section and the higher or
correction to it, together with the statistical errors of the
results atm ­ dcut. The statistical error of the Born resu
is below 1%, while the statistical error of the full next-t
leading order cross section plotted in Fig. 2 is below 10

In conclusion, we have calculated the three-jet cr
section for the longitudinally invariantk' jet-clustering
algorithm in hadron collisions for the simplified case wh
the matrix elements of all subprocesses are approxim
by those of the pure gluon subprocess. The motiva
for the particular choice of the jet definition is simp
the pleasant property of the clustering algorithm tha
uniquely assinges all final state particles to a cer
jet. Using this definition, one avoids the problem of
separation in the case of overlapping jets that occurs w
cone jet definition is used. We used the subtraction met
of Ref. [12] for canceling the infrared singularities. Th

FIG. 3. Differential three-jet cross sectiond3
cutdsyddcut vs

dcut for m ­ dcut at Born level (crosses) and the high
order correction to it (histogram). The error bars indicate
statistical error of the Monte Carlo integration.
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method has the important feature that the physical quan
to be calculated is well separated from the theoret
problems of cancellation of infrared singularities and c
easily be changed in a modular fashion in the Mo
Carlo program. Thus the particular choice for the
definition is by no means essential. We have fou
that the inclusion of the higher order correction improv
dramatically our theoretical description of the three-
cross section: the ambiguity coming from the arbitra
choice of the renormalization and factorization scales
reduced by a factor of at least 6. Although the curr
analysis is not complete in the sense that we have
used the full QCD matrix elements, we anticipate simi
conclusions once the effect of quarks is included.
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