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Systematics of Soft Final-State Interactions inB Decays
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By using very general and well established features of soft strong interactions we show, co
to conventional expectations, that (i) soft final-state interactions (FSI) do not disappear for largmB,
(ii) inelastic rescattering is expected to be the main source of soft FSI phases, and (iii) FSI
interchange charge and/or flavors are suppressed by a power ofmB, but are quite likely to be significan
at mB . 5 GeV. We briefly discuss the influence of these interactions on tests ofCP violation and on
theoretical calculations of weak decays. [S0031-9007(96)01152-0]
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It is notoriously difficult to say anything useful abou
final-state interactions in weak decays. Although t
final-state interactions are not themselves of fundame
interest, they are important for some truly interesti
aspects ofB decay. For example, many signals of dire
CP violation in B transitions require final-state phases
well asCP-violating phases if theCP-odd asymmetry is to
be nonzero [1]. In this paper we shall derive some gen
properties of soft final-state interactions and describe
implications for theory and phenomenology.

The scattering of hadrons at high energies exhibit
two-component structure of “soft” and “hard” scatterin
Soft scattering is that which occurs primarily in the forwa
direction. The transverse momentum is limited, havin
distribution which falls exponentially with a scale of ord
0.5 GeV. At higher transverse momentum, ultimately o
encounters the region of hard scattering, which falls only
a power of the transverse momentum. Collisions involv
hard scattering are interpreted as interactions betw
pointlike constituents of the hadrons, the quarks, a
gluons of QCD. These are calculable in QCD perturbat
theory and are found to be in good quantitative agreem
with experiment. Hard scattering is, however, only a ve
small portion of the total hadronic cross section. T
much larger soft component at low values of transve
momentum is by far the dominant contribution to hig
energy scattering. Although soft hadronic interactio
are generally not calculable from first principles, there
available a wealth of experimental studies [2] and accu
high energy phenomenology [3] on which to base o
study.

The modern approach toB physics employs as a
organizing principle the fact that theB mass is very
large compared to the QCD scale. In the context of s
final-state interactions (FSI) inB decays, it suggests th
question—what is the leading order behavior of soft fin
state phases in themB ! ` limit? One perception is tha
they might become less and less important as the m
of the decaying quark becomes heavier. This is beca
roughly speaking, the final-state particles emerge at s
high momenta that they do not have a chance to resc
[4]. Such an expectation is, however, false because
0031-9007y96y77(11)y2178(4)$10.00
e
tal
g
t
s

ral
he

a
.
d
a
r
e
as
g
en
d
n
nt
y
e
se

s
is
te
r

ft

l-

ss
se,
ch
tter
oft

scattering actually grows with energy. As an example
this important energy dependence, we shall demonst
below that the imaginary part of the forward elas
amplitude has ans11h (h . 0.08) dependence, and, a
a consequence, the elastic final-state interaction is rou
constant as a function ofmB. (The small exponenth .
0.08 occurs repeatedly throughout this analysis, but is
in itself of basic significance as our conclusions would
qualitatively unchanged withh ­ 0.) We shall then use
this observation as the starting point for a more gene
exploration of the systematics of FSI for largemB. The
inevitability of our conclusions will be seen to follow
rather directly from well established aspects of stro
interaction phenomenology.

Final-state interactions inB decay involve the rescatter
ing of physical final-state particles. Unitarity of theS ma-
trix, S yS ­ 1, implies that theT matrix, S ­ 1 1 iT ,
obeys

DiscTB!f ;
1
2i

£
kfjT jBl 2 kfjT yjBl

§
­

1
2

X
I

kfjT yjIl kIjT jBl . (1)

Of interest are all physical intermediate states which
scatter into the final-statef. Among all these, however
we shall first concentrate on just theelastic channel and
demonstrate that elastic rescattering does not disappe
the limit of largemB. (We stress that we arenotsuggesting
the elastic channel to be the dominant contribution
soft rescattering. Our analysis leads to quite the oppo
conclusion, that it is the inelastic channels which are m
important.) The elastic channel is especially conveni
for our discussion because we can use the optical theo
to rigorously connect it to known physics. The optic
theorem relates the forward invariant amplitudeM to the
total cross section,

Im Mf!f ss, t ­ 0d ­ 2k
p

s sf!all , ssf!all , (2)

wheres is the squared center-of-mass energy andt is the
squared momentum transfer.

The asymptotic total cross sections are known exp
imentally to rise slowly with energy. All known cros
© 1996 The American Physical Society
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sections can be parametrized by fits of the form [5]

sssd ­ Xssys0d0.08 1 Y ssys0d20.56, (3)

wheres0 ­ O s1d GeV is a typical hadronic scale. Thu
the imaginary part of the forward elastic scattering am
tude rises asymptotically ass1.08. This growth withs is
counterintuitive in that it cannot be generated by a per
bative mechanism at any finite order. In particular, c
culations based on the quark model or perturbative Q
would completely miss this feature.
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In order to arrive most simply at our goal, let u
first consider only this imaginary part, and build in th
known exponential falloff of the elastic cross section int
(recalling thatt is negative) by writing

i Im Mf!f ss, td . ib0ssys0d1.08ebt . (4)

It is then an easy task to calculate the contribution of
imaginary part of the elastic amplitude to the unitar
relation for a final-statef ­ a 1 b with kinematicsp0

a 1

p0
b ­ pa 1 pb ands ­ spa 1 pbd2, and we find
DiscMB!f ­
1
2

Z d3p0
a

s2pd32E0
a

d3p0
b

s2pd32E0
b

s2pd4ds4dspB 2 p0
a 2 p0

bd

"
2ib0

µ
s
s0

∂1.08

ebspa2p0
ad2

MB!f

∏
­ 2

i
32p

Z
dscosude2sbsy2d s12cosudb0

µ
s
s0

∂1.08

MB!f ­ 2
1

16p

ib0

s0b

µ
m2

B

s0

∂0.08

MB!f , (5)
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where we have used t ­ spa 2 p0
ad2 . 2ss1 2

cosudy2 and have takens ­ m2
B. The integration over

the angle involving the direction of the intermediate st
is seen to introduce a suppression factor to the final-s
interaction of s21 ­ m22

B . [Note that for a final state
like pp which occurs in a definite angular momentu
eigenstate (S wave), the final angular integral is the sam
as projecting out theS wave scattering state. A differen
way of understanding the kinematic factor of1ym2

B is that
the S wave component of elastic scattering is a fracti
1ybm2

B of the total amplitude.] This is because the s
final-state rescattering can take place only if the int
mediate state has a transverse momentump' # 1 GeV
with respect to the final particle direction. This wou
naively suggest a result consistent with conventio
expectations, i.e., an FSI which falls asm22

B . However,
the fact that the forward scattering amplitudegrowswith
a power of s overcomes this suppression and leads
elastic rescattering which does not disappear at largemB.

In fact, we can make a more detailed estimate of ela
rescattering because the phenomenology of high en
scattering is well accounted for by Regge theory [
Scattering amplitudes are described by the exchange
Regge trajectories (families of particles of differing spi
which lead to elastic amplitudes of the form

Mf!f ­ jbstd ssys0dastdeipastdy2, (6)

with j ­ 1 for charge conjugationC ­ 11 and j ­ i
for C ­ 21. Each such trajectory is described by
straight line,

astd ­ a0 1 a0t . (7)

The leading trajectory for high energy scattering
the Pomeron, havingC ­ 11, a0 . 1.08, and a0 .
0.25 GeV22. Note that since

ssys0dastd ­ ssys0da0 ea0 lnfsys0gt , (8)

the exponential falloff int is connected with the slop
a0 and the effective slope parameterb in Eq. (4) thus in-
creases logarithmically withs. Since a0 is near unity,
the phase of the Pomeron-exchange amplitude is s
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from Eq. (6) to be almost purely imaginary. This fe
ture has been verified experimentally by interference m
surements. There are several next-to-leading trajecto
both those withC ­ 21 [rs770d andvs782d trajectories]
and those withC ­ 11 [a2s1320d andf2s1270d trajecto-
ries]. Roughly, these havea0 . 0.44, a0 . 0.94 GeV22

and lead collectively to thes20.56 dependence in th
asymptotic cross section of Eq. (3). The prefactorbstd
in Eq. (6) also has known regularities. For the Pome
b is very nearly proportional to the number of quarks
each vertex, and carries a power law behavior simila
the electromagnetic form factor. Therefore,bpp in pion-
pion scattering can be expressed in terms of the analo
proton-proton quantitybpp as

bpp std ­ s 2
3 d2bppst ­ 0dys1 2 tym2

rd2. (9)

The combination of exponential and power lawt depen-
dence in a generic Regge amplitude gives a unitarity
tegral no longer having an elementary form. Howev
the integration can still be carried out in terms of E
ler functions. Takings ­ m2

B . 25 GeV 2, we obtain for
the Pomeron contribution

DiscMB!pp jPomeron ­ 2ieMB!pp , (10)

where we find from our computation,

e . 0.21 . (11)

From this numerical result and from the nature of
derivation, we may anticipate that additional individ
soft FSI will not be vanishingly small. Moreover, oth
final states should have elastic-rescattering effect
comparable size. However, of chief significance is
weak dependence ofe on mB that we have found—
the sm2

Bd0.08 factor in the numerator is attenuated
the lnsm2

Bys0d dependence in the effective value ofb
[compare Eqs. (4) and (8)].

The above study of the elastic channel, although
structive, is far from the whole story. In fact, it sugge
the even more significant result that at high energiesFSI
phases are generated chiefly by inelastic effects.At a
2179
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physical level, this conclusion is forced on us by the fa
that the high energy cross section is mostly inelastic. It
also plausible at the analytic level, given that the Pomer
elastic amplitude is almost purely imaginary. The point
simply this. Our study of elastic rescattering has yielde
a T -matrix elementTab!ab ­ 2ie, which directly gives
Sab!ab ­ 1 2 2e. However, the unitarity of theS ma-
trix can be shown to imply that the off-diagonal elemen
must beO s

p
e d. Sincee is approximatelyO sm0

Bd in pow-
ers ofmB and numericallye , 1, the inelastic amplitude
must also beO sm0

Bd and of magnitude
p

e . e. There is
an alternate argument, utilizing the form of the final-sta
unitarity relations, which also shows that inelastic effec
are required to be present. In the limit ofT invariance for
the weak interactions, the discontinuity DiscMB!f is a
real number (up to irrelevant rephasing invariance of th
B state). The factor ofi obtained in the elastic rescatter
ing in Eq. (10) must be compensated for by the inelas
rescattering (this effect is made explicit in the example
follow) in order to make the total real. Therefore, the pre
ence of inelastic effects is seen to be necessary.

Analysis of the final-state unitarity relations in thei
most general form,

DiscMB!f1 ­
1
2

X
k

MB!kT
y
k!f1

, (12)

is quite complicated due to the many contributing inte
mediate states present at theB mass. However, it is pos-
sible to illustrate the systematics of inelastic scattering b
means of a simple two-channel model. This pedagog
example involves a two-body final-statef1 undergoing
elastic scattering and a final-statef2 which is meant to
represent “everything else.” We assume that the elas
amplitude is purely imaginary. Thus, the scattering ca
be described in the one-parameter form

S ­

√
cos2u i sin2u

i sin2u cos2u

!
, T ­

√
2i sin2 u sin2u

sin2u 2i sin2 u

!
,

(13)

where, from our elastic-rescattering calculation, we ide
tify sin2 u ; e. The unitarity relations become

DiscMB!f1 ­ 2i sin2 uMB!f1 1
1
2 sin2uMB!f2 ,

DiscMB!f2 ­
1
2 sin2uMB!f1 2 i sin2 uMB!f2 .

(14)

Let us denote the real numbersM
0
1 and M

0
2 to be the

decay amplitudes in the limitu ! 0. Then an exact
solution to these equations is given by

MB!f1 ­ cosuM0
1 1 i sinuM0

2 ,

MB!f2 ­ cosuM0
2 1 i sinuM0

1 .
(15)

As a check, we can insert these solutions back in
Eq. (14). Upon doing so and bracketing contribution
from MB!f1 andMB!f2 separately, we find

DiscMB!f1 ­
1
2 hf22ieM0

B!f1
1 O se3y2dg

1 s2
p

e M0
B!f2

1 2ieM 0
B!f1

dj . (16)
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The first of the four terms comes from the elastic chan
f1 and is seen to be canceled by the final term, wh
arises from the inelastic channelf2. The third term is
dominant, beingO s

p
e d, and comes from the inelasti

channel.
In this example, we have seen that the phase is g

by the inelastic scattering with a result of order

Im MB!fyReMB!f ,
p

e M0
2 yM0

1 . (17)

Clearly, for physicalB decay, we no longer have a simp
one-parameterS matrix. However, the main feature o
the above result is expected to remain—that inela
channels cannot vanish because they are required to m
the discontinuity real and that the phase is systematic
of order

p
e from these channels. Of course, with ma

channels, cancellations or enhancements are possibl
the sum of many contributions. In any given process,
analysis cannot rule out the possibility of cancellatio
suppressing the phase (this would correspond to a s
M

0
2 in the simplified analysis above). However, sin

we have shown that both elastic and inelastic rescatte
occurs at orderm0

B, and these conclusions survive th
generalization to multiple channels, we must expect t
the final-state phases share this same property, a
from possible exceptional cases. In this situation,
generic expectation remains—that inelastic soft final-s
rescattering arising from Pomeron exchange will gene
a phase which does not vanish in the largemB limit.

What about nonleading effects? Because the nonle
ing trajectories involve particles with charge, spin, and
flavor quantum numbers, these exchanges differ from
Pomeron in being able to change these quantum num
in the rescattering process. It is not hard to see that th
may be significant at the physical values ofmB. For ex-
ample, the fit to thēpp total cross section is

sspp̄d ­

∑
22.7

µ
s
s0

∂0.08

1 140

µ
s
s0

∂20.56∏
smbd , (18)

with s0 ­ 1 GeV 2. At s ­ s5.2 GeV d2, the nonleading
coefficient is a factor of 6 larger than the leadin
effect, effectively compensating for thes20.56 ­ m21.12

B
suppression. The subleading terms are then compar
in the elastic forward̄pp scattering amplitude. The slop
of ther trajectory and hence the experimental falloff wi
t is larger than that of the Pomeron by a factor of nearly
and thus this moderates the integrated rescattering eff
If we estimate theb coefficient of ther trajectory in
pp by relating it top̄p via a factor ofbpp . 4bp̄p and
then perform the integration over the intermediate st
momentum, we find

DiscMB!pp jr2traj ­ ierMB!pp , (19)

with er . 0.11 2 0.05i. It is likely that the f2s1270d
trajectory could be somewhat larger, as it is inp̄p and
pp scattering.

Final-state phases can contribute to weak decay p
nomenology in a variety of ways. Here, we briefly co
sider two of these, isospin sum rules andCP-violating
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asymmetries. A simple example of an isospin sum ru
is the following relation betweenB ! Dp decay ampli-
tudes,

M10 ­ M12 1
p

2 M00 , (20)

whereM10 ; M sB1 ! p1D̄0d, etc. Measurement of
the magnitude of each amplitude via the partial decay ra
allows one to observe the relative final-state phases of t
different isospin components. Noting that theDp final
state inB decay occurs in the isospin statesI ­ 1y2, 3y2,
one can solve for the difference in phase angles,

cossd1y2 2 d3y2d

­

s
1
8

3jM12j2 2 6jM00j
2 1 jM10j

2

jM10j
p

3jM12j2 1 3jM00j2 2 jM10j2
.

(21)

The key qualitative property of Pomeron exchange is that
is independent of the charge states of the external particl
being identical for eachDipj final state. However, the
relative sizes of the weak amplitudes can be different
the different channels. Since [cf. Eq. (12)] the final-stat
phase involves a product of strong and weak amplitude
it is possible (but not required) that a nonzero phas
difference is generated.

CP-violating asymmetries involve comparisons ofB !

f and B̄ ! f̄. In order to be nonzero, these require tw
different pathways to reach the final statef, and these two
paths must involve differentCP-violating weak phases
and different strong phases. The leading Pomeron pha
cancontribute to such asymmetries if the other condition
are met. Because the strong phase is generated
inelastic channels, the relevant pathways would involv
B ! f directly or B ! “multibody” followed by the
inelastic rescattering, multibody! f. Depending on the
dynamics of weak decay matrix elements, these may pi
up different weak phases. As an example, consider t
final state f ­ K2p0, which can be generated either
by a standardW exchange or by the penguin diagram
involving different weak phases [7]. For the strong
rescattering, we must also consider a channel to whi
K2p0 scatter inelastically, which we callKnp (although
one can generate this asymmetry by a hard rescatter
DsD ! K2p0, we are concentrating here on the sof
physics). TheW -exchange and penguin amplitudes wil
contribute with different weights toKp andKnp , so that
in the absence of final-state interactions we expect

M sB2 ! K2p0d ­ jA1je
if1 ­ Aw

1 eifw 1 A
p
1 eifp ,

M sB2 ! Knpd ­ jAnjeifn ­ Aw
n eifw 1 Ap

n eifp ,
(22)

with f1 fi fn. If we now model the strong rescattering
by the two-channel model described above, we have forB
andB̄ decays

M sB2 ! K2pd ­ jA1je
if1 1 i

p
e jAnjeifn ,

M sB1 ! K1pd ­ jA1je
2if1 1 i

p
e jAnje2ifn .

(23)

This leads to aCP-violating decay rate asymmetry
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GsB2 ! K2p0d 2 GsB1 ! K1p0d

,
p

e jA1jjAnj sinsfn 2 f1d . (24)

While this effect will be very difficult to calculate, we se
that inelastic final-state interactions can contribute toCP-
violating asymmetries at leading order inmB.

The results obtained in this paper must also be accoun
for in any theoretical calculation of weak decay amp
tudes. For largemB, there is the hope that one can direct
calculate the weak matrix elements through variants of
factorization hypothesis or by perturbative QCD. Fina
state interactions will impose limits on the accuracy
such methods, as no existing technique includes the ef
of inelastic scattering. There must exist, in every va
theoretical calculation, a region of the parameter sp
where the nonperturbative Regge physics is manifest.
guments based on local quark-hadron duality do not
count for these effects of soft physics because the gro
of the scattering amplitude withs (for both the leading and
first nonleading trajectories) cannot be seen in perturba
calculations. It remains an intriguing possibility that th
assumption of quark-hadron duality can be questioned
other aspects ofB decay as well. At any rate, for final-stat
interaction studies, one may only hope that the perturba
and calculable physics is larger than the difficult nonp
turbative contributions discussed in this paper.

To conclude, we have argued that the general featu
of soft scattering have forced upon us some surpris
conclusions regarding final-state interactions. Most i
portantly, the growth of forward scattering withs, as
required by the optical theorem and cross section d
indicates that soft scattering does not decrease for la
mB (the dependence would be weak even if total cro
sections were constant in the energy). The structure
the elastic rescattering via the Pomeron also indicates
inelasticprocesses are expected to be the leading sou
of strong phases. These systematics can be importan
the phenomenology ofB decays.
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