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Exact Solution of the One-Dimensional Non-Abelian Coulomb Gas at LargeN
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The problem of computing the thermodynamic properties of a one-dimensional gas of particles
which transform in the adjoint representation of the gauge group and interact through non-Abelian
electric fields is formulated and solved in the largeN limit. The explicit solution exhibits a first order
confinement-deconfinement phase transition with computable properties and describes two-dimensiona
adjoint QCD in the limit where matter field masses are large. [S0031-9007(96)00978-7]

PACS numbers: 11.10.Wx, 11.10.Kk, 11.15.Pg
D
le
or
in
ni
n
i
lf

C
ol
on
ee
na
e
it
l
ls
g
d

n
a

a
n-
a
e

ci

s
ge
ia
o
,

ne
uo
rm

int
ux.
ry
al
s
ks.
ing
ntal

In
the

the
ust
on.

in
ber

rge

es
in
om,

s of

we
ngs
ng,
-

pair

se.
nd
Two-dimensional quantum chromodynamics (QC
with adjoint representation matter fields is the simp
field theoretical model which exhibits some of the imp
tant common features of string theory and the confin
phases of gauge theory. Most notable are the infi
number of asymptotically linear Regge trajectories a
a density of states which increases exponentially w
energy. In two dimensions, the Yang-Mills field itse
has no propagating degrees of freedom. In adjoint Q
the matter fields provide dynamics by playing a r
analogous to the transverse gluons of higher dimensi
gauge theory. In fact, dimensional reduction of thr
dimensional Yang-Mills theory produces two-dimensio
QCD with massless adjoint scalar quarks. Moreov
since adjoint matter fields do not decouple in the infin
N limit, the large N expansion is of a similar leve
of complexity to that of higher dimensional Yang-Mil
theory. One would expect it to exhibit some of the strin
features of the confining phase which are emphasize
that limit.

Although adjoint QCD is not explicitly solvable, eve
at infinite N, details of its spectrum were readily an
lyzed by approximate and numerical techniques [1–4].
addition, Kutasov [2] exploited an argument which w
originally due to Polchinski [5] to show that the co
fining phase must be unstable at high temperature
suggested it as a tractable model where the confinem
deconfinement transition could be investigated.

In this Letter, we shall formulate and find an expli
solution of the largeN limit of a simplified version of
adjoint QCD. We shall consider a one-dimensional ga
nondynamical particles which have adjoint color char
and which interact with each other through non-Abel
electric fields. Because there are no dynamical glu
which could screen adjoint charges in one dimension
low temperature and density, adjoint quarks are confi
(In higher dimensions, and adjoint charge and a gl
could form a color singlet bound state.) They fo
4 0031-9007y96y77(11)y2174(4)$10.00
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colorless “hadron” bound states with two or more adjo
quarks connected by nondynamical strings of electric fl
The largeN limit resembles a noninteracting string theo
in that, at infiniteN, the energy of a state is proportion
to the total length of all strings of electric flux plu
a chemical potential times the total number of quar
The property of confinement is defined by estimat
the energy required to introduce an external fundame
representation quark-antiquark pair into the system.
the confining phase, where the hadron gas is dilute,
quark-antiquark energy is proportional to the length of
electric flux string which, to obtain gauge invariance, m
connect them. This gives them a confining interacti
Some typical confined configurations are depicted
Fig. 1. In the confined phase, the average particle num
density and the energy density are small—in the la
N limit both are of order one, rather thanN2 which
one would expect from naive counting of the degre
of freedom. This is consistent with the fact that
a confining phase the number of degrees of freed
i.e., hadrons, is independent ofN. In contrast, in
the deconfined phase, since the number of degree
freedom, i.e., quarks and gluons, is proportional toN2 the
particle density and energy are also of orderN2.

As temperature or density is increased, eventually
arrive at the situation where there are electric flux stri
almost everywhere. Then, adding an additional flux stri
or modifying the existing network of strings to accom
modate a fundamental representation quark-antiquark

FIG. 1. Some examples of states in the confining pha
Each adjoint quark connects with two electric flux strings a
fundamental quarks in (b) connect with one string.
© 1996 The American Physical Society
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FIG. 2. Typical configurations in the deconfined phase.

involves a negligibly small addition to the energy of th
total system (see Fig. 2). This is typical of the deconfin
phase.

Between these two phases is a transition, which
show in this Letter, is of first order. In the string pictur
this phase transition occurs when the strings in a typi
configuration percolate in the one-dimensional space.
order parameter is the Polyakov loop operator [6,7] wh
measures the exponential of the negative of the f
energy which is required to insert a single, unpair
fundamental representation quark source into the syst
This free energy is infinite (and the expectation value
the Polyakov loop is zero) in the confining phase and i
finite in the deconfined phase.

In the Hamiltonian formulation of two-dimensiona
Yang-Mills theory, the electric field is the canonic
conjugate of the spatial component of the gauge fie
fAasxd, Ebs ydg ­ idabsx 2 yd. The Hamiltonian is

H ­
Z

dx
e2

2

N2X
a­1

fEasxdg2, (1)

and the Gauss’ law constraint, which takes the form o
physical state condition, isµ

d
dx

Easxd 2 fabcAbsxdEcsxd 1

KX
i­1

T a
i dsx 2 xid

∂
3Cphys ­ 0 . (2)

[Here, for concreteness, we consider U(N) gauge theory.
The gauge fieldA ­ Aata, with ta the generators in
the fundamental representation.] There are particles w
adjoint representation color charges located at positi
x1, . . . , xK . T a

i are generators in the adjoint representati
operating on the color degrees of freedom of theith
particle.

In the functional Schrödinger picture, the states a
functionals of the gauge field and the electric field
the functional derivative operatorEasxd ­

1
i

d

dAasxd . The
functional Schrödinger equation is that of a free particleZ

dx

√
2

e2

2

N2X
a­1

d2

fdAasxdg2

!
Ca1···aK fA; x1, . . . , xK g

­ E Ca1···aK fA; x1, . . . , xK g , (3)

Gauss’ law implies that the physical states, i.e., tho
which obey the gauge constraint (2), transform as

Ca1···aK fAg; x1, . . . , xKg ­ gAd
a1b1

sx1d · · · gAd
aK bK

sxK d

3 Cb1···bK fA; x1, . . . , xKg , (4)
d
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where Ag ; gAgy 2 ig=gy is the gauge transform o
A. For a fixed number of external charges, this mo
is explicitly solvable. In the following we shall examin
its thermodynamic features, where we assume that
particles have Maxwell-Boltzmann statistics.

We find it convenient to work with the grand canonic
ensemble. The partition function is constructed by tak
the trace of the Gibbs densitye2HyT over physical states
This can be implemented by considering eigenstate
Aasxd (and an appropriate basis for the nondynam
particles)jAlea1 · · · eaK

. Projection onto gauge invarian
states involves a projection operator which has the
effect of gauge transforming the state field at one side
the trace, and integrating over all gauge transformati
[8]. The resulting partition function is

Zfxi , T g ­
Z

fdAg fdgg kAje2HyT jAgl

3 Tr gAdsx1d · · · Tr gAdsxKd , (5)

where fdgsxdg is the Haar measure on the space
mappings from the line to the group manifold andfdAg
is a measure on the convex Euclidean space of ga
field configurations. For U(N), the trace in the adjoin
representation is TrgAdsxd ­ jTr gsxdj2 wheregsxd is in
the fundamental representation. In order to form
grand canonical ensemble, we average over the par
positions by integrating

R
dx1 · · ·

R
dxK , multiply by the

fugacity to the powerK, lK , divide by the statistics facto
1yK ! and sum overK. The result is

Zfl, Tg ­
Z

fdAg fdgge2SefffA,gg, (6)

where the effective action is

e2SefffA,gg ­ kAje2HyT jAgl exp

µZ
dxljTr gj2

∂
. (7)

The Hamiltonian is the Laplacian on the space
gauge fields. Using the explicit form of the heat kern
kAje2HyT jAgl , expf2

R
dx

T
e2 Tr sA 2 Agd2g, we see

that the effective theory is the gauged principal ch
model with a quadratic potential

SefffA, gg ­
Z

dx

µ
T
e2

Tr j=g 1 ifA, ggj2 2 ljTr gj2
∂

.

(8)

This effective action withl ­ 0 was discussed by Grig
nani et al. [9]. It is gauge invariant, SefffA, gg ­
SefffAh, hghyg, and has the global symmetr
SefffA, gg ­ SefffA, zgg, where z is a constant ele
ment from the center of the gauge group, which for U(N)
is U(1) and for SU(N) is ZN .

The realization of this center symmetry governs c
finement [6,7]. When the symmetry is represented fa
fully, the theory is in the confining phase. The Polyak
loop operator Trgsxd transforms under the center
2175
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Tr gsxd ! z Tr gsxd. Thus the expectation value of th
Polyakov loop operator must average to zero if the sy
metry is not spontaneously broken. This expectat
value is interpreted as the free energy of the system w
an additional external charge in the fundamental repres
tation of the gauge group situated at pointx, Ffx, l, Tg ­
2T lnkTr gsxdl. For finiteN, andD ­ 3, ideas of univer-
sality have been applied to study phase transitions w
this order parameter in SU(N) gauge theory [10]. The
phase transition should be second order forN ­ 2 and
first order forN . 2.

Here we analyze the effective theory (6) and (8)
the largeN limit. If we rescale the coupling constan
so that e2

T ; 2g

N , both terms in the action (8) are of or
der N2 and in the largeN limit the partition function
is dominated by the configuration which minimizes th
action. Gauge invariance can be used to diagona
the matricesgijsxd ­ eiai sxddij. The density of eigenval-
uesrsu, xd ­

1
N

PN
i­1 dsssu 2 aisxdddd corresponding to the

large N saddle point now characterizes the properties
the system. A constant densityrconfsu, xd ­

1
2p realizes

the center symmetry, and thus corresponds to the con
ing phase. A density peaked at some value ofu explicitly
breaks the center symmetry, and corresponds to a de
fined phase.

If, in the general case, we consider the Fourier expans

rsu, xd ­
1

2p
1

1
2p

X
nfi0

cnsxde2inu ,

cnsxdp ­ c2nsxd , (9)

the Fourier coefficientscnsxd characterize the possi
ble deconfined phases of the theory. If one of the
were nonzero, we would have in the infiniteN limit
1
N kTr gnsxdl ­ cnsxd. This would indicate that a compos
ite of n fundamental quarks would have finite free ener
and would not be confined.

In order to find the configurations of the eigenvalue de
sity (9) that minimize the action, we shall use the collecti
field theory approach of Refs. [11–13]. Alternatively
the gauge fixing that we have discussed, we consider
in the gaugeA ­ 0 which can be fixed on the open line
Then the thermodynamic problem is equivalent to unita
matrix quantum mechanics

Zfl, T g ­
Z

fdgg exp

∑
2

Z
dx

µ
N
2g

Trj=gj2

2 ljTr gj2
∂∏

. (10)

This model can be solved in the largeN limit by the meth-
ods of collective field theory. The method is essentia
based on the relation between matrix quantum mecha
and nonrelativistic fermions [14]. In the largeN limit the
eigenvalue density obeys a classical, saddlepoint equa
which can be deduced from canonical analysis of the c
2176
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lective field theory Hamiltonian [11]

H ­
Z

du

∑
g

2
rsud

µ
≠p

≠u

∂2

1
p2g

6
r3sud

∏
2 l

Ç Z
du rsudeiu

Ç2
2

g

24
, (11)

and subsequent Wick rotation to imaginary time. He
Psudis the variable which is the canonical conjuga
of rsud, so that the Poisson bracket ishrsud, Psu0dj ­
dsu 2 u0d. The velocity of the Fermi fluid isysud ­
≠Py≠u. In the equations of motion following from (11)
we changet ! ix, y ! 2iy and obtain

≠r

≠x
1 g

≠

≠u
sryd ­ 0 , (12)

≠y

≠x
1 gy

≠y

≠u
2 p2gr

≠r

≠u
1 2l Imfe2iuc1sxdg ­ 0 .

(13)

It is expected that the solution of these equations c
responding to an equilibrium state of the system is
constantrsx, ud ­ r0sud. At least at sufficiently low
temperature or, equivalently, at sufficiently largeg, the
system is in the confining phase with unbroken cen
symmetry, so thatr0 ­ rconf ­ 1y2p. This is always
a solution of the equations of motion (12) and (13) sin
c1 ­ 0.

However, this solution is stable against small fluctu
tions only ifg is large enough. To find the spectrum of e
citations in this phase, we linearize the equations of mot
aroundrconf. To do this, we consider thecnsxd of Eq. (9)
andy infinitesimal. The resulting equation forcnsxd isµ

2=2 1
g2n2

4
2 lgsdn,1 1 dn,21d

∂
cnsxd ­ 0,

n fi 0 . (14)

At g ­ gcsld ­ 4l, the lowest eigenvalue correspondin
to n ­ 61 goes to zero. For smallerg this eigenvalue
is negative and the strong coupling solution is unsta
with c61 the first modes to become unstable. Howev
for reasons which will become clear once we consider
weak coupling phase,gcsld should not be identified with
the point of the deconfining phase transition.

The solution in the deconfined phase can be obtain
by integration of Eq. (13) aty ­ 0. The densityr0sud
can always be chosen to be an even function ofu. Thus
c1 is real, and one finds from Eq. (12):

r0sud ­
1
p

∑
2
g

sE 1 2lc1 cosud
∏1y2

.

Outside the region f2umax, umaxg with umax ­ p 2

arccossEy2lc1d, the densityrsud is zero.
The Fermi energyE and the constantc1 are to be

determined from the normalization conditionZ umax

2umax
dur0su; E, c1d ­ 1 ,
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FIG. 3. The largeN phase diagram of the one-dimensiona
model. I: strong coupling (confining) phase, II: weak couplin
(deconfining) phase; 1: line on which the weak couplin
phase terminates:g ­ gpsld, 2: line of the first-order phase
transition: g ­ g0sld, 3: line of the instability of the strong
coupling phase:g ­ gcsld.

and the consistency conditionZ umax

2umax
du cosur0su; E, c1d ­ c1

derived from Eq. (9). It follows from these equations th
umax tends to zero atg ! 0 and grows with the increase
of g. Eventually it reachesp , where the weak coupling
phase terminates, because the eigenvalue distribu
begins to overlap with itself due to2p periodicity.
At the critical point Ep ­ 2lc1p, the normalization and
consistency integrals can be done explicitly. We find th
c1p ­ 1y3 andgpsld ­

128
3p2 l ø 4.324 l.

We obtain the following picture of the deconfining
phase transition (Fig. 3). The weak and strong coupli
phases can coexist, becausegcsld , gpsld, although the
region, where both phases are stable is very narrow, si
gcsld andgpsld are numerically close to each other. Th
phase transition is of the first order and takes place
someg0sld betweengcsld andgpsld. At the point of the
phase transition the free energies of both phases are e
to each other. Substitutingr0sud into Eq. (11) one can
find the free energy per unit volume, to leading order
the largeN limit,

F
N2 ­

Ω
0, in the confining phase,
1
3 E 2

1
3 lc2

1 2
g

24 , in the deconfined phase.

(15)
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The equations determining the critical line can be solv
numerically to obtaing0sld ­ 4.219l.

The model which we have considered here is adjo
QCD in the limit where the particles are heavy. T
fugacity parameter can be computed from a one-loop

agram asl ­
q

mT
2p e2myT , the exponential being simply

the Boltzmann weight of a particle with massm. It is
assumed thatm ¿ T for classical statistical mechanic
to be applicable andm ¿ e to suppress pair production
Our results indicate that the phase transition is of first
der with critical line approximately given by the equatio
e2N
2T ø 4.2

q
mT
2p e2myT . There exists a region of parame

ters in which this equation has a solution and the con
tions of applicability of our simplified model are satisfie
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