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The problem of computing the thermodynamic properties of a one-dimensional gas of particles
which transform in the adjoint representation of the gauge group and interact through non-Abelian
electric fields is formulated and solved in the lafddimit. The explicit solution exhibits a first order
confinement-deconfinement phase transition with computable properties and describes two-dimensional
adjoint QCD in the limit where matter field masses are large. [S0031-9007(96)00978-7]
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Two-dimensional quantum chromodynamics (QCD)colorless “hadron” bound states with two or more adjoint
with adjoint representation matter fields is the simplesfjuarks connected by nondynamical strings of electric flux.
field theoretical model which exhibits some of the impor-The largeN limit resembles a noninteracting string theory
tant common features of string theory and the confiningn that, at infiniteN, the energy of a state is proportional
phases of gauge theory. Most notable are the infinitéo the total length of all strings of electric flux plus
number of asymptotically linear Regge trajectories anda chemical potential times the total number of quarks.
a density of states which increases exponentially withifhe property of confinement is defined by estimating
energy. In two dimensions, the Yang-Mills field itself the energy required to introduce an external fundamental
has no propagating degrees of freedom. In adjoint QCDxepresentation quark-antiquark pair into the system. In
the matter fields provide dynamics by playing a rolethe confining phase, where the hadron gas is dilute, the
analogous to the transverse gluons of higher dimensiongjuark-antiquark energy is proportional to the length of the
gauge theory. In fact, dimensional reduction of three-electric flux string which, to obtain gauge invariance, must
dimensional Yang-Mills theory produces two-dimensionalconnect them. This gives them a confining interaction.
QCD with massless adjoint scalar quarks. MoreoverSome typical confined configurations are depicted in
since adjoint matter fields do not decouple in the infiniteFig. 1. In the confined phase, the average particle number
N limit, the large N expansion is of a similar level density and the energy density are small—in the large
of complexity to that of higher dimensional Yang-Mills N limit both are of order one, rather thaN? which
theory. One would expect it to exhibit some of the stringyone would expect from naive counting of the degrees
features of the confining phase which are emphasized iof freedom. This is consistent with the fact that in
that limit. a confining phase the number of degrees of freedom,

Although adjoint QCD is not explicitly solvable, even i.e., hadrons, is independent df. In contrast, in
at infinite N, details of its spectrum were readily ana-the deconfined phase, since the number of degrees of
lyzed by approximate and numerical techniques [1—4]. Irfreedom, i.e., quarks and gluons, is proportionaNtothe
addition, Kutasov [2] exploited an argument which wasparticle density and energy are also of orger
originally due to Polchinski [5] to show that the con- As temperature or density is increased, eventually we
fining phase must be unstable at high temperature anarive at the situation where there are electric flux strings
suggested it as a tractable model where the confinemersimost everywhere. Then, adding an additional flux string,
deconfinement transition could be investigated. or modifying the existing network of strings to accom-

In this Letter, we shall formulate and find an explicit modate a fundamental representation quark-antiquark pair
solution of the largeN limit of a simplified version of
adjoint QCD. We shall consider a one-dimensional gas of 2)

nondynamical particles which have adjoint color charges Q—O (ONNG) (ONNG®)
and which interact with each other through non-Abelian b)

electric fields. Because there are no dynamical gluons 7o 0O O0—O O OO
which could screen adjoint charges in one dimension, at q g

low temperature and density, adjoint quarks are Confinec,EIG. 1. Some examples of states in the confining phase.

(In higher dimensionsz and adjoint charge and a gluoreach adjoint quark connects with two electric flux strings and
could form a color singlet bound state.) They form fundamental quarks in (b) connect with one string.

2174 0031-9007796/77(11)/2174(4)$10.00  © 1996 The American Physical Society



VOLUME 77, NUMBER 11 PHYSICAL REVIEW LETTERS 9 BPTEMBER 1996

a) where A¢ = gAgt — igVg! is the gauge transform of
QO C@D o o0 A. For a fixed number of external charges, this model
is explicitly solvable. In the following we shall examine
its thermodynamic features, where we assume that the
particles have Maxwell-Boltzmann statistics.

We find it convenient to work with the grand canonical
ensemble. The partition function is constructed by taking
the trace of the Gibbs density /7 over physical states.
involves a negligibly small addition to the energy of the This can be implemented by considering eigenstates of
total system (see Fig. 2). This is typical of the deconfined4«(x) (and an appropriate basis for the nondynamical
phase. particles)|A)e,, - --e,.. Projection onto gauge invariant

Between these two phases is a transition, which wetates involves a projection operator which has the net
show in this Letter, is of first order. In the string picture, effect of gauge transforming the state field at one side of
this phase transition occurs when the strings in a typicalhe trace, and integrating over all gauge transformations
configuration percolate in the one-dimensional space. Thgs]. The resulting partition function is
order parameter is the Polyakov loop operator [6,7] which
measures the exponential of the negative of the free _ —H/T
energy which is required to insert a single, unpaired ZLxi, T1= f[dA] [dg]¢Ale™"/T1A%)
fundamental representation quark source into the system. Ad Ad
This free energy is infinite (and the expectation value of X Trg™a) - Trg™(xg), (5)
the Polyakov loop is zero) in the confining phase and it isvhere [dg(x)] is the Haar measure on the space of
finite in the deconfined phase. mappings from the line to the group manifold ahth]

In the Hamiltonian formulation of two-dimensional is a measure on the convex Euclidean space of gauge
Yang-Mills theory, the electric field is the canonical field configurations. For UY), the trace in the adjoint
conjugate of the spatial component of the gauge fieldsepresentation is Tg*?(x) = |Tr g(x)|> whereg(x) is in

b)
OO 0—-0—0—0—0—0—0~0—-0 =00
q q

FIG. 2. Typical configurations in the deconfined phase.

[A“(x), E(y)] = i8°(x — y). The Hamiltonian is the fundamental representation. In order to form the
2 N X grand canonical ensemble, we average over the particle
H = j dx = D IE‘WP. (1)  positions by integratingf dx; - -- [ dxx, multiply by the
a=1

: i fugacity to the poweK, AX, divide by the statistics factor
and the Gauss’ law constraint, which takes the form of ai/K! and sum oveK. The result is

physical state condition, is

& _ ~SuilAsg]
(iE“(x) — fUeAP(E(x) + D TES(x — x,»)) Z[A.T] f [dA][dgle™ e, (6)

dx =l where the effective action is
*Wphys = 0. (2) ~SelA.g] ~H/T 2
[Here, for concreteness, we considemMigauge theory. ¢ 5 = (Ale |Ag>eXF<f dxA[Trgl ) (7)
The gauge fieldA = A%¢,, with 7, the generators in T

. ; ..The Hamiltonian is the Laplacian on the space of
the fundamental representation.] There are particles Wltg b P

auge fields. Using the explicit form of the heat kernel
Ale H/T|A8) ~ ex{— [dx S Tr(A — A%)?], we see
hat the effective theory is the gauged principal chiral
model with a quadratic potential

adjoint representation color charges located at position
x1,...,xg. Ti are generators in the adjoint representatior}
operating on the color degrees of freedom of fite
particle.

In the functional Schrédinger picture, the states are T ) 5 )
functionals of the gauge field and the electric field is SerrlA. 8] = f dx <; TriVe + ilA. g]I” — AlTrg] )

the functional derivative operatdi“(x) = %. The (8)

functional Schrodinger equation is that of a free particle . _ . . _
This effective action withh = 0 was discussed by Grig-

2 N 2
e 6 . . . . _
x-S — % Jwareax . x nani et al.[9]. It is gauge invariant, See[A, g] =
] ( 2 Z [5A“(x)]2> [As ] Sere[A", hgh'], and has the global symmetry
Sere[A, g] = Sert[A,zg], where z is a constant ele-

a=1

- f\P 1 ‘A xs "’XK]’_ _ 3) ment from the center of the gauge group, which foNV(
Gauss’ law implies that the physical states, i.e., thosgg U(1) and for SUK) is Zy.
which obey the gauge constraint (2), transform as The realization of this center symmetry governs con-
WK AS: x L xg] = gﬁldb,(xl) ,,,ggghK(xK) finement [6,7]. When the symmetry is represented faith-
fully, the theory is in the confining phase. The Polyakov
X Whrbk[A; x,...,xk], (4) loop operator Tg(x) transforms under the center as
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Trg(x) — z Trg(x). Thus the expectation value of the lective field theory Hamiltonian [11]

Polyakov loop operator must average to zero if the sym- ) 5

metry is not spontaneously broken. This expectation H = fdg[lp(9)<‘9_77> + MPB(H)}
value is interpreted as the free energy of the system with 2 a6 6

an additional external charge in the fundamental represen- 0
tation of the gauge group situated at poin¥[x, A, T] = - A ’ [ df p(6)e
~TIn{Trg(x)). ForfiniteN, andD = 3, ideas of univer- 5,4 yhsequent Wick rotation to imaginary time. Here
sality have been applied to study phase transitions W'ﬂ']‘](a)is the variable which is the canonical conjugate

this order parameter in SN} gauge theory [10]. The ¢ ' that the Poi bracket fig (8). TL(8')} =
phase transition should be second order o= 2 and g(ap(_)é/)s'o Tr?e v;ocﬁ;si?nthera;e?m?ﬁ‘l(ui)d iSl(J(gi -

first order forN > 2.
Here we analyze the effective theory (6) and (8) in
the largeN limit. If we rescale the coupling constant

2
Y

- = 11
z, CED

all/a6. In the equations of motion following from (11),
we change — ix, v — —iv and obtain

SO that? = % both terms in the action (8) are of or- 9o | 'yi(pv) =0, (12)
der N2 and in the largeN limit the partition function 0 90

is dominated by the configuration which minimizes the Jv v, dp —i0 _
action. Gauge invariance can be used to diagonalize gx toyv 96 P 96 + 2 Imle”Tei(x)] = 0.
the matriceg;;(x) = ¢'“"§;;. The density of eigenval- (13)

uesp(f,x) = %ZL 6(0 — «;(x)) corresponding to the It is expected that the solution of these equations cor-

large N saddle point now characterizes the properties ofesponding to an equilibrium state of the system is a
the system. A constant densifyo.(0, x) = % realizes constantp(x,0) = po(6). At least at sufficiently low
the center symmetry, and thus corresponds to the confiremperature or, equivalently, at sufficiently large the
ing phase. A density peaked at some valué efkplicity =~ system is in the confining phase with unbroken center
breaks the center symmetry, and corresponds to a decosymmetry, so thapy = pconr = 1/27. This is always

fined phase. a solution of the equations of motion (12) and (13) since
If, in the general case, we consider the Fourier expansion; = 0.
However, this solution is stable against small fluctua-
p(0,x) = 1 + 1 cn(x)e im0, tions only if y is large enough. To find the spectrum of ex-
2 27 7 citations in this phase, we linearize the equations of motion
. aroundp.ons. TO do this, we consider the, (x) of Eq. (9)
cn()” = c-nlx), ®)  andv infinitesimal. The resulting equation foy, (x) is

the Fourier coefficientsc,(x) characterize the possi- y2n?
ble deconfined phases of the theory. If one of them <—V2 T Ay(8n1 + 511,—1)>Cn(x) =0,
were nonzero, we would have in the infinité limit
%(Trg”(x)} = ¢,(x). This would indicate that a compos- n#0. (14)
ite of n fundamental quarks would have finite free energyAt y = y.(A) = 4A, the lowest eigenvalue corresponding
and would not be confined. ton = =1 goes to zero. For smalley this eigenvalue

In order to find the configurations of the eigenvalue denis negative and the strong coupling solution is unstable
sity (9) that minimize the action, we shall use the collectivewith ¢+, the first modes to become unstable. However,
field theory approach of Refs. [11-13]. Alternatively to for reasons which will become clear once we consider the
the gauge fixing that we have discussed, we consider (6yeak coupling phasey.(A) should not be identified with
in the gauged = 0 which can be fixed on the open line. the point of the deconfining phase transition.
Then the thermodynamic problem is equivalent to unitary The solution in the deconfined phase can be obtained

matrix quantum mechanics by integration of Eq. (13) ab = 0. The densityp((6)
can always be chosen to be an even functiod.ofThus
ZINT] = /[dg]exp{— f dx <% Tr|Vg|? ¢y is real, and one finds from Eq. (12):

172 12
po(0) = — [— (E + 2Acy cosa)} .
mLy

- )\ITrglzﬂ. (10)
This model can be solved in the lartydimit by the meth- grzfézz/ztuil)r?ﬁéogggsaig;‘;’(zgn?’s‘] Z:rlgh Omax = 7 =

ods of collective field theory. The method is essentially The Fermi energyE and the constant, are to be
based on the_ r_elgtlon b_etween matrix quantum r.neChan'CdSetermined from the normalization condition

and nonrelativistic fermions [14]. In the lar@é&limit the

eigenvalue density obeys a classical, saddlepoint equation [Hmax

which can be deduced from canonical analysis of the col- dOpo(0;E,c1) = 1,

—6max
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Y 1 9 The equations determining the critical line can be solved
3 numerically to obtainyy(A) = 4.219A.

I The model which we have considered here is adjoint

QCD in the limit where the particles are heavy. The

fugacity parameter can be computed from a one-loop di-

11 agram asA = \/ge‘m”, the exponential being simply
the Boltzmann weight of a particle with mass It is

0 A assumed thain > T for classical statistical mechanics
FIG. 3. The largeN phase diagram of the one-dimensional to be applicgblg and: > e 10 suppress F?a_‘" p_roduc_tion.
model. I: strong coupling (confining) phase, Il: weak coupling Our results indicate that the phase transition is of first or-
(deconfining) phase; 1: line on which the weak couplingder with critical line approximately given by the equation

hase terminatesy = vy.(A), 2: line of the first-order phase .2 ml  _m . .

tpransition: y = yos(y/\), 3? (Iin)e of the instability of the sﬁrong 5 = 4'2\/;6_ . There exists a region of parame-
coupling phasey = y.(A). ters in which this equation has a solution and the condi-
tions of applicability of our simplified model are satisfied.

and the consistency condition The work of K. Zarembo was supported in part by
Imax INTAS Grant No. 94-0840. The work of G. Semenoff

] df cosfpo(0;E,c1) = c; and O. Tirkkonen was supported in part by NSERC of

~Omax Canada.
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