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Are Nontopological Strings Produced at the Electroweak Phase Transition?
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We formulate a local condition for a nontopological defect to be present. We apply i
electroweak strings and estimate the probability of their existence at the Ginzburg temperatur
a result we find strings long enough to serve for baryon-number generation are unlikely
produced. [S0031-9007(96)01176-3]
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Topological defects are produced at cosmological ph
transitions if vacuum structure after the symmetry bre
ing is nontrivial [1,2]. Even when it is trivial, howeve
nontopological defects might be produced. One of
well-known examples is an electroweak string [3]. It h
a stringlike configuration of the false vacuum which sa
fies field equations of the minimal standard electrow
model, although whether it constitutes a local ene
minimum is still under investigation [4]. While topolog
ically stable strings have also been proposed under
nonstandard extension of the theory [5], we concentrat
the possibility of nontopological strings within the sta
dard model here.

The electroweak strings might be useful for baryoge
sis in our Universe [6,7]. They can generate an out
equilibrium state even if the electroweak phase transi
is of the second order. Moreover, the electroweak stri
themselves have baryon number and may contrib
to the baryon asymmetry production [8], or they c
induce baryon-number fluctuations through interact
with background electromagnetic fields [9]. Their effe
on the sphaleron transition rate has been discussed in

All the above analyses, although interesting, rely
the assumption that the nontopological strings are ind
produced at the electroweak phase transition more
less in a similar manner to ordinary topological strin
However, a more careful analysis is required, sin
there is no topological reason for electroweak strings
extend without an end but they may have a finite len
with a monopolelike configuration at one end and
antimonopolelike configuration at the other. Althou
much work has been done on the stability of the wi
of an infinitely long electroweak string [4], no one h
really estimated their formation rate at the phase transi
except for a preliminary treatment [11] in which th
authors were concerned mostly with the validity of t
geodesic rule in the transient region between differ
phases. But their approach is inappropriate to ap
for the present problem, since the number density
the electroweak strings cannot be calculated only by
phase distribution of the Higgs field, since a nonvanish
winding number alone does not guarantee the existe
of a false vacuum region and it must be imposed as
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extra condition. Even if the infinitely long string solutio
is stable against perturbation on its width, we cannot
strings are indeed produced at the electroweak epo
Such stability may help their survival after formatio
but their initial number density must be determined
the realization probability of stringlike configuration a
the phase transition. In the present Letter we estim
the formation probability of the electroweak strings, alo
which the Higgs fields have a vanishing amplitude, at
end of the phase transition.

First, for comparison, let us consider the case of
ordinary topological cosmic string which is produce
when local U(1) symmetry breaks down. In this mod
the Higgs fieldF is a complex scalar written by

F ­ F1 1 iF2 , (1)

whereF1 andF2 are real. As is well known, if the phas
of F is randomly distributed on each correlated regio
there should be 0.25 string per one correlation volu
[12]. This method, however, cannot be applied to the c
of the nontopological electroweak string, since even if a
winding number around a certain region exists, this do
not necessarily imply that a false vacuum is trapped
it. Therefore we start with discussing the condition for
gauged U(1) string to be present without resorting to su
topological consideration.

The cosmic string can be regarded as a linelike reg
where the amplitude ofF equals zero. Thus the conditio
that a string exists at a certain point in the Universe,$x ­
$a, is Fjs $ad ­ 0 s j ­ 1, 2d, and at the same time ther
exists a neighboring point$a 1 $́ , where Fjs $a 1 $́ d ­
0 s j ­ 1, 2d hold, too. Since we can always set on
of the components of the Higgs field equal to zero
$x ­ $a using a gauge transformation, the first conditi
reduces to having the other component to be zero,
On the other hand,j $́ j is small by definition, so the secon
condition may be rewritten as

Fjs $a 1 $́ d ­ Fjs $ad 1 $́ ? $=Fjs $ad

­ $́ ? $=Fjs $ad ­ 0 s j ­ 1, 2d , (2)

that is, there should exist a spatial vector$́ orthogonal
to both $=F1s $ad and $=F2s $ad. But one can always find
such a vector simply by choosing a normal vector to t
© 1996 The American Physical Society
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f the
plane defined by$=F1s $ad and $=F2s $ad. Thus once we find
Fj ­ 0 at $x ­ $a, a linelike configuration of the fals
vacuum extends without an end, which is a conseque
of the topological structure of the vacuum manifold of t
Abelian Higgs model.

Before proceeding to the case of the electroweak str
here we consider a rather inconceivable possibility
domain wall formation in the above model. A doma
wall configuration can be easily shown to exist as
nontopological defect in this model, for example, by
distribution such thatF2s$xd ­ 0 everywhere and tha
F1s $xd obeys a similar solution as a domain wall in
model of a real scalar field.

The condition that a domain wall exists at$x ­ $a is,
in addition to havingFjs $ad ­ 0, there should exist two
linearly independent spatial vectors$́ 1 and $́2 which
satisfyFjs $a 1 $́ nd ­ 0 sn ­ 1, 2d or

$́ n ? $=Fjs $ad ­ 0 sn ­ 1, 2; j ­ 1, 2d . (3)

A necessary and sufficient condition is that$=F1s $ad and
$=F2s $ad are parallel to each other including the trivi
case that one or both of them have a vanishing amplitu
We can also show that the above condition is ga
invariant. In fact, since the gauge transformation is
linear transformation for the Higgs fields such as

F0
jsxd ­

X
l

cjlsxdFlsxd , (4)

we find

$=F0
jsxd ­

X
l

$=cjlsxd ? Flsxd 1
X

l

cjlsxd $=Flsxd , (5)

but at $x ­ $a we haveFls $ad ­ 0 by assumption, so

$=F0
js $ad ­

X
l

cjls $ad $=Fls $ad , (6)

which implies the gauge invariance of (3). Furthermo
we can choose the spatial coordinate at$x ­ $a such that
$=F1s $ad has a nonvanishing component only in thex
component. Then the condition (3) reduces to

≠yF2s $ad ­ ≠zF2s $ad ­ 0 . (7)

Thus in this case two additional conditions must
satisfied to produce a nontopological defect.

Now we return to the electroweak string. In th
minimal standard model, the Higgs fieldf is an SU(2)
doublet, and we write it as

f ­

µ
f1 1 if2

f3 1 if4

∂
, (8)

wherefj s j ­ 1, 2, 3, 4d is a real component. Similarl
to the case of the Abelian Higgs model, the conditio
for the existence of a string at$x ­ $a are thatfjs $ad ­
0 s j ­ 1, 2, 3, 4d and that there exists an infinitesim
spatial vector$́ such thatfjs $a 1 $́ d ­ 0 s j ­ 1, 2, 3, 4d.
Since we can rotatef using a gauge transformation s
ce
e
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that only one component is nonvanishing at$x ­ $a, the
first condition reduces so that the remaining compon
is also vanishing, whose probability is denoted byp0

hereafter. The second condition reads

$́ ? $=fjs $ad ­ 0 s j ­ 1, 2, 3, 4d , (9)

which can again be shown to be gauge invariant.
For a nontrivial solution of$́ to exist, it is necessar

and sufficient that all the vectors$=fjs $ad lie in the same
plane defined by two linearly independent vectors, s
$=f1s $ad and $=f2s $ad. Then a normal vector to that plai
can serve as$́ , and the remaining conditions turn out
be

$́ ? $=f3s $ad ­ 0 and $́ ? $=f4s $ad ­ 0 . (10)

Now we can set the spatial coordinate so that the nor
vector to the plain,$́ , has a nonvanishing component on
along thex direction. Then the conditions (10) reduce

≠xf3s$ad ­ 0 and ≠xf4s$ad ­ 0 . (11)

Assuming that≠xf3, ≠xf4 and the amplitude of the Higg
field behave independently and denoting the probability
having ≠xfjs $ad ­ 0 by d0, the probabilityPs that there
exist a stringlike false vacuum region in the infinitesim
neighborhood at$x ­ $a turns out to be

Ps , p0d2
0 . (12)

This is smaller than the case of ordinary topologi
strings at least by the factor ofd2

0 . Obviously, we can
predict that the more components the Higgs field has,
more difficult it becomes to produce a string, with t
higher power ofd0.

For the purpose of estimatingp0 andd0, we introduce
the probability distribution function (PDF) of the Higg
field in the thermal bath. We employ the Hartree appro
mation [13] with which the higher moment of the field c
be described by the second moment. Then the ampli
of a scalar fieldf obeys a random Gaussian probabil
distribution such as

Pfsfddf ­
1

p
2ps

exp

Ω
2

sf 2 cd2

2s2

æ
df , (13)

wherec is the averaged value off ands is the standard
deviation. Under the same assumption, the gradient o
Higgs field component obeys the PDF

P≠f

°
≠lfj

¢
d
°
≠lfj

¢
­

1
p

2ph
exp

Ω
2

°
≠lfj

¢
2

2h2

æ
d
°
≠lfj

¢
,

(14)
where the averaged value of≠lfj equals zero. The
dispersionh, which is independent ofl, can be written
as

h2 ­
1

6p2

Z
Pskdk4dk , (15)
2167
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s2 ­
1

2p2

Z
Pskdk2dk , (16)

wherePskd is the power spectrum, or the Fourier tran
form of kfs$0dfs$xdl 2 c2 [14]. Using these formulas,p0
andd0 can be written as

p0 ­ Pfs0d ? df, d0 ­ P≠fs0d ? d≠f , (17)

wheredf andd≠f are some width scales. The values
s andh can be obtained by substituting

Pskd ­ sk2 1 m2
0d21y2se

p
k21m2

0yT 2 1d21 (18)

into Eqs. (16) and (15), wherem2
0 is the effective mas

squared atf ­ c [15].
In the standard electroweak theory, the one-loop ef

tive potential for the Higgs field with the finite temper
ture corrections is written as [15,16]

Veffsfd ­ D
°
T2 2 T 2

2

¢
f2 2 ETf3 1

lT

4
f4, (19)

where T2 is the temperature when the symmetric st
f ­ 0 becomes unstable. Using the standard va
of the parameters such asmW ­ 80.6 GeV for the W-
boson mass,mZ ­ 91.2 GeV for the Z-boson mass
and mt ­ 174 GeV for the top quark mass, the c
efficients in the potential (19) are calculated asD ­
0.169, E ­ 0.00965, T2 ­ 92.6, 134.3, 249.8 GeV, and
lT­T2 ­ 0.0354, 0.0747, 0.300, when the mass of th
Higgs particle ismH ­ 60, 100, 200 GeV, respectively.

We estimate the string formation at the Ginzbu
temperatureT ­ TG when the defects are consider
to turn stable against thermal fluctuations [1,17].TG

is evaluated by the conditionT ­ DVj3, whereDV is
the potential-energy density gap between the symm
state and the potential minimum andj is the correlation
scale off, which is defined by the square-root inver
of the second derivative of the effective potential at
minimum. Numerically we find

TG ­ 76.9, 62.4, 34.4 GeV, (20)

for mH ­ 60, 100, 200 GeV, respectively. ThusTG is
always smaller thanT2, which implies that even if the
electroweak phase transition might start as a first-o
transition its final stage is described by the dynamics
second-order phase transition as far as defects form
is concerned.

In the Hartree approximation, the potential (19)
simplified using the replacement

w3 °! 3s2w, w4 °! 6s2w2 2 3s4, (21)

where w ; f 2 c and s is the root mean square o
w which should be equal to the standard deviation
Eq. (13). At T ­ TG, we obtain the effective mass
w from the coefficient of the quadratic term in th
2168
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approximate potential as

m2 ; m2
w 1 dm2, (22)

m2
w ­ 2D

°
T2

G 2 T2
2

¢
2 6ETGc 1 3lT­TG c2,

dm2 ­ 3lT­TG s2.
(23)

In order that the expectation value ofw vanishes, orw has
its potential minimum atw ­ 0, the consistency conditio
for c,

2D
°
T2

G 2 T2
2

¢
c 2 3ETG

°
c2 1 s2

¢
1

lT­TG
c
°
c2 1 3s2

¢
­ 0 , (24)

must be satisfied. Now we substitutem into m0 in
(18) and then numerically solve Eqs. (16), (22), a
(24) in a self-consistent manner. UsinglT­TG ­
0.0422, 0.103, 0.372, we find

c ­ 172.4, 224.3, 237.2 GeV, (25)

s ­ 17.1, 9.05, 0.717 GeV, (26)

m ­ 46.1, 99.6, 204 GeV, (27)

and Eq. (15) yields

h ­ 1860, 995, 67.5 GeV2. (28)

Here and hereafter, all the numerical values correspon
the casesmH ­ 60, 100, 200 GeV, respectively. We ca
see thatdm2 ø m2

w justifies the Hartree approximatio
(21).

p0 andd0 are explicitly calculated as

p0 ­
°
2.6 3 10223, 1.8 3 102134, 10254682

¢
3 a , (29)

d0 ­ s0.168, 0.362, 0.865d 3
a

b
, (30)

where we have putdf ­ as and d≠f ­ asybm21

with a and b being constant. That is, we have norm
ized df by their variance andd≠f by df divided by
the correlation lengthj ­ m21. Thus the probability of
finding a string stretched from$x ­ $a to $x ­ $a 1 $́ is as
small as

Ps , p0d2
0 ,

°
7.5 3 10225, 2.3 3 102135, 10254682

¢
3

a3

b2 . (31)

Sinces ø c holds already at the Ginzburg temperatu
p0, which is calculated as (17), turns out to be extrem
small. This, however, might not be a fatal proble
itself. If false vacuum defects decouple from therm
equilibrium at a higher temperature, say, whens becomes
smaller thanc, we should estimate the probability at th
temperature. ThenPfs0d, which is very sensitive to the
temperature, could be larger. More serious is the e
suppression factor for a string to extend for a finite len
e ­ j $́ j, d2

0 , which is less sensitive to the temperatu
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For example, for a string to extend for the correlat
length

j ­ m21 ­ 0.022, 0.010, 0.0049 GeV21, (32)

d2
0 is as small as

d2
0 ­ s0.028, 0.13, 0.75d 3

√
a

b

!
2, (33)

respectively. But this is not the whole story. Sin
the discussion based on the lowest-order expansio
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fs $a 1 $́ d is valid only if the inequality

maxfdf,eds≠fdg ­ max

√
as, e

as

bm21

!
. j´i´j≠i≠jfj

, e2
p

ks≠2fd2l

(34)

is satisfied. Calculating the root-mean square of≠2f in
the same way as in (15), we find
e & max

√
s0.0059, 0.0062, 0.0078d

p
a, s0.0016, 0.0039, 0.012d

a

b

!
GeV21, (35)
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which is smaller than or barely comparable to the corre
tion length of the Higgs field fora, b & O s1d. Therefore
for a string to extend for the correlation length we m
impose constraints on the amplitude of higher derivati
of f as well, which results in further suppression fac
in the formation probability.

One may wonder that in the case of stable nonto
logical strings there may be a correlation betweenf ­ 0
and ≠f ­ 0 and that we may have a larger probabil
of their formation. However, previous stability analys
of electroweak strings are all concerned with that of
string width of an infinitely long string solution [4], while
strings with finite length are unstable and tend to shr
[6]. Thus the solidness of the string core alone does
help to realize a long stringlike configuration. We the
fore conclude it is very difficult to find a string longe
than the correlation length. In other words, even if a fa
vacuum string is produced, its length is comparable to
width, and such a configuration should be called a fa
vacuum ball rather than a string. Thus we cannot m
use of such objects for baryogenesis.

In summary, we have considered how difficult it is
produce nontopological defects by the Kibble mechan
in cosmological phase transitions. As a specific exam
we have discussed that electroweak strings which are
enough to serve for baryogenesis are very unlikely
be present at the Ginzburg temperature when the de
become stable against thermal fluctuations.
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