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Are Nontopological Strings Produced at the Electroweak Phase Transition?
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We formulate a local condition for a nontopological defect to be present. We apply it to
electroweak strings and estimate the probability of their existence at the Ginzburg temperature. As
a result we find strings long enough to serve for baryon-number generation are unlikely to be
produced. [S0031-9007(96)01176-3]

PACS numbers: 98.80.Cq, 11.27.+d, 11.30.Fs

Topological defects are produced at cosmological phasextra condition. Even if the infinitely long string solution
transitions if vacuum structure after the symmetry breakis stable against perturbation on its width, we cannot say
ing is nontrivial [1,2]. Even when it is trivial, however, strings are indeed produced at the electroweak epoch.
nontopological defects might be produced. One of theSuch stability may help their survival after formation,
well-known examples is an electroweak string [3]. It hasbut their initial humber density must be determined by
a stringlike configuration of the false vacuum which satis-the realization probability of stringlike configuration at
fies field equations of the minimal standard electroweakhe phase transition. In the present Letter we estimate
model, although whether it constitutes a local energyhe formation probability of the electroweak strings, along
minimum is still under investigation [4]. While topolog- which the Higgs fields have a vanishing amplitude, at the
ically stable strings have also been proposed under thend of the phase transition.
nonstandard extension of the theory [5], we concentrate on First, for comparison, let us consider the case of an
the possibility of nontopological strings within the stan- ordinary topological cosmic string which is produced

dard model here. when local U(1) symmetry breaks down. In this model,
The electroweak strings might be useful for baryogenethe Higgs field® is a complex scalar written by
sis in our Universe [6,7]. They can generate an out-of- O =0 +ib, 1)

equilibrium state even if the electroweak phase transition : )
is of the second order. Moreover, the electroweak string¥/nere®: and®; are real. As is well known, if the phase
themselves have baryon number and may contribut@f ® is randomly dlstrlbu_ted on each correla;ed region,
to the baryon asymmetry production [8], or they canthere sh_ould be 0.25 string per one corre_latlon volume
induce baryon-number fluctuations through interactiorl12]. This method, however, cannot be applied to the case
with background electromagnetic fields [9]. Their effectf the nontopological electroweak string, since even if any
on the sphaleron transition rate has been discussed in [10}inding number around a certain region exists, this does
All the above analyses, although interesting, rely orf10t necessarily imply that a false vacuum is trapped in
the assumption that the nontopological strings are indeety Therefore we start with discussing the condition for a
produced at the electroweak phase transition more dyauged U(1) string to be present without resorting to such
less in a similar manner to ordinary topological strings.'[()p()log'Cal consideration. o _
However, a more careful analysis is required, since 'N€ cosmic string can be regarded as a linelike region
there is no topological reason for electroweak strings tdvhere the amplitude ob equals zero. Thus the condition
extend without an end but they may have a finite lengtthat @ string exists at a certain point in the Universe;
with a monopolelike configuration at one end and anf: 1S ®;(@) =0 (j =1,2), and at the same time there
antimonopolelike configuration at the other. Although®XiSts & neighboring poiné + £, where ;(a + &) =
much work has been done on the stability of the width? (/ = 1,2) hold, too. Since we can always set one
of an infinitely long electroweak string [4], no one has©f the components of the Higgs field equal to zero at
really estimated their formation rate at the phase transitio§ — ¢ USing @ gauge transformation, the first condition
except for a preliminary treatment [11] in which the reduces to havmgethe other component to be zero, too.
authors were concerned mostly with the validity of the©n the other handg| is small by definition, so the second
geodesic rule in the transient region between differenfondition may be rewrittenas
phases. But their approach is inappropriate to apply di(a+ &) =)+ &-Vb;a)
for the present problem, since the number density of e D 2y .
the electroweak strings cannot be calculated only by the - ® V_q)«"(a) - 0 (j=12. @
phase distribution of the Higgs field, since a nonvanishinghat is, there should exist a spatial vectrrthogonal
winding number alone does not guarantee the existende both V®,(a) and Vd,(a). But one can always find
of a false vacuum region and it must be imposed as asuch a vector simply by choosing a normal vector to the
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plane defined bﬁ(l)l(&) and%cbz(&). Thus once we find that only one component is nonvanishingxat= a, the
®; =0 at X = a, a linelike configuration of the false first condition reduces so that the remaining component
vacuum extends without an end, which is a consequendé also vanishing, whose probability is denoted py
of the topological structure of the vacuum manifold of thehereafter. The second condition reads
Abelian Higgs model. s S (= .

Before p%gceeding to the case of the electroweak string, §-Ve@)=0 (j=1234), 9)
here we consider a rather inconceivable possibility ofwhich can again be shown to be gauge invariant.
domain wall formation in the above model. A domain For a nontrivial solution of¢ to exist, it is necessary
wall configuration can be easily shown to exist as aand sufficient that all the vectofée; (@) lie in the same
nontopological defect in this model, for example, by apjane defined by two linearly independent vectors, say,
distribution such that®,(¥) = 0 everywhere and that 6({)1(5) and %¢2(5)- Then a normal vector to that plain

®,(x) obeys a similar solution as a domain wall in &4, serve ag, and the remaining conditions turn out to
model of a real scalar field. be

The condition that a domain wall exists at= a is, . .
in addition to having®;(a) = 0, there should exist two g€ Vi@ =0 and 8- Vesa) =0. (10)

Ilngarly m?epeﬁndeﬂt spatlal vectoss and &, which Now we can set the spatial coordinate so that the normal
satisfy®;(a + &,) =0 (n = 1,2) or - o
MR . vector to the plaing, has a nonvanishing component only
&n " V®@j(@) =0 (n=12j=12). (3)  along thex direction. Then the conditions (10) reduce to

A necessary and sufficient condition is té®,(z) and 9:¢3@) =0 and 9,¢4@) = 0. (11)

6(132(5) are parallel to each other including the trivial

case that one or both of them have a vanishing amplitudé}SSUming thab.. ¢, 9. ¢4 and the amplitude of the Higgs
We can also show that the above condition is gaug eld behave independently and denoting the probability of

invariant. In fact, since the gauge transformation is dhaving 9x‘l_"j(z‘_) = 0 by dy, the probabilityP; that there
linear transformation for the Higgs fields such as exist a stringlike false vacuum region in the infinitesimal
neighborhood at = & turns out to be

q);(x) = ;Cj[(X)q)](X), (4) P, ~ Pod(z) (12)

we find This is smaller than the case of ordinary topological
. . . strings at least by the factor @fj. Obviously, we can
VOi(x) = ZVc.,-,(x) - ®y(x) + chl(x)VCI);(x), (5) predict that the more components the Higgs field has, the
! ! more difficult it becomes to produce a string, with the

but at¥ = a we haved,;(a) = 0 by assumption, so higher power ofd,. o _
) ) For the purpose of estimating, anddy, we introduce
V(I).;'(a) = Zcﬂ(a)VCI)/(Zz), (6)  the probability distribution function (PDF) of the Higgs
1

field in the thermal bath. We employ the Hartree approxi-
which implies the gauge invariance of (3). Furthermoremation [13] with which the higher moment of the field can
we can choose the spatial coordinateiat a such that D€ described by the second moment. Then the amplitude
§¢1(5) has a nonvanishing component only in the of a scalar field$ obeys a random Gaussian probability

component. Then the condition (3) reduces to distribution such as

N N _ 2
ayq)z(a) =9,Py(a) =0. @) p¢(¢)d¢ = ! eXP[—M}ddh (13)
Thus in this case two additional conditions must be Vemo 20
satisfied to produce a nontopological defect. wherec is the averaged value @ ando is the standard

Now we return to the electroweak string. In the deviation. Under the same assumption, the gradient of the
minimal standard model, the Higgs fietl is an SU(2) Higgs field component obeys the PDF
doublet, and we write it as

1 (9:10,)*
(1t i Pag(316,)d(9:16) = expy — d(91¢)) .
¢ = <¢3 + i¢4>’ (8) V2w p{ 2n? } "

where¢; (j = 1,2,3,4) is a real component. Similarly
to the case of the Abelian Higgs model, the conditionsWhere the averaged value @h¢; equals zero. The

for the existence of a string at — @ are thate,(d) — dispersionn, which is independent of, can be written
0(j=1,2,3,4) and that there exists an infinitesimal as
spatial vectok such thatp;(a + €) =0 (j = 1,2,3,4). 5

- 4
Since we can rotateb using a gauge transformation so T o2 Pk dk (15)
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together with approximate potential as
2 _ 2 2
o2 = —— [ Pkdk. (16) me=mg & om’, (22)
2w m2 = 2D(T% — T2) — 6ETgc + 3hr—r,c%,
where P(k) is the power spectrum, or the Fourier trans- Sm? = 3Nrr o2 (23)
form of (¢ (0) (X)) — ¢? [14]. Using these formulagy =t
andd, can be written as In order that the expectation value @¢fvanishes, ogp has
its potential minimum ap = 0, the consistency condition

po = Py(0) - 8¢, do = Pag(0) - 60,  (17)

whered ¢ anddd ¢ are some width scales. The values of
o andn can be obtained by substituting

for ¢,
2D(T% — T3)c — 3ETg(c* + o?)+
[oT Ar= 2+30%) =0, (24
P(k) = (k* + mg)~ /2 (eVErm/l — )=t (18) rroele” + 307) (24)
. 5 . ) must be satisfied. Now we substitute into mg in
into Egs. (16) and (15), wheray is the effective mass (18) and then numerically solve Egs. (16), (22), and

squared ath = c [15]. (24) in a self-consistent manner. Using;—7, =
In the standard electroweak theory, the one-loop effecy 422 0.103.0.372. we find ’

tive potential for the Higgs field with the finite tempera-

ture corrections is written as [15,16] c = 1724, 2243, 237.2 GeV, (25)
A o = 17.1, 9.05, 0.717 GeV, (26)

Verr(¢) = D(T? = T3)¢* — ET$* + T4, (19)
m = 46.1, 99.6, 204 GeV, (27)

where T, is the temperature when the symmetric state nd Eq. (15) vields
¢ = 0 becomes unstable. Using the standard valuef a-(19)y
of the parameters such asy = 80.6 GeV for the W- 7 = 1860, 995, 67.5 Ge\>. (28)
boson mass,mz = 91.2 GeV for the Z-boson mass, )
and m, = 174 GeV for the top quark mass, the co- Here and hereafter, all the numerical values correspond to
efficients in the potential (19) are calculated Bs= the casesny = 60, 100,200 GeV, respectively. We can
0.169, E = 0.00965, T, = 92.6,134.3,249.8 GeV, and S€e€ thaté m? < mi justifies the Hartree approximation
Ar—z, = 0.0354,0.0747,0.300, when the mass of the (21). -
Higgs particle isny = 60, 100,200 GeV, respectively. po andd are explicitly calculated as

We estimate the string formation at the Gir)zburg 0= (2.6 X 1072,1.8 X 10713, 10754%2) x o (29)
temperatureT = T when the defects are considered
to turn stable against thermal fluctuations [1,171¢ do = (0.168.0.362.0.865) X - 30
is evaluated by the conditio = AV &3, where AV is o = (0.168,0.362,0.865) ’ (30)
the potential-energy density gap between the symmetric o . _1
state and the potential minimum agdis the correlation WET€ We have pub¢ = o and §d¢ = ao/Bm

S . : ith @« and 8 being constant. That is, we have normal-
scale of ¢, which is defined by the square-root inverse " ; ; o
of the second derivative of the effective potential at its'26d 0¢ by their varlarE:e ?E@M’ by 8¢ divided by
minimum. Numerically we find the correlation lengtly = m~". Thus the probability of

finding a string stretched froth = atox = a + € is as

Tc = 769, 62.4, 34.4 GeV, (20) small as
for my = 60,100,200 GeV, respectively. Thudyg is Py ~ pods ~ (7.5 X 107%,2.3 x 107135, 10734682)
always smaller tharf,, which implies that even if the o’
electroweak phase transition might start as a first-order X E (31)

transition its final stage is described by the dynamics of a
second-order phase transition as far as defects formati®®inces < ¢ holds already at the Ginzburg temperature,

is concerned. o _ ~ po, Which is calculated as (17), turns out to be extremely
_In the Hartree approximation, the potential (19) issmall. This, however, might not be a fatal problem
simplified using the replacement itself. If false vacuum defects decouple from thermal

equilibrium at a higher temperature, say, whebecomes
smaller thanc, we should estimate the probability at that
where ¢ = ¢ — ¢ and o is the root mean square of temperature. Thew®,(0), which is very sensitive to the

¢ which should be equal to the standard deviation intemperature, could be larger. More serious is the extra
Eq. (13). AtT = T;, we obtain the effective mass of suppression factor for a string to extend for a finite length
¢ from the coefficient of the quadratic term in the € = |&], dé, which is less sensitive to the temperature.

¢’ — 30%¢, o' — 60%¢* — 30", (21)
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For example, for a string to extend for the correlationg(a + &) is valid only if the inequality
length

£=m"" =002, 0010, 00049 GeV'!,  (32) ma{sd,eb(9d)] = max(aa,eﬁf;‘rl> > leje;0;0; 0|

d} is as small as o
0 ~ e2((0%¢)D)
d2 = (0.028,0.13,0.75) X (%)2, (33) (34)

respectively. But this is not the whole story. Sinceis satisfied. Calculating the root-mean square)ap in
the discussion based on the lowest-order expansioq ahe same way as in (15), we find

€ < ma><(0.0059, 0.0062,0.0078)+/a, (0.0016,0.0039, 0.012)%) GeVv !, (35)

which is smaller than or barely comparable to the correla- Shellard, Cosmic Strings and Other Topological Defects
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