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Collapses and Revivals of Bose-Einstein Condensates Formed in Small Atomic Samples
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The macroscopic wave function for atomic samples composed of a few thousand patrticles is shown
to exhibit collapses and revivals on a few seconds time scale, while Bose-Einstein condensation remains
in the form of off-diagonal long-range order in the one-particle reduced density matrix. A recently
proposed measurement scheme which is sensitive to Bose-broken gauge symmetry, and hence to
the macroscopic wave function, could be used to detect the collapses and revivals experimentally.
[S0031-9007(96)01005-8]
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The recent spectacular observations of Bose-Einsteithe many-body ground state need not display the full
condensation (BEC) in atomic vapors [1—3] open up newsymmetry of the Hamiltonian (see, for example, the
avenues of research into the generation and manipulaticarticle by Leggett in Ref. [11]). Discussions of the order
of coherent atomic beams. Among these possibilities arparameter are typically restricted to the thermodynamic
nonlinear atom optics and development of an atom lasetimit where the number of particles (atoms) tends to in-
Future progress in these areas provides impetus for striinity while the density is held fixed [10,12]. In general,
ing toward higher atomic densities. For the condensatelsowever, the macroscopic wave function need not act as
reported so far, the number of atoms ranges betweén 1@n order parameter. For example, for an ideal Bose gas
and 1@, small in comparison to the typical number of the macroscopic wave function vanishes (see the article
atomsN = 10% in liquid helium experiments. This sug- by Stoof in Ref. [11]), and Stoof [13] has shown that
gests that the small samples involved in current atomids(r, 1)) cannot act as an order parameter for a weakly
experiments may cause deviations from the behavior pranteracting bulk Bose gas with negative scattering length
dicted for macroscopic systems. due to its inherent instability.

Atomic BEC experiments also present the opportunity In this Letter we investigate the macroscopic wave
to further our understanding of BEC since they are weaklyfunction for BEC in small atomic samples, and its role
interacting Bose gases and are therefore amenable &s an order parameter. If the grand canonical ensemble is
more detailed theoretical analysis than strongly interactingised then the macroscopic wave function vanishes as this
Bose liquids, such as helium. In particular, following ensemble corresponds to a density operator which is di-
Penrose and Onsager [4], the condition for BEC isagonal when basis states involving fixed nhumbers of par-
that the one-particle reduced density maiXr,r’,7) =  ticles are used [10]. This is the case for measurements on
Jt(r,n)d(r',1)) does not vanish for large separation.the condensate which are performed over long times such
Here(r,r) and ¢ (r, 1) are the Heisenberg picture field that true thermal equilibrium is established [5]. How-
operators which annihilate and create atoms at position ever, for measurement times short compared to relaxation
and(- - -) signifies a broken symmetry average [5,6]. Moretimes, quantum coherences associated with the conden-
specifically, the contribution to the one-particle reducedsate remain intact [5,14]. Here we employ a wave packet
density matrix representing the off-diagonal long-rangecomposed of states of a fixed number of partides the
order (ODLRO) [7] of the condensate is written in the condensate, with expansion coefficients = |ay|e’*",
factorized form hence retaining quantum coherence. The present descrip-

N tion of BEC, due to Barnetét al. [14], is therefore dif-

pr(r.r' 1) = O (e, NP, 1). (1) ferent from the conventionaj ensemble which employs
The conventional choice isP(r,r) = (Ji(r,r)), with & wave packet of states corresponding to a different total
(i (r, 1)) the macroscopic wave function [8,9], which then number of particles, condensate plus noncondensate, and
acts as an order parameter for the Bose-condensed systéngenerally only applicable in the thermodynamic limit
[10]. The appearance of a complex order parameter witfb]. A coherent state withuy = NN/zeiN"e‘N/z/\/m
an arbitrary but fixed phase signals that the U(1) gaugsuggests itself, but the states associated with BEC do not
invariance of the underlying Hamiltonian, associated withgenerally possess such complete phase coherence [15].
particle number conservation, is broken spontaneously ilNevertheless, a pure state description of the condensate
the condensation process, and this underlies the concemiay be rendered plausible as follows: Below the Einstein
of Bose-broken gauge symmetry, according to whichcondensation temperature, the many-body ground state of
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the system becomes macroscopically occupied, yieldingepulsive two-body interaction. For low particle number
a condensate which should be considered an open quatie nonlinear term in Eq. (2) may be neglected, and the
tum system in contact via many-body interactions with thecharacteristic volume of the condensate/js= 4 r}/3,
environment or resevoir composed of the noncondensatsith r, = (%/2mw,)'/? the spatial scale of the linear
atoms. It is known from the work of Zurekt al. [16]  harmonic oscillator. For large particle number the
and Gallis [17] that for a system, in their case a harmonicharacteristic spatial scalg, of the condensate may be
oscillator, in interaction with an environment certain pureapproximated as the minimum of the effective potential
states show considerable stability against loss of quantuti(ry) = mwtzrl%,/Z + 3NUy/4mwryy, where we replaced
coherence, and that in the weak coupling limit the purg¢y|> = 3/47ry in the nonlinear term of Eq. (2),
states of maximal stability are the coherent states. Thugjiving ry = (QUoN /4mmw?)'/> = 2(N/Nmin)'/r;, and

the quantum coherence of the condensate may be reasqw;,;,, = r,/a. This formula applies only folN > Npin;
ably represented by a pure state, though perhaps not pretherwise,ry < r;, which is impossible for a repulsive
cisely a coherent state since weak coupling may not holdnteraction. Thus, the condensate volume is given ap-
This argument does not depend on the size of the sygroximately by Vy = 8V,(N/Nmin)*/? and
tem, except that the noncondensate atoms may be viewgde  corresponding  atomic  density isn =

as a resevoir, and the conclusions therefore apply evef /8) (Nmin/V:) (N/Nmin)*>.  These  approximations
for small condensates far removed from the thermodyare valid if the characteristic length scale or co-
namic limit. Here we use the wave packet description ttherence lengthreon = (87an)™'/2 [12] is less than
calculate the macroscopic wave function in small atomiche condensate size. Taking numbers representa-
samples, and find that it exhibits collapses and revivalsive of an experiment with rubidium-87 atoms [1],
in time reminiscent of those which occur in the Jayness; = 1.44 X 1072 kg, a = 10 nm, o, = 807 rads ',
Cummingg model of quantum optics [18]. During ther, = 1.2 um, and N = 2000, vyields Nmn, = 120,
collapse(y(r, 1)) — 0, so that it cannot be identified as vy = 43V,, n = 6.4 X 102 cm™3, reon = 0.8 um, and

an order parameter for the system. ry = 4.2 um, so that the approximations are valid.

First we consider the standard treatment of the con- The definition of the condensate wave function given
densate in a Bose gas [12]. At zero temperature, angbove is rigorous in the thermodynamic limit [12]. To in-
for a weakly interacting gas, the particles may be asvestigate the case of a small condensate, say a few thousand
sumed to be predominantly in the condensate. Thatoms, we employ the wave packet description of the con-
normalized condensate wave function is then(r,r) =  densate, and further assume that the particle number distri-
N=YV2N — 11(r, 1)IN), where|N) is a state withV par-  bution|ay|? is sharply peaked with varianceN around a
ticles in the condensate. The self-consistent nonlineamean particle numbey > Ny,,. As a concrete example,
Schrédinger equation for the condensate wave function ige take a Poissonian distribution for whighv = N'/?,
the Gross-Pitaevskii equation [12] generalized to includgyhijch is reasonable since the number distributiog|?
the isotropic magneto-optical harmonic trap [19,20]. Weof the condensate should be approximately that of a co-
are interested in the ground state solution of this equatioferent state, though the phas@s may not be so cor-
for which we setjiy(r, 1) = exp(—iunt/f)$n(r), giVING  related. Then, we require the chemical potengial in

the stationary Gross-Pitaevskii equation: a rangeAN < N around the mean numb@&. There-
h_, 1 - ) fore, the leading order solution of E(?. (2) is obtained for
mn by = [_%V toymerrt NUol¢w| }1’1\” N =N, giving ¢\ (r) = ¢x(r) anduy = ux, and we

(2) treat the remaining terrtio(N — N)|on|*dy as a pertur-
bation. This assumes tha;(r) is a stable solution of the
Gross-Pitaevskii equation, which is the case for a positive
scattering length [20]; otherwise, small changes in the par-
ticle numberN can lead to large changesdy(r). Then

to first order in perturbation theory

wherem is the atomic massy, is the angular frequency of
the trap, and/, = 47 #%a/m measures the strength of the
two-body interactiong being thes-wave scattering length.
Here we consider a repulsive interaction so that 0.
The parameteny is given byuy = dEy/dN, whereEy o
is the expectation value of the energy fparticles inthe ~ ¢n(X) = ¢x(r),  wuy = uy + pHN — N), (3)
stategpy. By a slight extension of the usual terminology, Where,u'ﬁ — UoT'y/V, andTy = V, [ d*r|¢x(r)|*. The

wy Will be called the chemical potential of thé-particle  yimensionless parametdiy can be calculated numeri-
condensate. cally, but physically it is like the ratio of the linear trap
Edwards and Burnett [19], and Ruprectal. [20]  yojyme to the condensate volumé,/Vx, so thatl'y ~

have solved Eg. (2) numerically to obtain both the con(y,.../N)¥3. Gathering these results together, we find [21]
densate wave functions and the chemical potentigisas

N\3/5
functions of N (see also Baym and Pethick [21]). We do e ~ ﬁwt<ﬂ> <Nﬂn> . @)
not require the full details here, but the main features are N Tt

N

that the chemical potential and the spatial extent of thé-or this perturbative calculationpy(r) is fixed and
condensate wave function both increase wiitidue to the evaluated atv = N, and the important ingredient is the
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dispersion of the chemical potentigly with N around sum of trigonometric functions with different frequencies.
N in Eg. (3). For large mean particle numbe;clz,jv Such sums are well known from the Jaynes-Cummings
tends to zero so that the dependence on particle numbarodel of quantum optics, which describes the interaction
vanishes. These basic features are borne out in thHeetween a single-mode radiation field and a two-level
numerical calculations of Rupreckt al., who observed atom, and give rise to the phenomenon of collapses and
that the slope of the chemical potential versus nonlinearevivals [18], and the same is expected here. Collapse
constant (proportional to particle number) decreases witAnd revivals also appear in the relative phase between
increasing particle number (see Fig. 2 of [Ref. 20]). two superfluids or superconductors [22]. Directly from
We are now equipped to construct the wave packet fothe form of Eq. (8) we see thaffy(z) is periodic in
the condensate state vector alluded to above, which wéme with period Ty = Wﬁ/#lﬁ, and the revivals occur
write as with this period. The revivals result from the fact that
‘ R the sum in Eg. (8) is over the discrete particle nhumber,
W () =D aye M ANYT2BNNI0),  (B) 5o that they are a direct result of the granularity of
N matter. The collapses depend on the choice of the number
distribution |ay|*>. For our purposes we need only the
R X variance AN in particle number and the assumption
the operatorb! = [ d*r by (r)i) (r,Q)AcJ:rreates particles yhat the phases are correlated enough #izt0) does
W'th distribution ¢ (r) [10], with [b.’b ].: 1, and|0) .not vanish exactly. TherfFw(¢) is periodic and has a
is the vacuum state. The approximations empl_oyet_:l iMaximum in magnitude at = fma. At this time the
Eq. (‘L—.’) are tantamount to the Hartree approximation, o phases for eactV are such that they add most
The field annihilation operator can now be written in a ;g ctively in the sum in Eq. (8). As time increases
mode expansion a$(r_,0) = bn(r) + ¢(r,0), where these phase relations will initially be lost, thus producing
by construction the first term acts on the condensat%oualose of the magnitude of th&x(s) — 0, until the
state vector, whereas the second term accounts for t%}g

d h ; Usi h stem revives at = rmax + Tx. The collapse time.,;
noncondensate atoms (the environment). Using the stajg,, pe estimated by looking at the spread of frequencies
vector (5) we obtain the one-particle reduced densit

Yresent in the wave packet for particle numbers between

where the exponential contains the terNwy since
there areN particles each of chemical potentiay,

matrix representing the C(A)n(ilensate N =N + AN/2, which yields AQ = ZMEVAN/ﬁ, and
pi(r,r' 1) = <\I'(t)|b*bl\If(t))gb*ﬁ(r)cﬁﬁ(r’) teonl = 2w /AQ. Gathering our results together for the
= NoLm) gy, ©6) collapse and 1revival tim]\(]es, ;A//;a have "
and the condensate wave function Ty ~ — <Q>< > , feoll = 2=, (9)
(e, 1) = (PO () o) @rral N Y
((r, 1)) <_1 (2t) TN r The collapse phenomenon actually occurs under far more
- N dx(t)e M (1), (7)  general conditions than reflected by the approximations
where used here, the essential ingredient being dispersion of

the chemical potentialuy over the particle number

N ., , — variance AN. Landau damping of plasma oscillations
Fr) =2 ﬁaN—laN{Coizl“ﬁ(N — N)t/h] in an electron plasma is another example of decay of a
N o coherent state. In contrast, the exactly periodic revivals
— isi2uH(N — N)t/hl}, (8) arise from the linear dependence pfy on (N — N)

and u = uy + N,u’ﬁ is the net chemical potential of employed in Eq.. (3). If higher-order corrections' are
the condensate. The one-particle reduced density maetained, the revivals are no longer perfectly periodic,
trix (6) is of the same form as Eq. (1) wittb(r,7) «  and diminish with increasing time. We also note that
N1/2¢ﬁ(l‘, 1), so that our wave packet yields ODLRO and acco.rdl_ng. to Eq...(6) the single-particle reduped density
hence BEC. This conclusion holds for any mean particldnatrix Is insensitive to the collapse and revivals of the
number, as long as the mean field approximations emjhacroscopic wave function, which is then also the case
ployed are valid. Here the ODLRO extends over sepafOr the atomic BEC experiments [1-3].
rations|r — r'| ~ rv, the spatial scale of the condensate. The thermodynamic limit of these results must be taken
In the experiments the one-particle reduced density matri¥/ith care. In particular, in order to maintain a constant
is not measured, but rather the momentum space (velof€nsity as the mean particle number is increased, it is
ity) distribution is obtained by releasing the atoms fromn€cessary /EO concomitantly increase thgll/lgear trap size
the trap, letting them fall under gravity, and imaging them.as r, « N'"". Then Ty « N and z¢o = N '7, so that
The momentum spread will then &K =~ 27 /r%, SO collapse and revivals become irrelevant. In addition, we
that the ODLRO is transferred to a sharp spike in the imfind that F5(0) — ¢'” by the following argument: The
aged atomic distribution [1-3]. approximate uncertainty relatioANAn =~ 1 holds for
Turning now to the macroscopic wave function (7), wethe number and phase fluctuations of the condensate.

see that the factofFw(¢) takes the form of a weighted Then, asAN = N'? = % we have An — 0, which
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