
VOLUME 77, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 9 SEPTEMBER1996

les

o

2158
Collapses and Revivals of Bose-Einstein Condensates Formed in Small Atomic Samp

E. M. Wright and D. F. Walls*
Optical Sciences Center, University of Arizona, Tucson, Arizona 85721

J. C. Garrison
Lawrence Livermore National Laboratory, University of California, Livermore, California 94550

(Received 1 December 1995; revised manuscript received 14 August 1996)

The macroscopic wave function for atomic samples composed of a few thousand particles is shown
to exhibit collapses and revivals on a few seconds time scale, while Bose-Einstein condensation remains
in the form of off-diagonal long-range order in the one-particle reduced density matrix. A recently
proposed measurement scheme which is sensitive to Bose-broken gauge symmetry, and hence t
the macroscopic wave function, could be used to detect the collapses and revivals experimentally.
[S0031-9007(96)01005-8]

PACS numbers: 03.75.Fi, 03.65.Bz, 05.30.Jp, 74.20.De
te
e

at
a
s
tr
a
1

o
-
m
p

i
k

le
ti
ng

n
ld
n
r
e
g

he

en
ys
w
u
i

ly
c
ic

ull
e
r
ic

n-
l,
as

gas
icle
t
ly
th

e
le
e is
this
di-
ar-
on

uch
-
ion
en-

ket

rip-

tal
and
it

not
[15].
ate
in

e of
The recent spectacular observations of Bose-Eins
condensation (BEC) in atomic vapors [1–3] open up n
avenues of research into the generation and manipul
of coherent atomic beams. Among these possibilities
nonlinear atom optics and development of an atom la
Future progress in these areas provides impetus for s
ing toward higher atomic densities. For the condens
reported so far, the number of atoms ranges between3

and 105, small in comparison to the typical number
atomsN ­ 1020 in liquid helium experiments. This sug
gests that the small samples involved in current ato
experiments may cause deviations from the behavior
dicted for macroscopic systems.

Atomic BEC experiments also present the opportun
to further our understanding of BEC since they are wea
interacting Bose gases and are therefore amenab
more detailed theoretical analysis than strongly interac
Bose liquids, such as helium. In particular, followi
Penrose and Onsager [4], the condition for BEC
that the one-particle reduced density matrixr1sr, r0, td ­
kĉysr, tdĉsr0, tdl does not vanish for large separatio
Here ĉsr, td andĉysr, td are the Heisenberg picture fie
operators which annihilate and create atoms at positior,
andk· · ·l signifies a broken symmetry average [5,6]. Mo
specifically, the contribution to the one-particle reduc
density matrix representing the off-diagonal long-ran
order (ODLRO) [7] of the condensate is written in t
factorized form

r1sr, r0, td ­ Fpsr, tdFsr0, td . (1)

The conventional choice isFsr, td ­ kĉsr, tdl, with
kĉsr, tdl the macroscopic wave function [8,9], which th
acts as an order parameter for the Bose-condensed s
[10]. The appearance of a complex order parameter
an arbitrary but fixed phase signals that the U(1) ga
invariance of the underlying Hamiltonian, associated w
particle number conservation, is broken spontaneous
the condensation process, and this underlies the con
of Bose-broken gauge symmetry, according to wh
0031-9007y96y77(11)y2158(4)$10.00
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the many-body ground state need not display the f
symmetry of the Hamiltonian (see, for example, th
article by Leggett in Ref. [11]). Discussions of the orde
parameter are typically restricted to the thermodynam
limit where the number of particles (atoms) tends to i
finity while the density is held fixed [10,12]. In genera
however, the macroscopic wave function need not act
an order parameter. For example, for an ideal Bose
the macroscopic wave function vanishes (see the art
by Stoof in Ref. [11]), and Stoof [13] has shown tha
kĉsr, tdl cannot act as an order parameter for a weak
interacting bulk Bose gas with negative scattering leng
due to its inherent instability.

In this Letter we investigate the macroscopic wav
function for BEC in small atomic samples, and its ro
as an order parameter. If the grand canonical ensembl
used then the macroscopic wave function vanishes as
ensemble corresponds to a density operator which is
agonal when basis states involving fixed numbers of p
ticles are used [10]. This is the case for measurements
the condensate which are performed over long times s
that true thermal equilibrium is established [5]. How
ever, for measurement times short compared to relaxat
times, quantum coherences associated with the cond
sate remain intact [5,14]. Here we employ a wave pac
composed of states of a fixed number of particlesN in the
condensate, with expansion coefficientsaN ­ jaN jeizN ,
hence retaining quantum coherence. The present desc
tion of BEC, due to Barnettet al. [14], is therefore dif-
ferent from the conventionalh ensemble which employs
a wave packet of states corresponding to a different to
number of particles, condensate plus noncondensate,
is generally only applicable in the thermodynamic lim
[5]. A coherent state withaN ­ N

Ny2
eiNhe2Ny2y

p
N!

suggests itself, but the states associated with BEC do
generally possess such complete phase coherence
Nevertheless, a pure state description of the condens
may be rendered plausible as follows: Below the Einste
condensation temperature, the many-body ground stat
© 1996 The American Physical Society
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the system becomes macroscopically occupied, yield
a condensate which should be considered an open q
tum system in contact via many-body interactions with
environment or resevoir composed of the nonconden
atoms. It is known from the work of Zureket al. [16]
and Gallis [17] that for a system, in their case a harmo
oscillator, in interaction with an environment certain pu
states show considerable stability against loss of quan
coherence, and that in the weak coupling limit the p
states of maximal stability are the coherent states. Th
the quantum coherence of the condensate may be rea
ably represented by a pure state, though perhaps not
cisely a coherent state since weak coupling may not h
This argument does not depend on the size of the
tem, except that the noncondensate atoms may be vie
as a resevoir, and the conclusions therefore apply e
for small condensates far removed from the thermo
namic limit. Here we use the wave packet description
calculate the macroscopic wave function in small atom
samples, and find that it exhibits collapses and reviv
in time reminiscent of those which occur in the Jayn
Cummings model of quantum optics [18]. During th
collapsekĉsr, tdl ! 0, so that it cannot be identified a
an order parameter for the system.

First we consider the standard treatment of the c
densate in a Bose gas [12]. At zero temperature,
for a weakly interacting gas, the particles may be
sumed to be predominantly in the condensate. T
normalized condensate wave function is thencN sr, td ­
N21y2kN 2 1jĉsr, tdjNl, wherejNl is a state withN par-
ticles in the condensate. The self-consistent nonlin
Schrödinger equation for the condensate wave functio
the Gross-Pitaevskii equation [12] generalized to inclu
the isotropic magneto-optical harmonic trap [19,20]. W
are interested in the ground state solution of this equa
for which we setcN sr, td ­ exps2imN ty"dfNsrd, giving
the stationary Gross-Pitaevskii equation:

mN fN ­

∑
2

"2

2m
=2 1

1
2

mv2
t r2 1 NU0jfN j2

∏
fN ,

(2)

wherem is the atomic mass,vt is the angular frequency o
the trap, andU0 ­ 4p"2aym measures the strength of th
two-body interaction,a being thes-wave scattering length
Here we consider a repulsive interaction so thata . 0.
The parametermN is given bymN ­ dEN ydN, whereEN

is the expectation value of the energy forN particles in the
statefN. By a slight extension of the usual terminolog
mN will be called the chemical potential of theN-particle
condensate.

Edwards and Burnett [19], and Ruprechtet al. [20]
have solved Eq. (2) numerically to obtain both the co
densate wave functions and the chemical potentialsmN as
functions ofN (see also Baym and Pethick [21]). We d
not require the full details here, but the main features
that the chemical potential and the spatial extent of
condensate wave function both increase withN due to the
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repulsive two-body interaction. For low particle numb
the nonlinear term in Eq. (2) may be neglected, and
characteristic volume of the condensate isVt ­ 4pr3

t y3,
with rt ­ s"y2mvtd1y2 the spatial scale of the linea
harmonic oscillator. For large particle number th
characteristic spatial scalerN of the condensate may b
approximated as the minimum of the effective potent
UsrN d ­ mv2

t r2
Ny2 1 3NU0y4pr3

N , where we replaced
jfNj2 ­ 3y4pr3

N in the nonlinear term of Eq. (2)
giving rN ­ s9U0Ny4pmv2

t d1y5 ø 2sNyNmind1y5rt , and
Nmin ­ rtya. This formula applies only forN . Nmin;
otherwise,rN , rt , which is impossible for a repulsive
interaction. Thus, the condensate volume is given
proximately by VN ø 8VtsNyNmind3y5 and
the corresponding atomic density is n ø
s1y8d sNminyVtd sNyNmind2y5. These approximations
are valid if the characteristic length scale or c
herence lengthrcoh ­ s8pand21y2 [12] is less than
the condensate size. Taking numbers represe
tive of an experiment with rubidium-87 atoms [1
m ­ 1.44 3 10225 kg, a ­ 10 nm, vt ­ 80p rads21,
rt ­ 1.2 mm, and N ­ 2000, yields Nmin ­ 120,
VN ø 43Vt , n ø 6.4 3 1012 cm23, rcoh ­ 0.8 mm, and
rN ­ 4.2 mm, so that the approximations are valid.

The definition of the condensate wave function giv
above is rigorous in the thermodynamic limit [12]. To in
vestigate the case of a small condensate, say a few thou
atoms, we employ the wave packet description of the c
densate, and further assume that the particle number d
bution jaN j2 is sharply peaked with varianceDN around a
mean particle numberN . Nmin. As a concrete example
we take a Poissonian distribution for whichDN ­ N

1y2,
which is reasonable since the number distributionjaN j2

of the condensate should be approximately that of a
herent state, though the phaseszN may not be so cor-
related. Then, we require the chemical potentialmN in
a rangeDN ø N around the mean numberN . There-
fore, the leading order solution of Eq. (2) is obtained f
N ­ N , giving f

s0d
N srd ­ fN srd andm

s0d
N ­ mN , and we

treat the remaining termU0sN 2 NdjfNj2fN as a pertur-
bation. This assumes thatfN srd is a stable solution of the
Gross-Pitaevskii equation, which is the case for a posit
scattering length [20]; otherwise, small changes in the p
ticle numberN can lead to large changes infNsrd. Then
to first order in perturbation theory

fNsrd ­ fN srd, mN ­ mN 1 m
0

N sN 2 N d , (3)

wherem
0

N ­ U0GN yVt andGN ­ Vt

R
d3rjfN srdj4. The

dimensionless parameterGN can be calculated numeri
cally, but physically it is like the ratio of the linear tra
volume to the condensate volume,VtyVN , so thatGN ø
sNminyNd3y5. Gathering these results together, we find [2

m
0

N ø "vt

µ
pa
rt

∂ µ
Nmin

N

∂3y5

. (4)

For this perturbative calculationfNsrd is fixed and
evaluated atN ­ N , and the important ingredient is th
2159
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dispersion of the chemical potentialmN with N around
N in Eq. (3). For large mean particle number,m

0

N
tends to zero so that the dependence on particle num
vanishes. These basic features are borne out in
numerical calculations of Ruprechtet al., who observed
that the slope of the chemical potential versus nonlin
constant (proportional to particle number) decreases
increasing particle number (see Fig. 2 of [Ref. 20]).

We are now equipped to construct the wave packe
the condensate state vector alluded to above, which
write as

jCstdl ­
X
N

aN e2iNmN ty"sN!d21y2sb̂ydN j0l , (5)

where the exponential contains the termNmN since
there areN particles each of chemical potentialmN ,
the operatorb̂y ­

R
d3rfN srdĉysr, 0d creates particle

with distribution fN srd [10], with fb̂, b̂yg ­ 1, and j0l
is the vacuum state. The approximations employed
Eq. (5) are tantamount to the Hartree approximat
The field annihilation operator can now be written in
mode expansion aŝcsr, 0d ­ b̂fNsrd 1 c̃sr, 0d, where
by construction the first term acts on the condens
state vector, whereas the second term accounts fo
noncondensate atoms (the environment). Using the
vector (5) we obtain the one-particle reduced den
matrix representing the condensate

r1sr, r0, td ­ kCstdjb̂yb̂jCstdlfp

N srdfN sr0d

­ Nf
p

N srdfN sr0d , (6)

and the condensate wave function

kĉsr, tdl ­ kCstdjb̂jCstdlfN srd

­ N1y2
fN srde2imty"FN std , (7)

where

FN std ­
X
N

s
N
N

ap
N21aN hcosf2m

0

N sN 2 N dty"g

2 i sinf2m
0

N sN 2 N dty"gj , (8)

and m ­ mN 1 Nm
0

N is the net chemical potential o
the condensate. The one-particle reduced density
trix (6) is of the same form as Eq. (1) withFsr, td ~

N1y2
fN sr, td, so that our wave packet yields ODLRO a

hence BEC. This conclusion holds for any mean part
number, as long as the mean field approximations
ployed are valid. Here the ODLRO extends over se
rationsjr 2 r0j ø r N , the spatial scale of the condensa
In the experiments the one-particle reduced density ma
is not measured, but rather the momentum space (ve
ity) distribution is obtained by releasing the atoms fro
the trap, letting them fall under gravity, and imaging the
The momentum spread will then beDK ø 2pyr N , so
that the ODLRO is transferred to a sharp spike in the
aged atomic distribution [1–3].

Turning now to the macroscopic wave function (7),
see that the factorFN std takes the form of a weighte
2160
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sum of trigonometric functions with different frequencie
Such sums are well known from the Jaynes-Cummi
model of quantum optics, which describes the interac
between a single-mode radiation field and a two-le
atom, and give rise to the phenomenon of collapses
revivals [18], and the same is expected here. Colla
and revivals also appear in the relative phase betw
two superfluids or superconductors [22]. Directly fro
the form of Eq. (8) we see thatFN std is periodic in
time with periodTN ­ p"ym

0

N , and the revivals occu
with this period. The revivals result from the fact th
the sum in Eq. (8) is over the discrete particle numb
so that they are a direct result of the granularity
matter. The collapses depend on the choice of the num
distribution jaN j2. For our purposes we need only th
variance DN in particle number and the assumpti
that the phases are correlated enough thatFN s0d does
not vanish exactly. ThenFN std is periodic and has a
maximum in magnitude att ­ tmax. At this time the
net phases for eachN are such that they add mo
constructively in the sum in Eq. (8). As time increas
these phase relations will initially be lost, thus produc
collapse of the magnitude of theFN std ! 0, until the
system revives att ­ tmax 1 TN . The collapse timetcoll

may be estimated by looking at the spread of frequen
present in the wave packet for particle numbers betw
N ­ N 6 DNy2, which yields DV ­ 2m

0

N DNy", and
tcoll ø 2pyDV. Gathering our results together for th
collapse and revival times, we have

TN ø
1

vt

µ
rt

a

∂ µ
N

Nmin

∂3y5

, tcoll ø
TN

DN
. (9)

The collapse phenomenon actually occurs under far m
general conditions than reflected by the approximati
used here, the essential ingredient being dispersio
the chemical potentialmN over the particle numbe
variance DN. Landau damping of plasma oscillation
in an electron plasma is another example of decay o
coherent state. In contrast, the exactly periodic reviv
arise from the linear dependence ofmN on sN 2 N d
employed in Eq. (3). If higher-order corrections a
retained, the revivals are no longer perfectly period
and diminish with increasing time. We also note th
according to Eq. (6) the single-particle reduced den
matrix is insensitive to the collapse and revivals of
macroscopic wave function, which is then also the c
for the atomic BEC experiments [1–3].

The thermodynamic limit of these results must be ta
with care. In particular, in order to maintain a consta
density as the mean particle number is increased,
necessary to concomitantly increase the linear trap
as rt ~ N

1y6. Then TN ~ N and tcoll ~ N
1y2, so that

collapse and revivals become irrelevant. In addition,
find that FN s0d ! eih by the following argument: The
approximate uncertainty relationDNDh ø 1 holds for
the number and phase fluctuations of the condens
Then, as DN ­ N

1y2
! ` we have Dh ! 0, which
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is the case for a coherent state with phaseszN ­ Nh.
Thus, in the thermodynamic limit the quantum state
the condensate approaches a coherent state for w
we find FN s0d ­ eih . We then have Fsr, td ­
kĉsr, tdl ­ eihN

1y2
fN srde2imty", and this is precisely

the limit in which the macroscopic wave function acts
an order parameter [12].

Turning now to the atomic BEC experiments, if we ta
the parameter values for the rubidium-87 atoms quo
earlier sN ­ 2000d and DN ­ 44.7 as a representativ
value for the variance, we find for the revival timeTN ­
2.6 s, and the collapse timetcoll ­ 58 ms. Thus, even
given that our estimates of these times may be off by
order of magnitude, the collapse time is still well with
the 15 s condensate lifetime quoted for the rubidium
experiment [1]. This means that although BEC is evid
in these experiments in the form of ODLRO and nonze
Fsr, td, the condensate wave functionkĉsr, tdl exhibits
collapses and revivals. Thus, the main result of t
work is that there are significant finite-size correctio
which invalidate the identification of the macroscop
wave function as an order parameter, at least during
collapse phases. We stress that this conclusion follo
even for the best case scenario adopted here in w
the Bose condensed system can be described by a
quantum state. The collapse of the macroscopic w
function can be avoided by increasing the trap size
that tcoll ¿ T0, where T0 is the relevant macroscopi
time scale. Assuming the finite-trap values used ab
and taking T0 ­ 15 s as the condensate lifetime, th
thermodynamic-limit scaling laws yieldN ¿ 1.3 3 108,
rt ¿ 8 mm for a properly macroscopic trap. These a
large numbers by current standards for traps.

In conclusion, we have shown that the condensate w
function in small atomic samples exhibits collapse and
vivals in time while the BEC is maintained in the form
of ODLRO. To detect the collapses and revivals e
perimentally, a scheme is required which is sensitive
the macroscopic wave function directly, and this does
seem to be the case for the coherent light scattering m
ods previously discussed [23–25]. However, Imamoḡlu
and Kennedy [26] have recently proposed light scatter
schemes involving two independent condensates cou
by a common excited state. These schemes rely on
fact that when one condensate is driven optically the li
scattered from the other condensate has a nonzero v
of the electric field and a phase proportional to the relat
phase of the two condensates. By driving both wells a
adjusting the phase difference of the fields, the scat
ing can be suppressed via quantum interference, and
in turn determines the phase difference between the
condensates. The scattering is therefore sensitive to B
broken gauge symmetry. In addition, the light scatter
rate is proportional to the magnitude of the macrosco
wave function, so these schemes could be used to d
the collapses and revivals experimentally.
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