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Fringe Visibility and Which-Way Information: An Inequality
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An inequality is derived according to which the fringe visibility in a two-way interferometer sets an
absolute upper bound on the amount of which-way information that is potentially stored in a which-way
detector. In some sense, this inequality can be regarded as quantifying the notion of wave-particle
duality. The derivation of the inequality does not make use of Heisenberg’s uncertainty relation in any
form. [S0031-9007(96)00950-7]

PACS numbers: 03.65.Bz
Bohr's principle of complementarity [1] states that entering the interferometer the quanton is in an initial

quantum systems (“quantons” [2] for short) possess propstate that is characterized by the statistical operator
erties that are equally real but mutually exclusive. The

. @) .
best known example is what is colloquially termed wave- pg) _1tst o
particle duality. In a loose manner of speaking it is some- 2
times phrased similarly to the following: Depending on = l(l + 500, + 500, + 590, (1)
the experimental situation a quanton behaves either like a 2 ’ '
article or like a wave. . N ; j .
P with an initial Bloch vectors) = trQ{a'pg)}. It is

To be more specific, let us consider a two-way inter-
ferometer such as Young’'s double-slit experiment or
Mach-Zehnder setup. The wavelike property is then doc
umented by well-visible interference fringes, whereas the T .

po — eX[<—l—0'y>pQ ex;(i—ay> ,

ufficiently general to represent the action of the beam
splitter and the beam merger by

particlelike property is evident if one can tell along which
way the interferometer has been traversed.

The notions of particle and wave are associated witivhereas the phase shifter at the central stage effects
mental pictures that are borrowed from classical (i.e., )
prequantum) physics. These associations are dangerous po — ex;(—i— az>pQ exp(i > 0'z>. 2
because of their obvious limitations. Therefore, “wave-
particle duality” should perhaps be abandoned in favor otgnsequently, the interferometer of Fig. 1(a) tur;véé)
a more neutral term, such as “interferometric duality” orjnto the final state
simply “duality.” The general formulation of this concept
could read as follows. pg) _ 1 1 +s-a), 3)

Duality.—The observations of an interference pattern 2
and the acquisition of which-way information are mutu-with
ally exclusive. o ,

The extreme situations “perfect fringe visibility and no s = (—Sff),sy) Cos¢ + Sé’) sing,
which-way information” and “full which-way information
and no fringes” are familiar from textbook discussions.

But intermediate stages deserve further study. After the quanton has passed the beam merger, the
The objective of this Letter is the derivation of an observables, is measured and the relative frequency

inequality that quantifies duality by stating to which extentyit which the value—1 is found reveals the interference
partial fringe visibility and partial which-way knowledge pattern,

are compatible. The quantitative measure of the fringe

visibility is the usual one, and which-way knowledge will — tr {l (- o) (f)}
be turned into a number with the aid of an approach that Pe 22 P
is originally due to Wootters and Zurek [3].

At the intermediate stage of the interferometer—
between beam splitter and beam merger, see Fig. l—tkg% that
two ways can be labeled by quantum numbers and
—1, say. Accordingly, we are invited to describe the Vo = [(s)? + (s©)2]"/2
relevant degree of freedom of the quanton by analogs y ¢
of Pauli's spin operatorsor = (o, 0y,0;). Prior to is the corresponding priori fringe visibility.

(@) gj —
sy’sing — s, cose).

1 i) o} i
= 3(1 — s¥sing + s\ cose),
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(a) ) Let us consider symmetric interferometers with maxi-
/e'm mal a priori fringe visibility,
O =0, 50 4+ is0 = 710,
which are coupled to another physical system that is
meant to serve as a which-way detector as indicated in
Fig. 1(b). The detector is initially prepared in a stpﬁ@

so that the combined system of quanton and detector has
an initial statistical operator

o/ SERRCIRG
~ P = pg'pp - (6)

As a result of the interaction between quanton and
detector the detector state is altered in accordance with

(b)

pop — UlpDUi forthe o, = =1 way,

whereU, andU_ are unitary operators that affect solely
the degree(s) of freedom of the detector. Thus what

FIG. 1. Schematic two-way interferometer. (a) The beam . .
splitter BS distributes the input among the two ways: afterN@PpPENS at the central stage of the interferometer is now

the phase shifter PS has acted in dtsdependent manner, the described by the unitary operator

beam merger BM recombines the contributions and produces

the output. Measurements on the output may either reveal the 1+ U'zei¢>/2U + 1 - U'ze—iqs/zU .

¢ dependent interference pattern, or alternatively determine 2 * -

the way that has been taken. (b) When the interferometer ;

is supplemented by a which-way detector WWD, then bothit replaces exf; ¢ o) of (2).

the interference pattern may be observed and the which-way The initial state (6) is transformed into the final state
information may be acquired, within the limits set by duality.

1 + oy i 1 — oy i
p(f) = 7UIP(D)U+ + TUip(D)U,
The probabilities for taking either one of the two ways .
are _ T T Oy —ig-e) it 0
e Uipp U-
_ 1 T D) e i T o, +ioy, | ;
We = trQ{E(l + UZ)eX%—zTU})pQ ex;(zTa'})} _ %ez(gb—e)ljip(D)U+ ,
= trQ{i(l + Ux)pg)} = i(1 e s)(j)), (4) which yields the final states of the quanton and the
_2 o 2 detector upon tracing over the other degree of freedom.
The magnitude of their difference, The quanton state is of the form (3) with
P =lwy —w_| = s9], s =0, s+ s = —emi4-OC

is the predictability of the ways through the interferom- P ]
eter. This number, which is in the range...,1, is a WhereC = trp{U+pp U-} is a complex contrast factor.

quantitative measure of the priori which-way knowl- ~ The fringe visibility is therefore given by the magnitude
edge. If one bets on the more probable way, then th&f this number,

probability of predicting the way correctly id + 2)/2. vV =|C]|. 7)
In particular, if the interferometer is operated symmetri- _
cally, w, = w_ = 3 so thatP = 0, then 50% of the pre- The final detector state

dictions are right and the other 50% are wrong. In short, (4 o 1+ | D)
there is nothing predictable about the ways in a symmetric Pp = tro{p'/’} = 5U+PD Ut + 5U—PD U-

interferometer. ' 1 1 O
Since the length of the Bloch vectaf” must not =>pPp T 5PD
exceed unity, one immediately establishes the inequality . i )
2L V= is the sum of thg two final states (;orrespondlng to
P+ Vy=1. ®)  the two ways, weighted by the fraction of quantons

This observation has been made by Greenberger andking the respective way—50% each in the symmetric
Yasin [4]; it is implicitly contained in the work of Woot- interferometer under consideration.

ters and Zurek [3] and also in a paper by Mandel [5]. The The extraction of the which-way information stored
measurements by Rauch, Summhammer, and Tuppinger the detector requires the measurement of a suitable
[6], who introduce an asymmetry into a neutron interfer-observableW with eigenvaluesW’ and eigenketdW’).
ometer, are consistent with (5). We take for granted that the relevant eigenvalued/afre
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not degenerate. Suppose that the eigenvBllbas been The equal sign holds in (10) always if the detector is

found. This happens With a relative frequency of prepared in a pure state,
Wpd' W) = = W'lob W) pb = ld)al:
D = (1 - Kdlu-vlla)P)'~, (12)

+ —<WI W),

_ T
where the two summands refer to the two ways. Extend- V = [dlU-Uilad)l.
ing an idea by Wootters and Zurek [3], we note that theThe general proof of the duality relation (10) is based on
best guess about the way one can thUS make is to opt f@fie triangle inequality for the trace-class norm,

the way that contributes most &’ |pD |W’> In many tlA + Bl = tr{lAl + tr{|B
repeated experiments, this yields lkélihood for guess- _ { I} = tr{lal} iBl},
ing the way right” that is given by which holds for all trace-class operato)%sand B. Upon
1 - | o inserting the spectral decomposition;q(j ,
- 2w A n 2o A ! l
=—+—Z|<W|( 5 5w ith Dy =0,Y, Dy = 1, and{d;|d;) = 6, of
B PD = PD : (with Dy = 0, Y, Dy = 1, and{d;|d,) = &, of course),

into (9) yields

Its calculated value can be checked experimentally if the |

interferometer is modified such that the actual way is = - _yt

determined rather than the fringe pattern. This caz beD ZDktrD{|U+|dk><dk|U+ U=l (@ilU-1}
done, for example, either by removing the beam merger

and measurings, or by leaving the beam merger in = ZDk(l — Kdilu-Ut a2,

place and measuringr, in the final statep!/); these

two possibilities correspond to the two traces in (4).where the Iast step makes use of the pure-state result (11).

Slnce such a measurement yields also the probabilitied conjunction with
(W' |p |W’> the numerical value of the likelihood

can be inferred from experimental data.
This value depends on the observalilethat is mea-

. 1 .
sured. An unfortunate choice could resultiy, = 5, in

= ZDk<dk|U—U1|dk> ;
x

this leads to

which case one could just as well throw dice. The largest
value of Ly is obtained if the (relevant) elgenkéw’> of D? + V2 = > DDy \/1 - |uj|2\/1 = luel?
W are also eigenkets of the d|fferer1@§ ) ) . Accor- ik
dingly, there is an absolute optimum fnirw, VIZ + 1 Wi + 1 uZuj:|
2 2 ’
1

Ly = £0pt = E(l + D), (8) (12)

with whereu, = (di|U_UL|d;) is a convenient abbreviation.
1 (+) ) The magnitude of these complex numbers does not exceed
D= EtrD{lp —pp i (9) unity, |ux| = 1, and therefor® = [---] = 1 holds for the

In math?n)ﬁatlcal te)rms this numb®? is the distance be- square brackets in (12). Accordingly, one gets
tweenpD and pp ' in the trace-class norm; its physical 0
significance is, however, more importaf® is a quanti- D? + V2 =Y DD, = [trplpp}f = 1
tative measure of thdistinguishabilityof the ways, i.e., Jk

of the amount of which-way information that has becomeand this closes the case.

available. The ways cannot be distinguished at a@Dif= It must be emphasized that this proof of the duality
0, and they can be held apart completelyZi = 1. relation (10) does not rely on an uncertainty relation of
The stage is now set for reporting the central resulthe Heisenberg-Robertson kind [7], i.e.,
of this Letter. The fringe visibility’V of (7) and the 1
distinguishability of (9) obey the inequality 8X8Y = = lK[X, YD) (13)
D>+ V=1, (10)  for the spreads of two observablés and Y and the

which is a fundamental quantitative statement abougXpectation value of their commutator. One understands
duality. Of course, it comprises the extreme situationgvhy (10) cannot be an uncertainty relation in disguise
mentioned above inasmuch a¥ = 1 implies D =0  When noting that really only one observable is involved,
andD = 1 implies V = 0. not two. This observabl& is identified by U_UI =
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expiX). Then both the distinguishabilityD and the
visibility "V involve X,

1 Y e @)
D = S tipflen — e o™,

V= |trD{pg)eiX}| ,

but no second observable shows up. In conclusionr

the duality relation (10) is logically independent of the
uncertainty relation (13).

It is equally important to realize that the inequalities
(5) and (10) convey utterly different messages despit
their great similarity, because the predictabil® and
the distinguishablyD represent pieces of which-way
knowledge of very different kinds. Furthermore, the two
inequalities concern different degrees of freedom. In (5
one meets an immediate consequence of the positivity
the statistical operator (1) that specifies the initial stat
of the quanton In marked contrast, (10) originates in
the quantum properties of thdetector The quantum

holds, it is clear that (15) is more stringent than (14).
Consequently, (14) applies to asymmetric interferometers
as well.

In setups of the kind depicted in Fig. 1(b), the same
physical mechanism can be used both for the phase
shifting and the which-way detection. There are other
schemes, such as Einstein’s recoiling-slit proposal [8] or
he quantum-optical Ramsey interferometer [9], in which
the beam splitter also acts as the which-way detector. For

them, the bounds of (14) hold too, but the analysis is

somewhat more involved [10].
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aspects of the which-way detection enforce duality and
thus make sure that the principle of complementarity is

not circumvented.
Upon combining (10) with (8) one gets the inequality

1 1 1
ESL(,ptsEJr?x/l—VZ, (14)

according to which the fringe visibility limits the experi-
menter’s ability of guessing the way right. To begin with,
this applies to symmetric interferometers with predictabil-
ity P = 0 anda priori visibility 'V, = 1. This is no real

*Presently at Arbeitsgruppe “Nichtklassisches Licht” der
Max-Planck-Gesellschaft an der Humboldt-Universitat,
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