
VOLUME 77, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 9 SEPTEMBER1996

ny

s an
h-way
particle
in any

2154
Fringe Visibility and Which-Way Information: An Inequality
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An inequality is derived according to which the fringe visibility in a two-way interferometer set
absolute upper bound on the amount of which-way information that is potentially stored in a whic
detector. In some sense, this inequality can be regarded as quantifying the notion of wave-
duality. The derivation of the inequality does not make use of Heisenberg’s uncertainty relation
form. [S0031-9007(96)00950-7]
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Bohr’s principle of complementarity [1] states th
quantum systems (“quantons” [2] for short) possess p
erties that are equally real but mutually exclusive. T
best known example is what is colloquially termed wa
particle duality. In a loose manner of speaking it is som
times phrased similarly to the following: Depending
the experimental situation a quanton behaves either li
particle or like a wave.

To be more specific, let us consider a two-way int
ferometer such as Young’s double-slit experiment o
Mach-Zehnder setup. The wavelike property is then d
umented by well-visible interference fringes, whereas
particlelike property is evident if one can tell along whi
way the interferometer has been traversed.

The notions of particle and wave are associated w
mental pictures that are borrowed from classical (i
prequantum) physics. These associations are dange
because of their obvious limitations. Therefore, “wav
particle duality” should perhaps be abandoned in favo
a more neutral term, such as “interferometric duality”
simply “duality.” The general formulation of this conce
could read as follows.

Duality.—The observations of an interference patte
and the acquisition of which-way information are mu
ally exclusive.

The extreme situations “perfect fringe visibility and n
which-way information” and “full which-way information
and no fringes” are familiar from textbook discussion
But intermediate stages deserve further study.

The objective of this Letter is the derivation of a
inequality that quantifies duality by stating to which exte
partial fringe visibility and partial which-way knowledg
are compatible. The quantitative measure of the frin
visibility is the usual one, and which-way knowledge w
be turned into a number with the aid of an approach
is originally due to Wootters and Zurek [3].

At the intermediate stage of the interferometer
between beam splitter and beam merger, see Fig. 1—
two ways can be labeled by quantum numbers11 and
21, say. Accordingly, we are invited to describe t
relevant degree of freedom of the quanton by anal
of Pauli’s spin operatorss ­ ssx , sy , szd. Prior to
0031-9007y96y77(11)y2154(4)$10.00
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entering the interferometer the quanton is in an initi
state that is characterized by the statistical operator

r
sid
Q ­

1 1 ssid ? s

2

­
1
2

s1 1 ssid
x sx 1 ssid

y sy 1 ssid
z szd (1)

with an initial Bloch vector ssid ­ trQhsr
sid
Q j. It is

sufficiently general to represent the action of the bea
splitter and the beam merger by

rQ ! exp

µ
2i

p

4
sy

∂
rQ exp

µ
i

p

4
sy

∂
,

whereas the phase shifter at the central stage effects

rQ ! exp

µ
2i

f

2
sz

∂
rQ exp

µ
i

f

2
sz

∂
. (2)

Consequently, the interferometer of Fig. 1(a) turnsr
sid
Q

into the final state

r
s fd
Q ­

1
2

s1 1 ss fd ? sd , (3)

with

ss fd ­ s2ssid
x , ssid

y cosf 1 ssid
z sinf,

ssid
y sinf 2 ssid

z cosfd .

After the quanton has passed the beam merger,
observablesz is measured and the relative frequenc
with which the value21 is found reveals the interference
pattern,

pf ­ trQ

Ω
1
2

s1 2 szdrs fd
Q

æ
­

1
2

s1 2 ssid
y sinf 1 ssid

z cosfd ,

so that

V0 ­ fsssid
y d2 1 sssid

z d2g1y2

is the correspondinga priori fringe visibility.
© 1996 The American Physical Society
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FIG. 1. Schematic two-way interferometer. (a) The bea
splitter BS distributes the input among the two ways; af
the phase shifter PS has acted in itsf dependent manner, the
beam merger BM recombines the contributions and produ
the output. Measurements on the output may either reveal
f dependent interference pattern, or alternatively determ
the way that has been taken. (b) When the interferome
is supplemented by a which-way detector WWD, then bo
the interference pattern may be observed and the which-
information may be acquired, within the limits set by duality.

The probabilities for taking either one of the two way
are

w6 ­ trQ

Ω
1
2

s1 6 szd exp

µ
2i

p

4
sy

∂
r

sid
Q exp

µ
i

p

4
sy

∂æ
­ trQ

Ω
1
2

s1 6 sxdrs fd
Q

æ
­

1
2

s1 7 ssid
x d . (4)

The magnitude of their difference,

P ­ jw1 2 w2j ­ jssid
x j ,

is the predictability of the ways through the interferom
eter. This number, which is in the range0, . . . , 1, is a
quantitative measure of thea priori which-way knowl-
edge. If one bets on the more probable way, then
probability of predicting the way correctly iss1 1 P dy2.
In particular, if the interferometer is operated symmet
cally, w1 ­ w2 ­

1
2 so thatP ­ 0, then 50% of the pre-

dictions are right and the other 50% are wrong. In sho
there is nothing predictable about the ways in a symme
interferometer.

Since the length of the Bloch vectorssid must not
exceed unity, one immediately establishes the inequali

P 2 1 V 2
0 # 1 . (5)

This observation has been made by Greenberger
Yasin [4]; it is implicitly contained in the work of Woot-
ters and Zurek [3] and also in a paper by Mandel [5]. T
measurements by Rauch, Summhammer, and Tuppin
[6], who introduce an asymmetry into a neutron interfe
ometer, are consistent with (5).
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Let us consider symmetric interferometers with ma
mal a priori fringe visibility,

ssid
x ­ 0, ssid

z 1 issid
y ­ e2iu,

which are coupled to another physical system that
meant to serve as a which-way detector as indicated
Fig. 1(b). The detector is initially prepared in a stater

sid
D

so that the combined system of quanton and detector
an initial statistical operator

rsid ­ r
sid
Q r

sid
D . (6)

As a result of the interaction between quanton a
detector the detector state is altered in accordance wit

rD ! U
y
6rDU6 for thesz ­ 61 way,

whereU1 andU2 are unitary operators that affect sole
the degree(s) of freedom of the detector. Thus w
happens at the central stage of the interferometer is n
described by the unitary operator

1 1 sz

2
eify2U1 1

1 2 sz

2
e2ify2U2 ;

it replaces exps i
2 fszd of (2).

The initial state (6) is transformed into the final state

rs fd ­
1 1 sx

4
U

y
1r

sid
D U1 1

1 2 sx

4
Uy

2r
sid
D U2

2
sz 2 isy

4
e2isf2udU

y
1r

sid
D U2

2
sz 1 isy

4
eisf2udUy

2r
sid
D U1 ,

which yields the final states of the quanton and t
detector upon tracing over the other degree of freedo
The quanton state is of the form (3) with

ss fd
x ­ 0, ss fd

z 1 iss fd
y ­ 2e2isf2udC ,

whereC ­ trDhUy
1r

sid
D U2j is a complex contrast factor

The fringe visibility is therefore given by the magnitud
of this number,

V ­ jC j . (7)

The final detector state

r
s fd
D ­ trQhrs fdj ­

1
2

U
y
1r

sid
D U1 1

1
2

Uy
2r

sid
D U2

­
1
2

r
s1d
D 1

1
2

r
s2d
D

is the sum of the two final states corresponding
the two ways, weighted by the fraction of quanto
taking the respective way—50% each in the symme
interferometer under consideration.

The extraction of the which-way information store
in the detector requires the measurement of a suita
observableW with eigenvaluesW 0 and eigenketsjW 0l.
We take for granted that the relevant eigenvalues ofW are
2155
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(11).

.
eed

ity
of

nds
ise
d,
not degenerate. Suppose that the eigenvalueW 0 has been
found. This happens with a relative frequency of

kW 0jr
sfd
D jW 0l ­

1
2

kW 0jr
s1d
D jW 0l

1
1
2

kW 0jr
s2d
D jW 0l ,

where the two summands refer to the two ways. Exte
ing an idea by Wootters and Zurek [3], we note that
best guess about the way one can thus make is to op
the way that contributes most tokW 0jr

s fd
D jW 0l. In many

repeated experiments, this yields a “likelihood for guess-
ing the way right” that is given by

LW ­
X
W 0

Max

Ω
1
2

kW 0jr
s1d
D jW 0l,

1
2

kW 0jr
s2d
D jW 0l

æ
­

1
2

1
1
4

X
W 0

jkW 0jsrs1d
D 2 r

s2d
D djW 0lj .

Its calculated value can be checked experimentally if
interferometer is modified such that the actual way
determined rather than the fringe pattern. This can
done, for example, either by removing the beam me
and measuringsz or by leaving the beam merger
place and measuringsx in the final staters fd; these
two possibilities correspond to the two traces in (
Since such a measurement yields also the probabi
kW 0jr

s6d
D jW 0l, the numerical value of the likelihoodLW

can be inferred from experimental data.
This value depends on the observableW that is mea-

sured. An unfortunate choice could result inLW ­ 1
2 , in

which case one could just as well throw dice. The larg
value ofLW is obtained if the (relevant) eigenketsjW 0l of
Ware also eigenkets of the differencer

s1d
D 2 r

s2d
D . Accor-

dingly, there is an absolute optimum forLW , viz.

LW # Lopt ­
1
2

s1 1 D d , (8)

with

D ­
1
2

trDhjrs1d
D 2 r

s2d
D jj . (9)

In mathematical terms, this numberD is the distance be
tweenr

s1d
D and r

s2d
D in the trace-class norm; its physic

significance is, however, more important:D is a quanti-
tative measure of thedistinguishabilityof the ways, i.e.,
of the amount of which-way information that has beco
available. The ways cannot be distinguished at all ifD ­
0, and they can be held apart completely ifD ­ 1.

The stage is now set for reporting the central re
of this Letter. The fringe visibilityV of (7) and the
distinguishability of (9) obey the inequality

D 2 1 V 2 # 1 , (10)

which is a fundamental quantitative statement ab
duality. Of course, it comprises the extreme situati
mentioned above inasmuch asV ­ 1 implies D ­ 0
andD ­ 1 impliesV ­ 0.
2156
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The equal sign holds in (10) always if the detector
prepared in a pure state,

r
sid
D ­ jdl kdj :

D ­ s1 2 jkdjU2U
y
1jdlj2d1y2, (11)

V ­ jkdjU2U
y
1jdlj .

The general proof of the duality relation (10) is based
the triangle inequality for the trace-class norm,

trhjA 1 Bjj # trhjAjj 1 trhjBjj ,

which holds for all trace-class operatorsA and B. Upon
inserting the spectral decomposition ofr

sid
D ,

r
sid
D ­

X
k

Dkjdklkdkj

(with Dk $ 0,
P

k Dk ­ 1, andkdj jdkl ­ djk, of course),
into (9) yields

D #
1
2

X
k

Dk trDhjUy
1jdklkdk jU1 2 Uy

2jdkl kdkjU2jj

­
X
k

Dks1 2 jkdk jU2U
y
1jdklj2d1y2,

where the last step makes use of the pure-state result
In conjunction with

V ­

É X
k

DkkdkjU2U
y
1jdkl

É
,

this leads to

D 2 1 V 2 #
X
j,k

DjDk

"q
1 2 jujj2

q
1 2 jukj2

1
1
2

up
juk 1

1
2

up
kuj

#
,

(12)

whereuk ­ kdkjU2U
y
1jdkl is a convenient abbreviation

The magnitude of these complex numbers does not exc
unity, jukj # 1, and therefore0 # f· · ·g # 1 holds for the
square brackets in (12). Accordingly, one gets

D 2 1 V 2 #
X
j,k

DjDk ­ ftrDhrsid
D jg2 ­ 1 ,

and this closes the case.
It must be emphasized that this proof of the dual

relation (10) does not rely on an uncertainty relation
the Heisenberg-Robertson kind [7], i.e.,

dXdY $
1
2

jkfX, Yglj (13)

for the spreads of two observablesX and Y and the
expectation value of their commutator. One understa
why (10) cannot be an uncertainty relation in disgu
when noting that really only one observable is involve
not two. This observableX is identified by U2U

y
1 ­
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expsiXd. Then both the distinguishabilityD and the
visibility V involve X,

D ­
1
2

trDhjrsid
D 2 e2iXr

sid
D eiX jj,

V ­ jtrDhrsid
D eiXjj ,

but no second observable shows up. In conclus
the duality relation (10) is logically independent of t
uncertainty relation (13).

It is equally important to realize that the inequaliti
(5) and (10) convey utterly different messages des
their great similarity, because the predictabilityP and
the distinguishablyD represent pieces of which-wa
knowledge of very different kinds. Furthermore, the tw
inequalities concern different degrees of freedom. In
one meets an immediate consequence of the positivit
the statistical operator (1) that specifies the initial st
of the quanton. In marked contrast, (10) originates
the quantum properties of thedetector. The quantum
aspects of the which-way detection enforce duality a
thus make sure that the principle of complementarity
not circumvented.

Upon combining (10) with (8) one gets the inequality

1
2

# Lopt #
1
2

1
1
2

p
1 2 V 2 , (14)

according to which the fringe visibility limits the exper
menter’s ability of guessing the way right. To begin wi
this applies to symmetric interferometers with predicta
ity P ­ 0 anda priori visibility V0 ­ 1. This is no real
restriction, however, because asymmetric interferome
can be analyzed in an analogous manner. The fringe
bility is then

V ­ jC jV0

rather than (7), and the optimal likelihood is given by

Lopt ­
1
2 1

1
2 trDhjw1r

s1d
D 2 w2r

s2d
D jj ,

which involves thea priori probabilities of the ways
[cf. Eq. (4)] and generalizes (8) with (9). The resulti
generalization of (14) reads

1
2

s1 1 P d # Lopt #
1
2

1
1
2

q
1 2 s1 2 P 2d sV yV0d2 (15)

with V # V0. The reasoning that justifies the upp
bound is essentially the same as the one for the u
bound in (14), and the lower bound is a conseque
of trhjAjj $ jtrhAjj. Since P is non-negative and (5
n,

s
ite

o
5)
of
te
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is

,
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holds, it is clear that (15) is more stringent than (14
Consequently, (14) applies to asymmetric interferomet
as well.

In setups of the kind depicted in Fig. 1(b), the sam
physical mechanism can be used both for the ph
shifting and the which-way detection. There are oth
schemes, such as Einstein’s recoiling-slit proposal [8]
the quantum-optical Ramsey interferometer [9], in whi
the beam splitter also acts as the which-way detector.
them, the bounds of (14) hold too, but the analysis
somewhat more involved [10].
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