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We propose a model for the leading wave of tsunamis to explain why although the coastal
manifestation of a tsunami is assumed solitary-wave-like it is most often accompanied by a shoreline
which recedes first before advancing up the beach, suggesting a leading-depkegsiva. Far field,
we use the Korteweg—de Vries equation, and find Mwataves of geophysical scale do not fission over
transoceanic propagation distances. Near shore, we use shallow-water theory to calculate the evolution
and runup of emerging non-breaking waves, and observe that they evolve according to Green’s law. We
discuss the effects of certain ground deformation parameters and provide one application by modeling
the Nicaraguan tsunami of 1 September 1992. [S0031-9007(96)01008-3]

PACS numbers: 91.30.Nw, 92.10.Fj, 92.10.Hm

Recent earthquakes in Nicaragua (1 September 1993)asses as special caseshllvave-like and solitary-wave-
Flores, Indonesia (12 December 1992), Okushiri, Japalike profiles used in earlier studies [2,3,5,6]. We then will
(7 July 1993), East Java, Indonesia (6 June 1994), Kuritliscuss their stability with respect to fission in far-field
Islands, Russia (4 October 1994), Mindoro, Philippinesevolution. We will then derive near-shore evolution rela-
(14 November 1994), Manzanillo, Mexico (9 October tionships and we will obtain certain asymptotic estimates
1995), and Chimbote, Peru (21 February 1996) have proaf the relative effects of some generation parameters on
duced tsunami waves which caused nearby shorelines the runup of non-breaking waves. We therefore propose
first recede before advancing. These observations have _ B _
challenged further the prevailing paradigm for studying () = &p Hx = X) sechy(x = )]0 (1)
the coastal effects of tsunamis, i.e., the canonical models a profile for the leading wave of tsunamis. Here
of a Boussinesq solitary wave profile propagating overy = \/3H po/4, 0 = X; + ct, L =X; — X, ¢ = 1,
constant depth and then climbing up a sloping beach [1jand py is a steepness parametef, < 1 is a scaling
To quantify the persistent field observations and tsunanparameter defining the crest amplitude introduced only
folklore, a class of water waves referred to Msvaves for reference to ensure that the waveheight (1)F;
has been proposed [2] for near-shore—generated tsunami§, can be chosen to fit desired field-inferred surface
and it was observed that at least for three different types gérofiles. F{ and the wavelength of the profile inferred
N-waves, leading-depressidtwaves climb up higher on from (1) are vertical and horizontal measures of the
sloping beaches than leading-elevatigtwaves with the ground deformation, respectively. When the crest and
same leading-wave amplitude. The utility of these runugrough heights are equal, we will refer to thesevaves
laws [2] was recently demonstrated by Geist [3] to suppleas isosceles [2]; the latter can be described by (1) by
ment numerical computations for a Cascadia subductiosetting L = 0. As suggested by Carrier [6], multilobe
zone type giant earthquake. However, unresolved quesvaves similar to (1) can be described by combinations
tions persist as to the long-distance hydrodynamic stabilef Gaussian profiles; we prefer (1) because it allows for
ity of these waves. Also, given the uncertainty associatedirect derivation of asymptotic results. Here, for brevity,
with inferring the sea-bottom displacement from distantwe will refer to all multilobe tsunamis as-waves. We
strong-motion records [4], there is little understanding awill also use the qualifier non-breaking to refer to waves
to the relative effects of the vertical deformation, of thewhich do not break in the specific evolution problem, and
deformed area, or of the relative magnitudes of subsiwe note that the same leading wave which evolves to its
dence and uplift, forcing laboratory modelers to work ex-maximum penetration without breaking on a steep beach
clusively with solitary waves or periodic long waves, andmay break on a gentle beach; in the steepness range of
numerical modelers to routinely introduce arbitrary largegeophysical interest the leading waves of most tsunamis
“amplification” factors to fit their results to runup field do not break on most natural beaches, but they may break
observations. when advancing up rivers, during overland flow, or when

We will attempt to address these questions here by firdbcused on headlands.
deriving an initial sea-surface profile for the leading wave To motivate the generation df-waves and our particu-
of a tsunami from a specification of the sea-bottom delar choice of the initial profile, consider the linearized
formation and by demonstrating that this profile encomshallow-water equation, long believed as the physically
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realistic generation approximation [7,8], i.e., will discuss the relative importance of certain generation
20 H parameters.
Nie — Nox = hoss hy = ———tanHy(x — 6)], Propagation distance for solitary wave evolutien.
Y

Since we are most interested in the effective propagation

@) distance over which the leading solitary waves emerge
where ho(x, r) is the ground motion, measured from awe propagated LDN waves by solving the KdV equa-
horizontal datum corresponding to a sudden uplift andfion numerically [11]. No distinct solitary waves emerge
or subsidence of the sea bottom such as would occur wittvhen LDN waves with an initial height-to-depth ratio of
normal thrust fault. In nature, the ground deformation0.01 (much larger amplitude than a possible transoceanic
would stop almost immediately after the earthquake andisunami) are propagated through twice typical transoceanic
the deformation would not propagate as the definition oflistances of about 4000 depths [see Fig. 2(b)]. LDN
ho suggests. Nonetheless, since our objective is only tavaves of the same family, but with geophysically realis-
determine an initial profile valid only for short times, the tic initial height-to-depth ratio of 0.001 were practically
above ground deformation is adequate. It can be verifiednchanged even after propagating over 2000 depths, indi-
directly that (1) is an exact solution of (2). Other groundcating the hydrodynamic stability d-waves and perhaps
motions [7,8] would also produce multilobe waves, butexplaining for the first time anecdotal reports of LDN
not of the same mathematical form; the advantage of thevaves striking Hawaii after the Chilean 1960 event.
ground deformationi, in (2) is that it allows for the Runup and coastal evolution of N wavesWe will
explicit evaluation of the near-field and far-field effectsnow solve the propagation problem described by the
in terms of simple and intuitive asymptotic formulae. linearized shallow-water wave equations (SW), —

To appreciate the range of surface profiles that (1) detn.4), = 0 normalized with the offshore deptd as
scribes, Fig. 1(a) compares a classical Boussinesq solitaryhe characteristic length scale, arf/d as the time
wave profile with the surface profile obtained by (1)scale, h(x) = x/cotB, when x =< cotg and h(x) = 1
and, for reference, with an isosceles leading-elevatiomtherwise. It is widely believed that these equations
(LEN) wave with the same leading wave steepness- 1  describe the essential physics of the coastal tsunami
and a Gaussian profile [6]. Figure 1(b) shows leadingevolution problem well [1]. When the incident wave
depression (LDN) profiles generated by Eq. (1) for a fixedrom infinity is of the form [~ ®(w)e'®’ dw, then the
H and different values df and, for reference, an isosce- transmitted wave to the beach is given by
les LDN and a combination of Gaussian profiles [6]. o 7\, —iw(cotf+ct

As an initial condition we will use thi-wave of (1),and  7n(x,1) = 2 D(w)Jo2w XCOt,B Je ttcotben dw,
then we will solve the Korteweg—de Vries (KdV) equation —=  Jo(2w cotB) — iJi(2w cotB) 3
to calculate transoceanic propagation over constant depth. (3)
Once the wave arrives near shore, we will use the shallowmwhere ®(w) is the transform function of the incoming
water wave equations [1]; it is well established that forwave. The amplification factor (kernel) in the above
the non-breaking waves we are considering here dispersivguation was originally obtained by Keller and Keller
effects do not have sufficient time to manifest over the[12] and can be used directly to calculate the evolution
relatively short propagation distances on a sloping beactof the wave at any location along the beach; when
We will show that both LDNs and LENs evolve accordingx = 0, R(t) = 7(0,¢) and its maximum valuR is the
to a relationship equivalent to Greens’ law [9,10]. Finally, maximum runup, i.e., the elevation above the shoreline at
we will provide results for the maximum runup and we the point of maximum penetration of the wave. Carrier

[8] and Synolakis [5] have proved the runup invariance
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FIG. 1. (a) Comparison of Boussinesq solitary profite-(-), 1800 2000 2200 3400 3600 3800 4000

N-wave solitary profile (—)(L = 30,£, = 0.032), Gaussian

profile (——) [6], and leading elevation isosceléswave (--). FIG. 2. (a) LDN N-wave generated by Eg. (1) forX{ =
(b) A family of leading-depression waves generated\ewave 190, X, = 200, /{ = 1.E — 03) propagated by KdV to 2000
(—) for L = 8,4,2,1 and po = 1, combination of Gaussian depths. (b) LDNN-wave generated by Eq. (1) foX{ =
profiles (——) [6] and leading-depression isosceldsvave (--) 98, X, = 100, H{ = 1.E — 02) propagated by KdV to 4000
generated with. = 0, py = 1. depths.
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between linear and nonlinear theory, and it has beeter theory using Carrier and Greenspan hodographic trans-
repeatedly shown [13,14] that linear theory describes wellormation [18] and is the same amplitude as outlined in [2]
the evolution of the maximum height of long wavesfor po = 1. Q(L,vy) has to be determined numerically,
which offshore had a Boussinesq solitary-wave profilebut to the same order of approximation as (6) and over a
Therefore, without loss of generality, we will use linear wide rangeQ varies linearly withL. We note thaR, is
theory calculate the evolution of the waveheight and thehe runup of a Boussinesq solitary wave of the sahfie

maximum runup of non-breaking waves. and that (6) is asymptotically close to runup law for soli-
The transform® (w) of (1) is obtained through contour tary waves given in [5]. This is reassuring; as Fig. 1(a)
integration [2] and is given by, shows in the asymptotic limit LEN profiles describe soli-
20 o tary waves, for example whein = 30, £, = 0.032, Q =
® = —£ cosh — 10, and py = 1; then (6) is almost identical to the runup
3po 2y law for solitary waves.

% [Lw _ i|:1 T cotr<ﬂ>:|]e"‘"x‘ ) As examples, Figs. 3(a) and 3(b) show the variation of
2y 2y maximum runup with. and 2, respectively. Clearly in
the region of physical interest the runup increases almost
linearly with 2. It is shown elsewhere [2] that LDNs
Junup higher than LENs and solitary waves with the
same leading wave height. Figure 4 shows the maximum
runup variation with the crest-to-trough heights ratio; this
. , | Y , arameter is uniquely determined from (1) through, L,
n(x,1) = 770[7610 sechi(y¢') + ¢ 7 secliy ¢ )}’ gnd po. Notice t(r]1at %/he maximum runufo )decrelg:es from
(5) the isosceledl-wave limit to the solitary wave limit as the
3H /4 crest-to-trough ratio increases, consistent with the earlier
' observation that LDNs and LENSs climb further than the
equivalent solitary waves of the sarfié and steepness.

We have presented a model for the leading wave of
tsunamis, encompassing as special cases waves similar
e . to the Boussinesq solitary wave profilds;waves, and
}/(\;rruzrr?d)mivlzr:hiﬁit?;afghfzrrri%)ﬁlnvsg‘v%mm'isTirr]fjreefZLe- the certain combinations of Gaussian profiles [6]. The

v9 Mext P function can be fully described by specifying the crest

e o e ol o e ol defion . ampltuce T, e steepness paramee andL, and |
PIng : includes the individual classes Nfwaves outlined in [2].

from the shoreline in a manner similar to what is referred Our conjecture is that tsunamigenic faulting generates

to as Greens'’ law [9,10,13] whether a Ieadlng-depressmpnuItilobe waves, and that the leading wave of the tsunami

or Ieadlng-elevatlon wave. is important for estimating coastal effects, at least along
An approximate absolute upper bound for the runup

) X . _"open coastlines. Most physically realistic tsunamis retain
of a non—breal;mg LDNHW?Z calculated earllelr [2] USINGiheir overall N-wave character even after transoceanic
n(0,1) = Ro 2, (=1)""'n'*2ny(L — ¢) + 3} X

A 6 3 1/ propagation. Near-shore—generated tsunamis do not have
e 2v®  where Ry = 3&,ys (2mcotp)/?/py’".  sufficient propagation distance to fully evolve, and their
Here, we compute the maximum runup of &  near-shore manifestation is almost invariablywave-
wave (1) explicitly. We first note that the phage, like. We found that the maximum runup decreases as the
at the extremum runup satisfies- 4%(L — ¢,) = ratio of trough height-to-crest height decreases. Hence,
Z;ozl(_1)n+1n3/26—2n'yd)”,/[zz=1(_1)n+1n5/26—2n'yd)m].

DenotingS(¢,) = . (—1)"T1n3/2e=217¢n we rewrite

the equation forg,, asdS(¢,,)/dd,, = 3S(d,)/2(L —

The evolution of this wave is obtained by substituting
Eq. (4) into Eq. (3). After using contour integration
[15-17] and computing the Laurent expansions we fin
that

where  mo = 4Z,y,/Bypoh'?), v, =
¢ =X +cotB —ct, ¢' =¢ —2xcotB, and
dy = L — ¢'. Note that onlyn, depends on the local
depthh. Solving dn/d¢’ = 0, the extremumn., for
any locationx, we obtain|ne(x)/H | = F(y, ¢!)/h'/*

ém). Solving for S(¢,,) for LDN (L — ¢,, > 0), we ' [a) 10° )
find that S(¢,,) = So(L — &,,)"*/2. We then note that
=2y [S(m)ddm = X, (=1 nl/2e7 26 and 10 e
obtain the maximum runup of a non-breaking leading-« | 777 « ,;.;;-""
depressioN-wave 107 10* P
P C

R = 3.32,p) 0L, YR (6) : ‘ Lk . :

This relationship referred to as tiwave runup law is *° 20 " * ;3 "

valid when4y cotB8 > 1 for non-breaking LDN waves. FIG. 3. RvsL for 2 = 0001 () and H = 0.1 (—- —).
The limiting wave amplitude for the validity of the above (bR vs # forz = 1 (--),L = 10 (—-—), L = 50 (—), and
runup law can be obtained from the nonlinear shallow wai = 100 (--).
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x10° reaches the toe of the beach [20,21]. The measured
and numerically computed maximum runup values were
6 = 2 m, while the runup law (6) predicts 3.5 m. Our
work further challenges the solitary wave profile para-

@ar 1 digm as the standard model for tsunami runup and sug-
gests that, particularly for near-shore tsunamis, the ground
deformation, the maximum sea-bottom displacement, and

80 0 e the dip angle are of paramount importance in evaluating

|Pmaax /Mmin| the coastal effects.
FIG. 4. Variation of maximum runup with peak-trough ampli- We are gratefu! for the. generous support of the National
tude ratio forH = 0.001, L = 0 — 75, X, = 30. Science Foundation (ClIiff Astill, No. CMS 9201326) and
for several useful discussions with Professor J.B. Keller,
and Dr. Eric L. Geist. We are thankful to Vassili V. Titov
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