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We propose a model for the leading wave of tsunamis to explain why although the coa
manifestation of a tsunami is assumed solitary-wave-like it is most often accompanied by a shor
which recedes first before advancing up the beach, suggesting a leading-depressionN-wave. Far field,
we use the Korteweg–de Vries equation, and find thatN-waves of geophysical scale do not fission ove
transoceanic propagation distances. Near shore, we use shallow-water theory to calculate the ev
and runup of emerging non-breaking waves, and observe that they evolve according to Green’s law
discuss the effects of certain ground deformation parameters and provide one application by mod
the Nicaraguan tsunami of 1 September 1992. [S0031-9007(96)01008-3]

PACS numbers: 91.30.Nw, 92.10.Fj, 92.10.Hm
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Recent earthquakes in Nicaragua (1 September 19
Flores, Indonesia (12 December 1992), Okushiri, Jap
(7 July 1993), East Java, Indonesia (6 June 1994), K
Islands, Russia (4 October 1994), Mindoro, Philippin
(14 November 1994), Manzanillo, Mexico (9 Octobe
1995), and Chimbote, Peru (21 February 1996) have p
duced tsunami waves which caused nearby shoreline
first recede before advancing. These observations h
challenged further the prevailing paradigm for studyin
the coastal effects of tsunamis, i.e., the canonical mo
of a Boussinesq solitary wave profile propagating ov
constant depth and then climbing up a sloping beach
To quantify the persistent field observations and tsuna
folklore, a class of water waves referred to asN-waves
has been proposed [2] for near-shore–generated tsuna
and it was observed that at least for three different types
N-waves, leading-depressionN-waves climb up higher on
sloping beaches than leading-elevationN-waves with the
same leading-wave amplitude. The utility of these run
laws [2] was recently demonstrated by Geist [3] to supp
ment numerical computations for a Cascadia subduct
zone type giant earthquake. However, unresolved qu
tions persist as to the long-distance hydrodynamic sta
ity of these waves. Also, given the uncertainty associa
with inferring the sea-bottom displacement from dista
strong-motion records [4], there is little understanding
to the relative effects of the vertical deformation, of th
deformed area, or of the relative magnitudes of sub
dence and uplift, forcing laboratory modelers to work e
clusively with solitary waves or periodic long waves, an
numerical modelers to routinely introduce arbitrary larg
“amplification” factors to fit their results to runup field
observations.

We will attempt to address these questions here by fi
deriving an initial sea-surface profile for the leading wa
of a tsunami from a specification of the sea-bottom d
formation and by demonstrating that this profile encom
0031-9007y96y77(10)y2141(4)$10.00
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passes as special cases allN-wave-like and solitary-wave
like profiles used in earlier studies [2,3,5,6]. We then w
discuss their stability with respect to fission in far-fie
evolution. We will then derive near-shore evolution re
tionships and we will obtain certain asymptotic estima
of the relative effects of some generation parameters
the runup of non-breaking waves. We therefore propo

hsxd ­ Eg, H sx 2 X2d sech2fgsx 2 udg jt­0 (1)

as a profile for the leading wave of tsunamis. He
g ­

p
3H p0y4, u ­ X1 1 ct, L ­ X1 2 X2, c ­ 1,

and p0 is a steepness parameter.Eg , 1 is a scaling
parameter defining the crest amplitude introduced o
for reference to ensure that the waveheight (1) isH ;
Eg can be chosen to fit desired field-inferred surfa
profiles. H and the wavelength of the profile inferre
from (1) are vertical and horizontal measures of
ground deformation, respectively. When the crest
trough heights are equal, we will refer to theseN-waves
as isosceles [2]; the latter can be described by (1)
setting L ­ 0. As suggested by Carrier [6], multilob
waves similar to (1) can be described by combinati
of Gaussian profiles; we prefer (1) because it allows
direct derivation of asymptotic results. Here, for brevi
we will refer to all multilobe tsunamis asN-waves. We
will also use the qualifier non-breaking to refer to wav
which do not break in the specific evolution problem, a
we note that the same leading wave which evolves to
maximum penetration without breaking on a steep be
may break on a gentle beach; in the steepness rang
geophysical interest the leading waves of most tsuna
do not break on most natural beaches, but they may b
when advancing up rivers, during overland flow, or wh
focused on headlands.

To motivate the generation ofN-waves and our particu
lar choice of the initial profile, consider the linearize
shallow-water equation, long believed as the physic
© 1996 The American Physical Society 2141
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realistic generation approximation [7,8], i.e.,

htt 2 hxx ­ h0tt , h0 ­ 2
2EgH

g
tanhfgsx 2 udg ,

(2)

where h0sx, td is the ground motion, measured from
horizontal datum corresponding to a sudden uplift a
or subsidence of the sea bottom such as would occur
normal thrust fault. In nature, the ground deformat
would stop almost immediately after the earthquake
the deformation would not propagate as the definition
h0 suggests. Nonetheless, since our objective is onl
determine an initial profile valid only for short times, t
above ground deformation is adequate. It can be ver
directly that (1) is an exact solution of (2). Other grou
motions [7,8] would also produce multilobe waves, b
not of the same mathematical form; the advantage of
ground deformationh0 in (2) is that it allows for the
explicit evaluation of the near-field and far-field effec
in terms of simple and intuitive asymptotic formulae.

To appreciate the range of surface profiles that (1)
scribes, Fig. 1(a) compares a classical Boussinesq soli
wave profile with the surface profile obtained by (
and, for reference, with an isosceles leading-eleva
(LEN) wave with the same leading wave steepnessp0 ­ 1
and a Gaussian profile [6]. Figure 1(b) shows leadi
depression (LDN) profiles generated by Eq. (1) for a fix
H and different values ofL and, for reference, an isosc
les LDN and a combination of Gaussian profiles [6].

As an initial condition we will use theN-wave of (1), and
then we will solve the Korteweg–de Vries (KdV) equati
to calculate transoceanic propagation over constant d
Once the wave arrives near shore, we will use the shal
water wave equations [1]; it is well established that
the non-breaking waves we are considering here dispe
effects do not have sufficient time to manifest over
relatively short propagation distances on a sloping be
We will show that both LDNs and LENs evolve accordi
to a relationship equivalent to Greens’ law [9,10]. Fina
we will provide results for the maximum runup and w

FIG. 1. (a) Comparison of Boussinesq solitary profile (2 ? 2),
N-wave solitary profile (—)sL ­ 30, Eg ­ 0.032d, Gaussian
profile s22d [6], and leading elevation isoscelesN-wave s??d.
(b) A family of leading-depression waves generated byN-wave
(—) for L ­ 8, 4, 2, 1 and p0 ­ 1, combination of Gaussia
profiles s22d [6] and leading-depression isoscelesN-wave s??d
generated withL ­ 0, p0 ­ 1.
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will discuss the relative importance of certain generat
parameters.

Propagation distance for solitary wave evolution.—
Since we are most interested in the effective propaga
distance over which the leading solitary waves emer
we propagated LDN waves by solving the KdV equ
tion numerically [11]. No distinct solitary waves emerg
when LDN waves with an initial height-to-depth ratio o
0.01 (much larger amplitude than a possible transoce
tsunami) are propagated through twice typical transoce
distances of about 4000 depths [see Fig. 2(b)]. LD
waves of the same family, but with geophysically real
tic initial height-to-depth ratio of 0.001 were practical
unchanged even after propagating over 2000 depths,
cating the hydrodynamic stability ofN-waves and perhap
explaining for the first time anecdotal reports of LD
waves striking Hawaii after the Chilean 1960 event.

Runup and coastal evolution of N waves.—We will
now solve the propagation problem described by
linearized shallow-water wave equations (SW),htt 2

shxhdx ­ 0 normalized with the offshore depthd as
the characteristic length scale, and

p
gyd as the time

scale, hsxd ­ xy cotb, when x # cotb and hsxd ­ 1
otherwise. It is widely believed that these equatio
describe the essential physics of the coastal tsun
evolution problem well [1]. When the incident wav
from infinity is of the form

R`
2` Fsvdeivt dv, then the

transmitted wave to the beach is given by

hsx, td ­ 2
Z `

2`

FsvdJ0s2v
p

x cotb de2ivscotb1ctd

J0s2v cotbd 2 iJ1s2v cotbd
dv,

(3)

where Fsvd is the transform function of the incomin
wave. The amplification factor (kernel) in the abo
equation was originally obtained by Keller and Kell
[12] and can be used directly to calculate the evolut
of the wave at any location along the beach; wh
x ­ 0, Rstd ­ hs0, td and its maximum valueR is the
maximum runup, i.e., the elevation above the shorelin
the point of maximum penetration of the wave. Carr
[8] and Synolakis [5] have proved the runup invarian

FIG. 2. (a) LDN N-wave generated by Eq. (1) for (X1 ­
190, X2 ­ 200, H ­ 1.E 2 03) propagated by KdV to 2000
depths. (b) LDN N-wave generated by Eq. (1) for (X1 ­
98, X2 ­ 100, H ­ 1.E 2 02) propagated by KdV to 4000
depths.
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between linear and nonlinear theory, and it has b
repeatedly shown [13,14] that linear theory describes
the evolution of the maximum height of long wav
which offshore had a Boussinesq solitary-wave pro
Therefore, without loss of generality, we will use line
theory calculate the evolution of the waveheight and
maximum runup of non-breaking waves.

The transformFsvd of (1) is obtained through contou
integration [2] and is given by,

F ­
2Eg

3p0
cosh

√
pv

2g

!

3

(
Lv 2 i

"
1 2

pv

2g
coth

√
pv

2g

!#)
eivX1 (4)

The evolution of this wave is obtained by substituti
Eq. (4) into Eq. (3). After using contour integratio
[15–17] and computing the Laurent expansions we
that

hsx, td ­ h0

∑
gd0 sech2sgf0d 1

1
2

e2gf0

sechsgf0d
∏

,

(5)

where h0 ­ 4Eggsys3p
p0 h1y4d, gs ­

p
3H y4,

f ­ X1 1 cotb 2 ct, f0 ­ f 2 2
p

x cotb, and
d0 ­ L 2 f0. Note that onlyh0 depends on the loca
depth h. Solving ≠hy≠f0 ­ 0, the extremumhext for
any locationx, we obtainjhextsxdyH j ­ Fsg, f0

mdyh1y4

wheref0
m is the phase corresponding tohext. Therefore

for any given initial LEN or LDN wave,hext is indepen-
dent of L and depends only on the local depthh on the
sloping beach.N-waves are therefore seen to evolve
from the shoreline in a manner similar to what is refer
to as Greens’ law [9,10,13] whether a leading-depres
or leading-elevation wave.

An approximate absolute upper bound for the run
of a non-breaking LDN was calculated earlier [2] us
hs0, td ­ R0

P`
n­1s21dn11n1y2h2ngsL 2 fd 1

1
2 j 3

e22ngf, where R0 ­
16
3 Egg

3y2
s s2p cotbd1y2yp

1y4
0 .

Here, we compute the maximum runup of anN-
wave (1) explicitly. We first note that the phasefm

at the extremum runup satisfies2 4g

3 sL 2 fmd ­P`
n­1s21dn11n3y2e22ngfm yf

P`
n­1s21dn11n5y2e22ngfmg.

DenotingSsfmd ­
P`

n­1s21dn11n3y2e22ngfm , we rewrite
the equation forfm as dSsfmdydfm ­ 3Ssfmdy2sL 2

fmd. Solving for Ssfmd for LDN sL 2 fm . 0d, we
find that Ssfmd ­ S0sL 2 fmd23y2. We then note tha
22g

R
Ssfmd dfm ­

P`
n­1s21dn11n1y2e22ngfm and

obtain the maximum runup of a non-breaking leadi
depressionN-wave

R ­ 3.3Egp
1y4
0 QsL, gdRsol . (6)

This relationship referred to as theN-wave runup law is
valid when4g cotb ¿ 1 for non-breaking LDN waves
The limiting wave amplitude for the validity of the abov
runup law can be obtained from the nonlinear shallow
n
ll
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ter theory using Carrier and Greenspan hodographic tr
formation [18] and is the same amplitude as outlined in
for p0 ­ 1. QsL, gd has to be determined numericall
but to the same order of approximation as (6) and ov
wide range,Q varies linearly withL. We note thatRsol is
the runup of a Boussinesq solitary wave of the sameH ,
and that (6) is asymptotically close to runup law for so
tary waves given in [5]. This is reassuring; as Fig. 1
shows in the asymptotic limit LEN profiles describe so
tary waves, for example whenL ­ 30, Eg ­ 0.032, Q ø
10, andp0 ­ 1; then (6) is almost identical to the runu
law for solitary waves.

As examples, Figs. 3(a) and 3(b) show the variation
maximum runup withL andH , respectively. Clearly in
the region of physical interest the runup increases alm
linearly with H . It is shown elsewhere [2] that LDN
runup higher than LENs and solitary waves with t
same leading wave height. Figure 4 shows the maxim
runup variation with the crest-to-trough heights ratio; t
parameter is uniquely determined from (1) throughH , L,
andp0. Notice that the maximum runup decreases fr
the isoscelesN-wave limit to the solitary wave limit as th
crest-to-trough ratio increases, consistent with the ea
observation that LDNs and LENs climb further than t
equivalent solitary waves of the sameH and steepness.

We have presented a model for the leading wave
tsunamis, encompassing as special cases waves si
to the Boussinesq solitary wave profiles,N-waves, and
the certain combinations of Gaussian profiles [6]. T
function can be fully described by specifying the cr
amplitudeH , the steepness parameterp0 and L, and it
includes the individual classes ofN-waves outlined in [2].

Our conjecture is that tsunamigenic faulting genera
multilobe waves, and that the leading wave of the tsun
is important for estimating coastal effects, at least alo
open coastlines. Most physically realistic tsunamis re
their overall N-wave character even after transocea
propagation. Near-shore–generated tsunamis do not
sufficient propagation distance to fully evolve, and th
near-shore manifestation is almost invariablyN-wave-
like. We found that the maximum runup decreases as
ratio of trough height-to-crest height decreases. He

FIG. 3. R vs L for H ­ 0.001 s??d and H ­ 0.1 s2 ? 2d.
(b) R vs H for L ­ 1 s??d, L ­ 10 s2 ? 2d, L ­ 50 (—), and
L ­ 100 s??d.
2143
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IG. 4. Variation of maximum runup with peak-trough amp
ude ratio forH ­ 0.001, L ­ 0 2 75, X0 ­ 30.

e conjecture that the dip angle [3,4] is important f
unup calculations.

The two-dimensional character of the generation reg
r of the canonical solitary wave model notwithstan

ng, limits the application of our proposed model. W
o note, however, that two-dimensional SW propagat
odels are still used extensively by oceanographers

alculating wave evolution and runup of wind-generat
well [19], a wave motion presumably much shorter th
sunamis. Nonetheless, we are reluctant to draw ex
ive physical conclusions other than claim that our i
ial profile provides a conceptual framework for analys
nd for explaining certain field observations qualitative
r even certain local numerical calculations as dem
trated in [3]. Yet we did perform simple calculation
sing our model in one of the recent tsunami cat

rophes, where the coastal topography allowed it. O
egment of the pacific coastline of Nicaragua is 73 k
ong with almost uniform plane beach slopescotb ­
3.18d, fronted by a continental shelf. This simplic

ty has allowed the use of two-dimensional numeric
horeline models coupled with three-dimensional offsh
ropagation models to calculate the runup and inun

ion. Figure 5 shows a comparison between the
erically generated surface profile for the Nicaragu

sunami with that of Eq. (1) at the time when the wa

IG. 5. Comparison of Nicaraguan tsunami profile at the
f the beach usingN-wave [Eq. (1)] withL ­ 9, Eg ­ 0.4823,
ndgs ­ 0.015.
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reaches the toe of the beach [20,21]. The measu
and numerically computed maximum runup values w
6 6 2 m, while the runup law (6) predicts 3.5 m. Ou
work further challenges the solitary wave profile pa
digm as the standard model for tsunami runup and s
gests that, particularly for near-shore tsunamis, the gro
deformation, the maximum sea-bottom displacement,
the dip angle are of paramount importance in evaluat
the coastal effects.
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