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Although it is known that any two nonorthogonal pure states can constitute a secure qua
cryptosystem, the generalization of this scheme to the use of two mixed states is not trivial.
shown here that even if a condition corresponding to the nonorthogonality in the pure-state ca
satisfied, the mixed-state cryptosystem is still vulnerable to attack by an eavesdropper. A necessa
sufficient condition for the secure communication is derived. It states that the two mixed states
be connected by a rotation operator with a nonorthogonal angle. [S0031-9007(96)01116-7]
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A typical aim of cryptography is to enable two partie
traditionally called Alice and Bob, to exchange messag
without fearing that the information will leak to any othe
party. The only method known for this uses the so-cal
one-time pad, for which the coding and the decoding
quire a sequence of random bits (the “key”) whose len
is equal to that of the messages. The security of the c
munication depends on the secrecy of the key shared
the two parties, but none of the classical methods for d
tributing the key on a public channel has been proven
be secure. The methods are trusted simply because
computation required for breaking them would take t
much time. Quantum cryptography, on the other hand,
fers schemes in which the intervention of an eavesdrop
traditionally called Eve, inevitably introduces transmissi
errors, thereby revealing her presence to the legitimate
ties. These schemes are secure as long as the laws of q
tum mechanics are not violated.

The first scheme for quantum cryptography, presen
by Bennett and Brassard [1], uses four states of sin
photons polarized along different directions, and vario
other types of quantum cryptosystems have since been
gested. There are proposed schemes utilizing Einst
Podolsky-Rosen correlations [2,3], one based on t
nonorthogonal states [4], a variant of the four-sta
scheme [5], and one based on orthogonal states [6]. S
have been demonstrated experimentally [7–10].

In all of these schemes the states prepared by A
have been considered as pure states. In practical s
tions, however, the preparation of the states may not
precisely controlled by Alice, and some inherent nois
may remain in the carriers of the bit information. In the
cases the states used in the transmissions are mixed s
and should be treated by density operators. It will a
be of theoretical interest to find general requirements
the quantum states on which a secure key-distribut
scheme can be built. In a first step to finding the
requirements, in this Letter we generalize the two-st
scheme [4], which is conceptually the simplest of the e
isting schemes, to the use of two mixed states. In
original scheme [4], Alice sends Bob a random bina
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sequence made of two statesju0l andju1l representing the
bits 0 and 1, respectively, and Bob subjects each state
measurement randomly chosen fromP0 ; 1 2 ju1l ku1j
or P1 ; 1 2 ju0l ku0j. Then Bob publicly tells Alice
whether the result of each measurement was positiv
negative. From the cases with positive results they
construct two copies of random bits that should be ide
cal in the absence of eavesdropping. To certify this, th
sacrifice some of the bits and compare them in a pu
channel. Any errors, if detected, indicate the presenc
eavesdropping. It was proved that Eve cannot obtain
bit information without fear of introducing errors whe
ju0l and ju1l are nonorthogonal. Generalization of th
scheme to two mixed states appears at first sight to
trivial, and one might think that any two “nonorthogona
mixed states could be used for the secure transmissi
We will see, however, that this is not the case beca
Eve can choose among a greater variety of interven
strategies than are available to her in the pure-state c
As a result, additional conditions must be met if the k
distribution is to be secure.

Suppose that Alice chooses two states with den
operatorsrs0d and rs1d, respectively, representing the b
values “0” and “1.” In the following, we determine th
requirements that must be met by these states if Alice i
transmit the bit values to Bob securely. First we repres
rskd sk ­ 0, 1d in a diagonalized form,

rskd ­
nskdX
i­1

p
skd
i jC

skd
i l kCskd

i j , (1)

where the stateshjCskd
i lj with the same indexk are

mutually orthogonal, that is,kCskd
i jC

skd
j l ­ dij for k ­

0, 1. We assume that coefficientsp
skd
i are nonzero so

that nskd represents the dimension of the Hilbert subsp
H skd spanned byrskd.

For each transmission event, Alice chooses a bit va
0 or 1 randomly and sends Bob the corresponding st
rs0d or rs1d. Bob then performs a measurement on t
received state in order to determine which of the t
states the received one is. We limit ourselves here
© 1996 The American Physical Society 2137
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the ideal situation where Bob can determine whethe
not the measurement was successful, and in the succe
event Bob obtains the bit value chosen by Alice witho
errors if there is no intervention. One simple exam
of such measurement is the one based on the follow
projection operatorsPskd sk ­ 0, 1d,

P
skd

­ 1 2 Pskd ; 1 2

nskdX
i­1

jC
skd
i l kCskd

i j , (2)

where Ps0d and Ps1d are, respectively, the projectio
operators to the subspacesH s0d andH s1d. Bob subjects
the received state to one of the above projections cho
randomly. WhenP

s0d is chosen, the outcome for th
state rs0d is always negative becausePs0d

rs0d ­ 0, and
the staters1d yields positive results with the probabilit
ps1d ­ Trh P

s0d
rs1dj. Similarly, onlyrs0d may survive the

projection P
s1d, and the probabilityps0d is Tr h P

s1d
rs0dj.

Thus Bob is sure that the measurement failed when
outcome was negative, and in the other cases he is
that he obtained the correct value. The only requirem
for this scheme is that the probabilitiesps0d and ps1d are
nonzero. This requirement can be otherwise stated as

N . ns0d and N . ns1d, (3)

whereN is the dimension of the whole relevant Hilbe
spaceH ; H s0d 1 H s1d.

Now we consider the possible strategies of the ea
dropper Eve. A simple strategy is to conduct a meas
ment similar to the above example of Bob’s measurem
When the outcome is negative, Eve tries to send B
a fake stater that satisfiesPs0d

r ­ P
s1d

r ­ 0, so that
Alice and Bob cannot detect an error in their transm
sions. Such attack must be prevented by assuring tha
fake state does not exist. This requires

H s0d > H s1d ­ h0j , (4)

or, equivalently,

N ­ ns0d 1 ns1d. (5)

Note that under this condition, the inequalities (3) a
always satisfied.

The absence of the fake state limits Eve’s strategy
the measurements that keeprs0d and rs1d in H s0d and
H s1d, respectively. Her second strategy will thus
to project the state onto a subspaceHM that satisfies
HM , H s0d and HM ' H s1d. By this measurement
Eve would detect some of the bits with value 0 witho
introducing any error in the transmission. Thus, for
transmission to be secure, Alice and Bob must elimin
the presence ofHM with a nonzero dimension. Thi
requirement is written as follows:

H s0d > H s1d' ­ h0j, (6)

where H s1d' is the orthogonal complement of th
subspaceH s1d. From the symmetry of the argume
betweenH s0d and H s1d, H s1d > H s0d' ­ h0j must
also be satisfied, but this condition is equivalent to Eq.
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under condition (4). It is not difficult to show that unde
conditions (4) and (6),H s0d and H s1d have the same
dimension:ns0d ­ ns1d ; n.

In the case ofn ­ 1, the states sent by Alice ar
the two pure states,jC

s0d
1 l and jC

s1d
1 l, and condition

(6) is equivalent to the nonorthogonality conditio
kCs0d

1 jC
s1d
1 l fi 0. Thus condition (6) may be considere

a “nonorthogonality” condition generalized to the case
two mixed states.

Under conditions (4) and (6), Eve cannot make proj
tions that exclude one of the two possible states. Us
a third strategy, however, she can still perform a no
trivial projection and may gain some information with
out introducing error in the transmission. To see th
define the transformationT s0d on the subspaceH s0d

by T s0d ; Ps0dPs1d. It is easy to show thatT s0d is an
Hermitian operator. Therefore, there exists a set of co
plete orthonormal baseshjfs0d

i lji­1,...,n for H s0d that sat-
isfy

T s0djf
s0d
i l ­ li jf

s0d
i l , (7)

whereli is real and

kfs0d
i jf

s0d
j l ­ dij . (8)

The operatorPs1d is the projection onto the subspac
H s1d, and condition (6) ensures thatjf

s0d
i l ” H s1d', so

that Ps1djf
s0d
i l fi 0. By taking the norm of this projected

state, we obtain

kfs0d
i jPs1djf

s0d
i l ­ kfs0d

i jPs0dPs1djf
s0d
i l ­ li . 0 , (9)

where we used Eq. (7) and the fact thatPs0d is the
projection ontoH s0d. Now we can define a set of norma
operatorshjfs1d

i lji­1,...,n on H s1d by

jf
s1d
i l ;

Ps1djf
s0d
i l

p
li

. (10)

As for the orthogonality in this set, we have

kfs1d
i jf

s1d
j l ­

1
p

li
kfs0d

i jPs1djf
s1d
j l ­

1
p

li
kfs0d

i jf
s1d
j l

­
1

p
li

kfs0d
i jPs0djf

s1d
j l

­
1p

lilj
kfs0d

i jPs0dPs1djf
s0d
j l

­

s
lj

li
kfs0d

i jf
s0d
j l ­ dij . (11)

Therefore,hjfs1d
i lj constitutes a complete orthonormal b

sis forH s1d. Equation (11) also shows the orthogonal
between the bases in the different subspaces,

kfs0d
i jf

s1d
j l ­

p
li dij . (12)

Consider the Hilbert subspaceHi that is spanned by the
two state vectorsjf

s0d
i l andjf

s1d
i l. The dimension of this

subspace is 2 because condition (4) ensures thatjf
s0d
i l
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and jf
s1d
i l are linearly independent. From the relatio

(8), (11), and (12) we see that the subspacesHi si ­
1, . . . , nd are mutually orthogonal. Thus, we can consid
a measurement onH made of the projections,Pi, onto
the subspacesHi. When Eve makes this measuremen
cannot be detected by Bob because allPi commute with
P

s0d andP
s1d.

Now Alice and Bob have to make this kind of atta
futile. This is done by choosing their states such t
the probability of yielding each resulti in the above
measurement is the same for both states,

kfs0d
i jrs0djf

s0d
i l ­ kfs1d

i jrs1djf
s1d
i l for i ­ 1, . . . , n .

(13)

We need to consider the cases in which some of
eigenvaluesli in (7) are degenerate. In these cas
Eve has some freedom in choosing the base statesjf

s0d
i l

for the degenerate eigenvalues [jf
s1d
i l are automatically

determined through (10)]. The relation (13) should
satisfied for all possible choices for the base statesjf

s0d
i l.

Alternatively, we can state the above requirement
follows: For a possible choice of the basishjfs0d

i lj,
kfs0d

i jrs0djf
s0d
j l ­ kfs1d

i jrs1djf
s1d
j l (14)

holds for all pairs ofhi, jj that satisfyli ­ lj.
So far, Eve’s strategy has been confined to the dec

position to the orthogonal subspaces. Using a fourth s
egy, however, she can implement a more elaborate at
which is described by an initial state of Eve’s measu
ment apparatusjul on the Hilbert spaceHE and a unitary
operatorU in the product space ofH andHE. Suppose
that Eve has conducted the measurement by the proje
hPij described before and has happened to find the re
was for a particular value of the suffixi. The postmea-
surement state isjf

s0d
i l or jf

s1d
i l, depending on the state

that Alice has chosen. At this stage, Eve subjects
state together with her measurement apparatusjul to the
interactionUji that changes the states as follows:

Ujijf
s0d
i l jul ­ jf

s0d
j l jus0dl , (15)

Ujijf
s1d
i l jul ­ jf

s1d
j l jus1dl , (16)

where jus0dl and jus1dl are normalized states of Eve
apparatus, and the choice of the suffixj is up to Eve. To
see the condition for the existence of the unitary oper
Uij , consider the normalized state

j f
s0d
i l ;

1
p

1 2 li
sjfs1d

i l 2
p

li jf
s0d
i ld , (17)

which is, from Eq. (12), orthogonal tojf
s0d
i l. According

to Eqs. (15) and (16),Uij should operate on this state
follows:

Uijjf
s0d
i ljul ­

1
p

1 2 li
sjfs1d

j l jus1dl

2
p

li jf
s0d
j l jus0dld . (18)

When kus0djus1dl ­
p

liylj , the right-hand side of this
s
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equation is normalized and orthogonal to the right-ha
side of Eq. (15), so that the unitary operatorUij exists.
This measurement introduces no error in the transmiss
and Eve is able to eavesdrop over some of the transmi
bits if she can choose the suffixj with lj . li, because
in this casers0d and rs1d leave her apparatus in differen
states. Thus, for secure transmissions,

l1 ­ l2 ­ · · · ­ ln ; l (19)

must be satisfied. Under this condition, condition (14)
rewritten as

kfs0d
i jrs0djf

s0d
j l ­ kfs1d

i jrs1djf
s1d
j l for any i, j . (20)

Next we will prove that the relations (4), (6), (19), an
(20) constitute a sufficient condition for the secure tran
mission. That is, we prove that these relations determ
a condition under which any of Eve’s measurement t
does not introduce an error in the transmission gives
information on the values of the transmitted bits. Su
pose that Eve prepares an initial state of her measurem
apparatusjul on the Hilbert spaceHE and subjects it,
together with the staterskd sent by Alice, to a unitary op-
eratorU in the product space ofH andHE. The state
r̃skd after this interaction is

r̃skd ­ Ufrskd ≠ jul kujgUy. (21)

To keep transmission errors from being introduced,r̃skd

traced overHE must be on the subspaceH skd. Thus we
can write

Usjfskd
i l juld ­

nX
l­1

q
a

skd
il jf

skd
l l ju

skd
il l , (22)

whereju
skd
il l are state vectors onHE and wherea

skd
il are

the positive (or zero) real parameters introduced so t
ju

skd
il l are normalized askuskd

il ju
skd
il l ­ 1. By taking the

inner product of (22) and its conjugate and using (8) a
(11), we get

nX
l­1

a
skd
il ­ 1 . (23)

Similarly, taking the inner product between the differe
values of the indexk and using (12), we obtain

nX
l­1

s
ll

li

q
a

s0d
il a

s1d
il kus0d

il ju
s1d
il l ­

nX
l­1

q
a

s0d
il a

s1d
il kus0d

il ju
s1d
il l

­ 1 , (24)

where (19) was used. For the middle term of (24), w
have the following inequalities under the relation (23):É

nX
l­1

q
a

s0d
il a

s1d
il kus0d

il ju
s1d
il l

É
#

nX
l­1

q
a

s0d
il a

s1d
il jkus0d

il ju
s1d
il lj

#

nX
l­1

q
a

s0d
il a

s1d
il # 1 . (25)

The three equalities in this expression must hold if (24)
to be satisfied. Thus we obtain

a
s0d
il ­ a

s1d
il and ju

s0d
il l ­ ju

s1d
il l . (26)

The state left to Eve,r
skd
E , is obtained by tracing̃rskd in

(21) overH and is written as follows by using (22):
2139
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r
skd
E ­ TrH r̃skd ­ TrH

24X
i,j

kfskd
i jrskdjf

skd
j lUfjfskd

i l kfskd
j j ≠ jul kujgUy

35
­ TrH

24 X
i,j,l,m

kfskd
i jrskdjf

skd
j l

q
a

skd
il a

skd
jm fjfskd

l l kfskd
m j ≠ ju

skd
il l kuskd

jmjg

35
­

X
i,j,l

kfskd
i jrskdjf

skd
j l

r
a

skd
il a

skd
jl ju

skd
il l kuskd

jl j . (27)
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Using Eqs. (20) and (26) in this expression results
r

s0d
E ­ r

s1d
E , which means that Eve is ignorant of which

the states Alice chose to send. Thus we conclude tha
transmission is secure if and only if conditions (4), (
(19), and (20) are satisfied.

The requirement for the security derived above can
stated in a quite simple form by using a unitary opera
representing a multiple rotation with a nonorthogo
angle. Let us define a rotationRisud in the two-
dimensional Hilbert spaceHi as follows:

Risud ; expfusj f
s0d
i l kfs0d

i j 2 jf
s0d
i l k f

s0d
i jdg , (28)

where the statej f
s0d
i l is defined in (17). It is not difficult

to show thatRisuidjf
s0d
i l ­ jf

s1d
i l, whereui is in s0, py2d

and satisfies cosui ­
p

li . We can define a rotatio
Rsud in the 2n-dimensional Hilbert spaceH by a direct
product ofRisud,

Rsud ;
nY

i­1

Risud . (29)

Then it is obvious from Eqs. (19) and (20) thatrs0d and
rs1d are connected with the following relation:

rs1d ­ Rsudrs0dRysud , (30)

where cosu ­
p

l. The conditions (4) and (6) are no
restated thatu should not be a multiple ofpy2. Thus, the
two states used as the carrier must be identical excep
the rotation by a nonorthogonal angleu.

Expression (30) also helps us imagine a practical
plementation of the scheme presented here. Assume
Alice has a noisy source which produces an initial sta
and the state is not pure but is in a knownn-dimensional
Hilbert space. She subjects this state to an apparatus
realizes a rotation in the form of Eq. (29). The data bits
encoded as two different settings of the apparatus, tha
as different values of the angle,u0 andu1 (the difference
should not be a multiple ofpy2). Bob injects received
states into his apparatus having the same interactio
Alice with a random choice of the two angle2u0 and2u1,
and he performs the projection measurement that sepa
off the n-dimensional Hilbert space.
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In the whole discussion above, it is assumed that
transmission channel does not alter the states. The s
will be different if the noise introduced by the chann
is considered. We have also restricted the verification
the secrecy to the original scheme [4] of error detectio
in deriving the necessary conditions above. If Bob
allowed to choose measurements other thanP

s0d andP
s1d

at his disposal, he may check the statistics of the res
and infer the presence of eavesdropping. If Alice and B
are satisfied with this weaker test, the necessary condi
for the states may be weaker, but details are beyond
scope of this Letter. One apparent necessary (but
sufficient) condition is that the two density operators a
noncommuting, since Eve can make copies of them if th
commute [11].

In summary, we derived a necessary and sufficient c
dition that a quantum cryptosystem with two mixed stat
must meet in order to establish secure key distribution.
properly generalized condition for the nonorthogonality
the pure-state case was derived and was shown, by
scribing successful strategies for the eavesdropper, to
insufficient for ensuring security. For the transmissio
to be secure the structure of the two mixed states mus
identical, in the sense that the states are connected b
rotation operator.
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