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Quantum Cryptography Based on Two Mixed States
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Although it is known that any two nonorthogonal pure states can constitute a secure quantum
cryptosystem, the generalization of this scheme to the use of two mixed states is not trivial. It is
shown here that even if a condition corresponding to the nonorthogonality in the pure-state case is
satisfied, the mixed-state cryptosystem is still vulnerable to attack by an eavesdropper. A necessary and
sufficient condition for the secure communication is derived. It states that the two mixed states must
be connected by a rotation operator with a nonorthogonal angle. [S0031-9007(96)01116-7]

PACS numbers: 89.70.+c, 03.65.—w

A typical aim of cryptography is to enable two parties, sequence made of two stafeg) and|u,) representing the
traditionally called Alice and Bob, to exchange messagesits 0 and 1, respectively, and Bob subjects each state to a
without fearing that the information will leak to any other measurement randomly chosen fratp = 1 — |u;) (uy|
party. The only method known for this uses the so-callecbr Py = 1 — |ug){up|. Then Bob publicly tells Alice
one-time pad, for which the coding and the decoding rewhether the result of each measurement was positive or
quire a sequence of random bits (the “key”) whose lengtmegative. From the cases with positive results they can
is equal to that of the messages. The security of the conconstruct two copies of random bits that should be identi-
munication depends on the secrecy of the key shared bsal in the absence of eavesdropping. To certify this, they
the two parties, but none of the classical methods for dissacrifice some of the bits and compare them in a public
tributing the key on a public channel has been proven ta@hannel. Any errors, if detected, indicate the presence of
be secure. The methods are trusted simply because tl@vesdropping. It was proved that Eve cannot obtain the
computation required for breaking them would take toobit information without fear of introducing errors when
much time. Quantum cryptography, on the other hand, oftu,) and |«;) are nonorthogonal. Generalization of this
fers schemes in which the intervention of an eavesdroppescheme to two mixed states appears at first sight to be
traditionally called Eve, inevitably introduces transmissiontrivial, and one might think that any two “nonorthogonal”
errors, thereby revealing her presence to the legitimate pamixed states could be used for the secure transmissions.
ties. These schemes are secure as long as the laws of qualde will see, however, that this is not the case because
tum mechanics are not violated. Eve can choose among a greater variety of intervention

The first scheme for quantum cryptography, presentedtrategies than are available to her in the pure-state case.
by Bennett and Brassard [1], uses four states of singlés a result, additional conditions must be met if the key
photons polarized along different directions, and variouglistribution is to be secure.
other types of quantum cryptosystems have since been sug-Suppose that Alice chooses two states with density
gested. There are proposed schemes utilizing Einsteiroperatorsp® and p(1), respectively, representing the bit
Podolsky-Rosen correlations [2,3], one based on twaalues “0” and “1.” In the following, we determine the
nonorthogonal states [4], a variant of the four-staterequirements that must be met by these states if Alice is to
scheme [5], and one based on orthogonal states [6]. Sonteansmit the bit values to Bob securely. First we represent

have been demonstrated experimentally [7—10]. p® (k = 0,1) in a diagonalized form,
In all of these schemes the states prepared by Alice )
i i itua- (k) 4, (K) (k)
have been considered as pure states. In practical situa ph = Zpi |y (i) 1)
tions, however, the preparation of the states may not be -1

precisely controlled by Alice, and some inherent noises (k) . .
may remain in the carriers of the bit information. IntheseWhere the stateg|W¥; )} V\_”th the skame indext are
cases the states used in the transmissions are mixed staf@gtually orthogonal, that isgW;'|¥; ) = 6;; for k =

and should be treated by density operators. It will als®,1. We assume that coefficienpsfk) are nonzero so
be of theoretical interest to find general requirements fothatn®) represents the dimension of the Hilbert subspace
the quantum states on which a secure key-distributio{ ®) spanned by ®.

scheme can be built. In a first step to finding these For each transmission event, Alice chooses a bit value
requirements, in this Letter we generalize the two-stat® or 1 randomly and sends Bob the corresponding state,
scheme [4], which is conceptually the simplest of the exp© or p(V). Bob then performs a measurement on the
isting schemes, to the use of two mixed states. In theeceived state in order to determine which of the two
original scheme [4], Alice sends Bob a random binarystates the received one is. We limit ourselves here to
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the ideal situation where Bob can determine whether ounder condition (4). It is not difficult to show that under
not the measurement was successful, and in the successéainditions (4) and (6),H© and H " have the same

event Bob obtains the bit value chosen by Alice withoutdimension:n® = n(V) = p.

errors if there is no intervention. One simple example In the case ofn = 1, the states sent by Alice are
of such measurement is the one based on the followinghe two pure states|¥'\”) and |¥\"), and condition

projection operator§(k) (k =0,1), (6)( )is e)quivalent to the nonorthogonality condition
n® 0 ( - .
—® B © e (k) (¥,”|W¥,") # 0. Thus condition (6) may be considered
PY=1-pPW=1->1")¥"l, (2 a*nonorthogonality” condition generalized to the case of
i=1

two mixed states.

where P© and PV are, respectively, the projection  ynder conditions (4) and (6), Eve cannot make projec-
operators to the subspacg$” and H V). Bob subjects  tions that exclude one of the two possible states. Using
the received state to one of the above projections chose{ third strategy, however, she can still perform a non-
randomly. WhenP'"” is chosen, the outcome for the trivial projection and may gain some information with-
state p© is always negative becau@o)p(°> =0, and out introducing error in the transmission. To see this,
the statep? yields positive results with the probability define the transformatiom® on the subspacef ©

[9(1) - Tr{ﬁ(o)p(l)} S|m||ar|y’ Onlyp(o) may survive the by T(O) = P(O)P(l) It is easy to show thaT(O) is an
projectionF(l), and the probabilityp© is Tr{F(l)p(O)}. Hermitian operator. Therefore, there exists a set of com-

. . (0
Thus Bob is sure that the measurement failed when thplete orthonormal baseg; )}i-1,... for 3£ that sat-
outcome was negative, and in the other cases he is sulgly
that he obtained the correct value. The only requirement 7016 = 1,16 7
. . g 0) (l) ¢l 1 ¢l b ( )
for this scheme is that the probabilitigg” and p are )
nonzero. This requirement can be otherwise stated as Where4; is real and

0), , (0)
N>n? and N >, (3) (i lpj "y = 8. (8)
where N is the dimension of the whole relevant Hilbert The operatorP() is the projection Oglto the subspace
spaceH = HO + HO. M, and condition (6) ensures that.") ¢ H D', so

dropper Eve. A simple strategy is to conduct a measuresiate, we obtain

ment similar to the above example of Bob’s measurement. 0 0 0 0
When the outcome is negative, Eve tries to send Bob <¢§ )|P(1)|¢§ )> - <¢§ )|P(0)P(1)|¢5 )> =X >0, (9
a fake statep that satisfiesP”p = P"p = 0, so that where we used Eq. (7) and the fact tha® is the
Alice and Bob cannot detect an error in their transmis-projection onta{ ©'. Now we can define a set of normal
sions. Such attack must be prevented by assuring that ﬂ@ﬁ)eratorgw,-(l)}},-:l ’’’’’ » onH W py
fake state does not exist. This requires o P(1)|¢(0)>

1

HO A 4D = {0}, (4) ;) = T (20)

As for the orthogonality in this set, we have
N =n? + oW, 5
sl — L s p0gl — L 050
Note that under this condition, the inequalities (3) are ‘"¢ '*J A ! J JA;
always satisfied.
The absence of the fake state limits Eve’s strategy to

or, equivalently,

1 0 1)
(6"1PO gy

the measurements that keg® and p" in H © and VA

HD, respectively. Her second strategy will thus be 1 o o

to project the state onto a subspaféy that satisfies = W<¢i PO PWp;”)
L]

Hy C HO and Hy L HD. By this measurement,
Eve would detect some of the bits with value 0 without . ﬁ< (o>| (0)> _ 5. 11
introducing any error in the transmission. Thus, for the By bi 167 = 0ij.- (11)

transmission to be secure, Alice and Bob must e”minatel'herefore{Igbw)} constitutes a complete orthonormal ba-
the presence Of}.{M with a nonzero dimension.  This sis forﬁ'—[(’” lEquation (11) also shgws the orthogonality
requirement is written as follows: : . .
200 A 370 between the bases in the different subspaces,
N = {0}, 6
o © @16 = VX 8. 12)

where H (V- is the orthogonal complement of the _ _ _
subspace{ V. From the gymmetry Or;: the argument Consider the Hilbert subspa(cfi)lfm- that is spanned by the
' 1

between H © and HV, HD N HOL = {0} must two state vector$¢fo)> and|¢; '). The dimension of this
also be satisfied, but this condition is equivalent to Eq. (6subspace is 2 because condition (4) ensures Ith,(é)b
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and |¢,§1)> are linearly independent. From the relations€quation is normalized and orthogonal to the right-hand

(8), (11), and (12) we see that the subspadés(i = side of Eq. (15), so that the unitary operatdy; exists.
1,...,n) are mutually orthogonal. Thus, we can considerThis measurement introduces no error in the transmission,

a measurement ofH made of the projections?;, onto ~ and Eve is able to eavesdrop over some of the transmitted
the subspaceg{;. When Eve makes this measurement itbits if she can choose the suffjxwith A; > A;, because
cannot be detected by Bob becausePalicommute with  in this casep® and p(V) leave her apparatus in different
729 andp. states. Thus, for secure transmissions,

Now Alice and Bob have to make this kind of attack AM=Ah=--=A,= A (29)
futile. This is done by choosing their states such thaiyyst be satisfied. Under this condition, condition (14) is
the probability ofh y|eld|ng]c eatc):h hresub’t in the above yewritten as
measurement is the same for both states, (0) 0) 1) O] .

(i |P(0)|¢j ) = (¢, |P(1)|¢j ) foranyi,j. (20)

O 0,0y _ ;D) (1), D . _ _
(@i lpTlgi ) = (i lplgi ) fori=1,...n. Next we will prove that the relations (4), (6), (19), and

(13)  (20) constitute a sufficient condition for the secure trans-
We need to consider the cases in which some of th@ission. That is, we prove that these relations determine
eigenvalues); in (7) are degenerate. In these cases@ condition under which any of Eve’'s measurement that
Eve has some freedom in choosing the base Staigé’ does not introduce an error in the transmission gives no

for the degenerate eigenvaluda&f[l)> are automatically information on the values of the transmitted bits. Sup-

. . ose that Eve prepares an initial state of her measurement
determined through (10)]. The relation (13) should begpparatuslw on the Hilbert spaceHy and subjects it,

- . . 0
satisfied for all possible choices for the base stwés)>. together with the Statﬁ(k) sent by Alice, to a unitary op-
Alternatively, we can state the above requirement ag aiort/ in the product space of{ and Hz. The state

follows: For a possible choice of the ba$i$>i(0)>}, p® after this interaction is
(0) (0) (1) (1 ~
(6 101y = (¢i '1pV1;") (14) p® = Ulp™ ® luy(ul]UT. (21)
holds for all pairs ofi, j} that satisfyA; = A;. To keep transmission errors from being introducgt)

So far, Eve’s strategy has been confined to the decontraced overHy must be on the subspadd ®). Thus we
position to the orthogonal subspaces. Using a fourth stratan write
egy, however, she can implement a more elaborate attack, ® n RN
which is described by an initial state of Eve’s measure- U(lg; ) luy) = Z a1 ) ui'), (22)
ment apparatul) on the Hilbert spacéHy and a unitary %) =1 %)
operatorU in the product space g and Hg. Suppose where|u; ") are state vectors ot and Wherew;; " are
that Eve has conducted the measurement by the projecti&ﬁi)pos't've (or zero) real(k ar(ka)meters introduced so that
{P;} described before and has happened to find the resui:; ) are normalized agu; |u;’) = 1. By taking the
was for a particular value of the suffix The postmea- inner product of (22) and its conjugate and using (8) and

surement state iti/)i(o)> or Iq’J,-(l)), depending on the states (11), we get

that Alice has chosen. At this stage, Eve subjects this i B = (23)
state together with her measurement apparhthso the = if '
interactionU; that changes the states as follows: Similarly, taking the inner product between the different
Uj[|¢l‘(0)> lu) = |¢.,(-0)> 0@y, (15)  values of the index and using (12), we obtain
N (N = (A c
Ujildi )y = 1 ) '), (16) > A_l o GOy = > e W)
where [4©) and |«V) are normalized states of Eve's =1 V" =1
apparatus, and the choice of the suffiis up to Eve. To =1, (24)
see the condition for the existence of the unitary operatofyhere (19) was used. For the middle term of (24), we
Uij, consider the normalized state have the following inequalities under the relation (23):
-0, _ 1 (M ©) .0 1, 0, 0 <[ O , ©O (1)
;") = ﬁ(ldn ) — \/)\_i|¢i ) (17) ZZI aj e g lug) | = ZZI ai ay Kuip lug )l

which is, from Eq. (12), orthogonal tbpfo)>. According n o O
to Egs. (15) and (16)y/;; should operate on this state as = D> Ve ay =1. (25)
follows: =1
. The three equalities in this expression must hold if (24) is
ZON N My to be satisfied. Thus we obtain
Uijlp; Nu) = ——=(¢; ) u'")
V= i =ay and lup)=luy).  (26)

(0)
= VAl ) 1™ . (18)  The state left to Evepy, is obtained by tracing® in
When @©[uV)y = \/A;/A;, the right-hand side of this (21) over{ and is written as follows by using (22):
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pr = Tror p = Trg{z<¢§“|p<k>|¢,§-k>>U[|¢§“><¢,§-“| ® |u><u|]U*}
L

k k k k k k (k
— Trg{[ > (@ P1p®Ip W al alo 161 (6 P)] ® |u§,)><u,,-m)|]}

i,j,l,m

(k) (k) (k) (k) (k) (k)
= Z<¢i lp Wl W aw ey luy ) s (27)
il

Using Egs. (20) and (26) in this expression results in In the whole discussion above, it is assumed that the
o — W Wwhich means that Eve is ignorant of which of transmission channel does not alter the states. The story
the states Alice chose to send. Thus we conclude that tH#ill be different if the noise introduced by the channel
transmission is secure if and only if conditions (4), (6),is considered. We have also restricted the verification of
(19), and (20) are satisfied. the secrecy to the original scheme [4] of error detection,

The requirement for the security derived above can bén deriving the necessary conditions above. If Bob is
stated in a quite simple form by using a unitary operatorllowed to choose measurements other tRdhand P!
representing a multiple rotation with a nonorthogonalat his disposal, he may check the statistics of the results
angle. Let us define a rotatioR;(#) in the two- and infer the presence of eavesdropping. If Alice and Bob
dimensional Hilbert spacé{; as follows: are satisfied with this weaker test, the necessary condition

for the states may be weaker, but details are beyond the
Ri(0) = exd0( (6] — 167)(F"D], (28) scope of this Letter. One apparent necessary (but not
sufficient) condition is that the two density operators are

where the state$f°)> is defined in (17). Itis not difficult noncommuting, since Eve can make copies of them if they

to show that; ()| ¢.") = |4, "), whered; isin (0, 7/2) ~ commute [11].

and satisfies cag = +/A;. We can define a rotation In summary, we derived a necessary and sufficient con-
i

R(9) in the 2n-dimensional Hilbert spacé{ by a direct dition that a quantum cryptosystem with two.mi)_<ed_states
product ofR;(6) must meet in order to establish secure key distribution. A

properly generalized condition for the nonorthogonality in
n the pure-state case was derived and was shown, by de-
R(O) =[] Rri(0). (29)  scribing successful strategies for the eavesdropper, to be
i=1 insufficient for ensuring security. For the transmissions
to be secure the structure of the two mixed states must be
identical, in the sense that the states are connected by a
rotation operator.

Then it is obvious from Egs. (19) and (20) thaf’ and
p are connected with the following relation:

pM = R(6)p VR (9), (30)
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