VOLUME 77, NUMBER 10 PHYSICAL REVIEW LETTERS 2 BPTEMBER 1996

Self-Organized Collective Displacements of Self-Driven Individuals
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An archetype model for the collective displacements of self-driven individuals, aimed to describe the
dynamic of flocking behavior among living things, is presented and studied. Processes such as growth,
death, survival, self-propagation, and competition are considered. It is shown that systems ruled by
the model self-organize into a critical state exhibiting power-law behavior in both the distribution of
population avalanches and the spatial correlation between individuals. [S0031-9007(96)01121-0]

PACS numbers: 87.10.+e, 64.60.Ht, 64.60.—i

The study of self-organizing systems is a fascinating x;(t + 1) = x;(t) + vjAr. 1)
field of multidisciplinary interest. .Early idegs about_ the  The direction of the individual is given by the angle
emergency of large scale complexity from microscopic lo-g (+ + 1) according to
cal rules have been inspired by research in biology (ecol-’ u
ogy, ethology, evolution, etc.). However, recently these 0;(t + 1) =(0;(thr + mONR*®, (@)
ideas are spreading in many different fields contributingvhere the first term of Eq. (2) is the average direction
to the understanding of diverse processes and phenorof the velocities of theVg individuals (including thgth
ena in physics, economy, geology, chemistry, sociologypne) within a circle of radiR surrounding théth individ-
etc. [1]. ual. The second term introduces a random noise, where

It is known that a variety of biological objects fre- Q is a random number in the intervar1,1) and « is
quently exhibit a tendency to clustering and migrationan exponent. So, according to Eq. (2) clusters of individ-
(herds of quadrupeds, flocks of birds, bacterial growthpals tend to self-organize in the same average direction
etc.). Motivated by this observation, Vicsek al.[2],  of movement (first term), but this behavior is randomly
Csahoket al. [3], and Toneret al. [4] have very recently perturbed (second term). Furthermore, neighboring indi-
presented models aimed to describe the collective mo+iduals may self-organize in order to minimize the noise
tion of living individuals. These models are quite simplebeing « a measure of the strength of such ability. Of
but they retain basic facts characteristic of biological ob-course, this rule implies communications between the in-
jects exhibiting collective behavior: (i) The individuals dividuals (e.g., via sensing of chemicals, visual, verbal,
are self-driven, i.e., transforming energy gained from foodetc.). The rule of motion is similar to that adopted by
into mechanical energy they are able to perform displaceYicseket al. [2]; however, the second term of Eq. (2) in-
ments [2,3]. (ii) The motion of an individual is, on the volves major formal and conceptual differences: the noise
one hand, perturbed by environmental conditions and ofs no longer an external tunable parameter [2], rather the
the other hand, conditioned by communications amondgevel of noise, inherent to any biological system, depends
their neighbors [2,3]. These models exhibit standarcn the capacity of the individuals to damper it (e.g.. via
critical behavior [2—4] because criticality is achieved bycommunications).
tuning external parameters such as the noise and the den-Rule 2: The population dynamies-A live individual
sity of individuals. The aim of this work is to further such asNg > N3 will die in the next step (decease by
extend these models in order to account for two relevanvvercrowding). Also, a live individual will die in the next
facts characteristic of the actual cooperative behavior oftep if Vg = N1 (decease by isolation). Individuals sur-
the individuals: the first one is to allow the onset of self-vive if the neighborhood is not too crowdéd2 = Ny =
organization via communications between neighboring in23) and birth also occurs iN; satisfies some stringent
dividuals, while the second one is to explicitly considerconstraints§N1 < Nx < N2). This rule, inspired in the

the dynamic evolution of the population. Game of Life [5], allows the population to self-regulate
Following these statements a model based on two ruleigs density.
is formulated. The model is simulated in a two dimensional off-

Rule 1: The displacements-All individuals have lattice cell of linear sizeL with periodic boundary
the same absolute velocity|. At each time step all conditions. Individuals, represented by moving points,
individuals assume the average direction of motion ofare updated simultaneously at each time step (cellular
the neighboring individuals within a range with some  automata updating).
random perturbation added. So, the location of jte Simulations are made takidg| = 0.03,R = 1, N1 =
individual is updated according to 2, N2 =6, and N3 = 9. The convenience of the use
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of the first two parameters is due to the same reasons as 0.010 . , , ,
in [2]. The set of numbersV; is one of the simplest

choices which generate highly complex behavior. The VJ-
global density p,) is defined as the number of individuals o =0, 1, 4. ie'

over the total area of the sample. Also, the local density ©0.005 |- v. ]
(p;) is measured within the neighborhood (circle of radii _ 1

R) of each individual.
Starting with a random distribution of live individuals
moving in random directions, in most simulations the  ©0.000
initial global density is takem,(r = 0) = 2.0; the system
is allowed to evolve until it reaches a stationary state [6].
In this state the system self-organizes in order to keep
both the global and the local density constant independent —0.005

of @; p, = 1.825(8) and p; = 2.511(8), respectively, §

T

T
{

as shown in Fig 1. The observed enhancement of the >
local density reflects a tendency to clustering (“flocking fﬁ
behavior”). This behavior is mostly due to the dynamics ~°:910 . ? ~

of the population, but it is not a consequence of the “;3' N )
operation of an attractive potential as observed in most
physical systems. However, the behavior of the clusters
(“flocks”) as a whole, depends om. In fact, using the
absolute value of the normalized average velotity) |

[2] as a measure of the flocking behavior, the crossoverlG. 2. Polar plot of the angular correlation function of the

between two distinct regimes is observed (Fig. 1): forvelocities of the migrating individuals for three values @f
e The cross shows the center of the diagram. The snapshot

!arger @ values (e.g.« 2 4).0ne hasl ()| — .1’ that configurations, of small patches (side= 1) of the whole

is, individuals self-organize in a single flock with a well system, show two regimes: = 0, random migration (left) and

defined direction of migration. However, foax — 0 o = 4, single flock behavior (right).

also | (v) | — 0; that is, many flocks move in random

directions resembling a cloud of mosquitoes (see the

snapshots in Fig. 2). This behavior becomes also evidert#]. For « = 0 the distribution is isotropic (random

in Fig. 2 which shows the angular correlation in themigration), while fora = 4 a sharp lobule in the direction

direction of migration of all individualsp(@), i.e., the 6 = 0 indicates a preferential direction of displacement

probability that the difference in the direction of motion (single flock behavior). The onset of a slightly preferential

between all pairs of individuals lies betweénand® +  direction of motion can be observed early far= 1.
Notice that introducing a periodic variation ef (e.g.,
due to either daily or seasonal changes), it is possible

Ny

\‘ -

1 | Il i

—0.005 0.000 0.005 0.0100.08 0.10

275 ' ' ' to describe periodic modifications in the behavior of the
.50 flocks. In a more general scope, the evolutionary change
. Py of @ may be an essential requirement for the successful
= 2.25 - . adjustment to environmental modifications.
2 200 | | A relevant feature of the stationary state is that it
© ' exhibits self-organized-criticality (SOChehavior. SOC
T 1vs 3 is a concept proposed [7] to describe the dynamics
/Og of a class of nonlinear spatio-temporal systems, which
1.00 1 g evolve spontaneously toward a critical state (i.e., without
having to tune a control parameter). Systems exhibiting
~ 0.75 - ] SOC have attracted much attention since they might
> 050 L i explain part of the abundance df/f noise, fractal
s /,/ structures, and Lévy distributions in Nature [7] (for
025 | g examples of systems exhibiting SOC, see also [8]). In
A . ( ' order to test for SOC behgvior, the statio.nary state is
0.00 2 | 2 5 . perturbed by randomly adding a single individual. The
evolutionary change triggered by this small perturbation
X is called an avalanche. The fate of the added individual
FIG. 1. Plots ofp,, p,, and [(v)| versusa obtained during depends on the environment: some individuals may die
the stationary regime in systems of size= 40. while others may succeed to survive and reproduce
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generating avalanches of all sizes. So, for a more . . , =
gquantitative evaluation the lifetime of an avalanches

defined as the time elapsed between the introduction of
the perturbation and the extinction of the perturbative
individual itself and all its descendants [9]. The size

of the avalanchesj is then computed by counting the
number of descendants originated by the perturbative —
individual during the lifetime of the avalanche [9].

For the stationary state to be SOC the distributions of
lifetime [P(r)] and size [P(s)] must exhibit power-law
behavior, i.e.,P(t) = t~¢ and P(s) = s~? as shown in
Figs. 3(a) and 3(b), respectively. The estimates for the
exponents are = 1.7 = 0.1 andb = 1.6 * 0.1, respec-
tively. The propagation of avalanches in all scales is the
signature of a critical branching process; see, e.g., [10,11],
and references therein. In fact, the fate of the perturbative
individual depends on the environment that it encounters
upon its introduction in the system. If such an environ-
ment is too crowded or too empty the individual may die

originating small and short-lived avalanches. If the envi- ! b (b) o L=10
ronment is not adequate for reproduction, the individual

may simply survive originating small avalanches covering L=15 -
a broad spectrum of time scales. Another scenario is an L=20 -
environment favorable for reproduction. In this case the o L=30 |

individual may have offsprings (“first order” branching) ~—
and it and its descendants may become the majority of a
flock. Because of the stochastic noise as well as the even-
tual interaction with neighboring flocks, the perturbation
may spread into several flocks (“second order” branching)
and the process may continue either triggering subsequent
activity or dying out. Because of the error bars the differ-
ence between the exponemat@andb has to be taken with
caution. Ifa = b, one hag « s as in simple branching

processes [10]. However, due to the highly complex non- 107° - i ' : !
linear branching process involved in the present model, 10 10! 10 10° 10*
one expectsu # b and the scaling relationship e s*, S

with x = (b — 1)/(a — 1), holds. Measurements [see FIG. 3. Log-log plots of the distribution of lifetimeP{1)]
inset of Fig. 3(a)] giver = 0.82 + 0.1 in agreement with () and size p(s)] (b) of the avalanches within the SOC

the scaling value obtained from the exponeatand b, ~ '€gime. L = 30, results averaged over X 10 avalanches.
ie x~ 086 The lines with slopez = 1.7 and b = 1.6, respectively, are

. . . . ._plotted for reference, and they describe the behavior of the data
Finite size effects have also been investigated. Figfor intermediate values of ands. The inset of (a) shows a

ure 3(b) also shows plots &(s) vs s for lattices of differ-  plot of r vs s with slopex = 0.82 = 0.1. The upper part in (b)

entsizes(0 = L = 30[12]). The biggest avalanches that (shifted up 2 orders of magnitude) shows plotsRif) taken

can be monitored are of the orderf,, = ngz (fmax for « = 4 and different lattice sizes; fat = 20 the results are

- - . averaged oveit(’ avalanches. The arrows indicate the cutoff
Shax)s @s it fol!ows from the cutoff shown in Fig. 3(b),' due to finite size effects.
because in this limit all descendants of the perturbative

individual have had the chance to spread over the whole

system replacingompletelthe original population which Another signature of the critical behavior spontaneously
becomes extinct. This phenomenorpopulation replace- achieved by the system is the development of long-range
ment naturally introduces the maximum time useful for spatial correlations between individuals. These correla-
monitoring avalanches. Typically we used 2000 time  tions are independent of as it is shown in Fig. 4. Within
steps for the sake of computer resources. Because die interaction radii £ < R) the correlation function
this constraint few large avalanches have to be discarde@d(r) decays algebraicallyd(r) « r~¢] with exponent
even if population displacement is not achieved; e.g., for = 0.72 = 0.02. For r ~ R, G(r) becomes enhanced

L = 15, population replacement has a probability-of%  most likely due to the operation alile 2 (population
while only ~0.6% of the avalanches are discarded. dynamics) which prevents overcrowding for< R while
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individuals is proposed and studied. The emergence of a
very rich and complex critical behavior at global scale is
originated in simple local rules. So, this model exhibits
relevant property characteristics of actual biological
systems and it can easily be generalized to account for
more realistic situations.
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