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An archetype model for the collective displacements of self-driven individuals, aimed to describe
dynamic of flocking behavior among living things, is presented and studied. Processes such as gr
death, survival, self-propagation, and competition are considered. It is shown that systems rule
the model self-organize into a critical state exhibiting power-law behavior in both the distribution
population avalanches and the spatial correlation between individuals. [S0031-9007(96)01121-0]
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The study of self-organizing systems is a fascinati
field of multidisciplinary interest. Early ideas about th
emergency of large scale complexity from microscopic
cal rules have been inspired by research in biology (ec
ogy, ethology, evolution, etc.). However, recently the
ideas are spreading in many different fields contributi
to the understanding of diverse processes and phen
ena in physics, economy, geology, chemistry, sociolo
etc. [1].

It is known that a variety of biological objects fre
quently exhibit a tendency to clustering and migrati
(herds of quadrupeds, flocks of birds, bacterial grow
etc.). Motivated by this observation, Vicseket al. [2],
Csahóket al. [3], and Toneret al. [4] have very recently
presented models aimed to describe the collective m
tion of living individuals. These models are quite simp
but they retain basic facts characteristic of biological o
jects exhibiting collective behavior: (i) The individual
are self-driven, i.e., transforming energy gained from fo
into mechanical energy they are able to perform displa
ments [2,3]. (ii) The motion of an individual is, on th
one hand, perturbed by environmental conditions and
the other hand, conditioned by communications amo
their neighbors [2,3]. These models exhibit standa
critical behavior [2–4] because criticality is achieved b
tuning external parameters such as the noise and the
sity of individuals. The aim of this work is to furthe
extend these models in order to account for two relev
facts characteristic of the actual cooperative behavior
the individuals: the first one is to allow the onset of se
organization via communications between neighboring
dividuals, while the second one is to explicitly consid
the dynamic evolution of the population.

Following these statements a model based on two ru
is formulated.

Rule 1: The displacements.—All individuals have
the same absolute velocityjvj. At each time step all
individuals assume the average direction of motion
the neighboring individuals within a rangeR with some
random perturbation added. So, the location of thejth
individual is updated according to
0031-9007y96y77(10)y2129(4)$10.00
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xjst 1 1d ­ xjstd 1 vjDt . (1)

The direction of the individual is given by the ang
ujst 1 1d according to

ujst 1 1d ­ kujstdlR 1 pQN2a
R , (2)

where the first term of Eq. (2) is the average direct
of the velocities of theNR individuals (including thejth
one) within a circle of radiiR surrounding thejth individ-
ual. The second term introduces a random noise, wh
Q is a random number in the intervals21, 1d and a is
an exponent. So, according to Eq. (2) clusters of indiv
uals tend to self-organize in the same average direc
of movement (first term), but this behavior is random
perturbed (second term). Furthermore, neighboring in
viduals may self-organize in order to minimize the no
being a a measure of the strength of such ability.
course, this rule implies communications between the
dividuals (e.g., via sensing of chemicals, visual, verb
etc.). The rule of motion is similar to that adopted
Vicsek et al. [2]; however, the second term of Eq. (2) in
volves major formal and conceptual differences: the no
is no longer an external tunable parameter [2], rather
level of noise, inherent to any biological system, depe
on the capacity of the individuals to damper it (e.g.. v
communications).

Rule 2: The population dynamics.—A live individual
such asNR . N3 will die in the next step (decease b
overcrowding). Also, a live individual will die in the nex
step if NR # N1 (decease by isolation). Individuals su
vive if the neighborhood is not too crowdedsN2 # NR #

N3d and birth also occurs ifNR satisfies some stringen
constraintssN1 , NR , N2d. This rule, inspired in the
Game of Life [5], allows the population to self-regula
its density.

The model is simulated in a two dimensional o
lattice cell of linear sizeL with periodic boundary
conditions. Individuals, represented by moving poin
are updated simultaneously at each time step (cell
automata updating).

Simulations are made takingjvj ­ 0.03, R ­ 1, N1 ­
2, N2 ­ 6, and N3 ­ 9. The convenience of the us
© 1996 The American Physical Society 2129
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of the first two parameters is due to the same reason
in [2]. The set of numbersNi is one of the simples
choices which generate highly complex behavior. T
global density (rg) is defined as the number of individua
over the total area of the sample. Also, the local den
(rl) is measured within the neighborhood (circle of ra
R) of each individual.

Starting with a random distribution of live individua
moving in random directions, in most simulations t
initial global density is takenrgst ­ 0d ­ 2.0; the system
is allowed to evolve until it reaches a stationary state
In this state the system self-organizes in order to k
both the global and the local density constant indepen
of a; rg > 1.825s8d and rl > 2.511s8d, respectively,
as shown in Fig 1. The observed enhancement of
local density reflects a tendency to clustering (“flocki
behavior”). This behavior is mostly due to the dynam
of the population, but it is not a consequence of
operation of an attractive potential as observed in m
physical systems. However, the behavior of the clus
(“flocks”) as a whole, depends ona. In fact, using the
absolute value of the normalized average velocityj kyl j

[2] as a measure of the flocking behavior, the crosso
between two distinct regimes is observed (Fig. 1):
larger a values (e.g.,a $ 4) one hasj kyl j ! 1; that
is, individuals self-organize in a single flock with a we
defined direction of migration. However, fora ! 0
also j kyl j ! 0; that is, many flocks move in random
directions resembling a cloud of mosquitoes (see
snapshots in Fig. 2). This behavior becomes also evi
in Fig. 2 which shows the angular correlation in t
direction of migration of all individuals [Dsud, i.e., the
probability that the difference in the direction of motio
between all pairs of individuals lies betweenu and u 1

FIG. 1. Plots ofrl , rg, and jkylj versusa obtained during
the stationary regime in systems of sizeL ­ 40.
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FIG. 2. Polar plot of the angular correlation function of th
velocities of the migrating individuals for three values ofa.
The cross shows the center of the diagram. The snaps
configurations, of small patches (sidel ­ 1) of the whole
system, show two regimes:a ­ 0, random migration (left) and
a ­ 4, single flock behavior (right).

Du]. For a ­ 0 the distribution is isotropic (random
migration), while fora ­ 4 a sharp lobule in the direction
u ­ 0 indicates a preferential direction of displaceme
(single flock behavior). The onset of a slightly preferenti
direction of motion can be observed early fora ­ 1.
Notice that introducing a periodic variation ofa (e.g.,
due to either daily or seasonal changes), it is possi
to describe periodic modifications in the behavior of th
flocks. In a more general scope, the evolutionary chan
of a may be an essential requirement for the success
adjustment to environmental modifications.

A relevant feature of the stationary state is that
exhibits self-organized-criticality (SOC)behavior. SOC
is a concept proposed [7] to describe the dynami
of a class of nonlinear spatio-temporal systems, whi
evolve spontaneously toward a critical state (i.e., witho
having to tune a control parameter). Systems exhibiti
SOC have attracted much attention since they mig
explain part of the abundance of1yf noise, fractal
structures, and Lévy distributions in Nature [7] (fo
examples of systems exhibiting SOC, see also [8]).
order to test for SOC behavior, the stationary state
perturbed by randomly adding a single individual. Th
evolutionary change triggered by this small perturbatio
is called an avalanche. The fate of the added individu
depends on the environment: some individuals may d
while others may succeed to survive and reprodu



VOLUME 77, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 2 SEPTEMBER1996

or

n
iv
ze
e
tiv

o

th

th
11
tiv
te
n
ie
vi
ua
in

a
th
g)
of
ve
on
ing
ue
er

on
de

e

ig

at

),
tiv
o

or

e
rd
fo

data

off

sly
nge
la-

d

generating avalanches of all sizes. So, for a m
quantitative evaluation the lifetime of an avalanchet is
defined as the time elapsed between the introductio
the perturbation and the extinction of the perturbat
individual itself and all its descendants [9]. The si
of the avalanche (s) is then computed by counting th
number of descendants originated by the perturba
individual during the lifetime of the avalanche [9].

For the stationary state to be SOC the distributions
lifetime [Pstd] and size [Pssd] must exhibit power-law
behavior, i.e.,Pstd ~ t2a and Pssd ~ s2b as shown in
Figs. 3(a) and 3(b), respectively. The estimates for
exponents area > 1.7 6 0.1 andb > 1.6 6 0.1, respec-
tively. The propagation of avalanches in all scales is
signature of a critical branching process; see, e.g., [10,
and references therein. In fact, the fate of the perturba
individual depends on the environment that it encoun
upon its introduction in the system. If such an enviro
ment is too crowded or too empty the individual may d
originating small and short-lived avalanches. If the en
ronment is not adequate for reproduction, the individ
may simply survive originating small avalanches cover
a broad spectrum of time scales. Another scenario is
environment favorable for reproduction. In this case
individual may have offsprings (“first order” branchin
and it and its descendants may become the majority
flock. Because of the stochastic noise as well as the e
tual interaction with neighboring flocks, the perturbati
may spread into several flocks (“second order” branch
and the process may continue either triggering subseq
activity or dying out. Because of the error bars the diff
ence between the exponentsa andb has to be taken with
caution. If a ­ b, one hast ~ s as in simple branching
processes [10]. However, due to the highly complex n
linear branching process involved in the present mo
one expectsa fi b and the scaling relationshipt ~ sx ,
with x ­ sb 2 1dysa 2 1d, holds. Measurements [se
inset of Fig. 3(a)] givex ­ 0.82 6 0.1 in agreement with
the scaling value obtained from the exponentsa and b,
i.e., x ø 0.86.

Finite size effects have also been investigated. F
ure 3(b) also shows plots ofPssd vss for lattices of differ-
ent sizes (10 # L # 30 [12]). The biggest avalanches th
can be monitored are of the order ofsmax ~ rgL2 (tmax ~

sx
max), as it follows from the cutoff shown in Fig. 3(b

because in this limit all descendants of the perturba
individual have had the chance to spread over the wh
system replacingcompletelythe original population which
becomes extinct. This phenomenon ofpopulation replace-
ment naturally introduces the maximum time useful f
monitoring avalanches. Typically we usedt ­ 2000 time
steps for the sake of computer resources. Becaus
this constraint few large avalanches have to be disca
even if population displacement is not achieved; e.g.,
L ­ 15, population replacement has a probability of,1%
while only ,0.6% of the avalanches are discarded.
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FIG. 3. Log-log plots of the distribution of lifetime [Pstd]
(a) and size [Pssd] (b) of the avalanches within the SOC
regime. L ­ 30, results averaged over2 3 104 avalanches.
The lines with slopea ­ 1.7 and b ­ 1.6, respectively, are
plotted for reference, and they describe the behavior of the
for intermediate values oft and s. The inset of (a) shows a
plot of t vs s with slopex ­ 0.82 6 0.1. The upper part in (b)
(shifted up 2 orders of magnitude) shows plots ofPssd taken
for a ­ 4 and different lattice sizes; forL # 20 the results are
averaged over105 avalanches. The arrows indicate the cut
due to finite size effects.

Another signature of the critical behavior spontaneou
achieved by the system is the development of long-ra
spatial correlations between individuals. These corre
tions are independent ofa as it is shown in Fig. 4. Within
the interaction radii (r , R) the correlation function
Gsrd decays algebraically [Gsrd ~ r2c] with exponent
c > 0.72 6 0.02. For r , R, Gsrd becomes enhance
most likely due to the operation ofrule 2 (population
dynamics) which prevents overcrowding forr # R while
2131
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FIG. 4. Log-log plots of the spatial correlation functionGsrd
vs r, within the SOC regime, measured for different valu
of a in systems of sideL ­ 40. ≤: a ­ 0, ,: a ­ 2 and
.: a ­ 4.

this stringent condition is abruptly relaxed just outside t
interaction radii. For largerr valuesGsrd recovers an
algebraic decay but the slope cannot accurately be de
mined due to finite size effects.

It has to be stressed that, while the flocking beha
ior of the individuals strongly depends ona (i.e., single
flock behavior for largea and random displacements o
individuals fora ! 0), all power laws describing the dis
tribution of avalanches and spatial correlations are
dependent ofa, pointing out that the model exhibit
robust critical behavior which is achieved spontaneou
without the necessity of tuning any external parame
i.e., SOC. It should also be noted that the conject
on the occurrence of SOC behavior in the Game of L
[13], i.e., a cellular automata which simulates the evo
tionary dynamics of a population [5] according to sim
lar rules thanrule 2 of the present work, has originate
an interesting debate [9,14,15]. The most reliable c
clusion is that Life is subcritical, but with a rather lon
length scale. That is, power laws can be obtained in s
tially small lattices, and the SOC behavior disappears
larger systems due to the low density and limited d
placements of the living sites [15]. These constrai
do not operate in the present model, which exhibits
bust critical behavior, because, in contrast to Life, o
hasdenseflocks of self-driven individuals exhibitinghigh
mobility. Under this circumstance one can observe la
avalanches which eventually may cause the replacem
of the population, even in the largest lattice used [1
evidence which further supports the claim that the stati
ary state is critical.

Summing up, a model which describes the se
organized cooperative displacement of self-replicat
2132
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individuals is proposed and studied. The emergence o
very rich and complex critical behavior at global scale
originated in simple local rules. So, this model exhibi
relevant property characteristics of actual biologic
systems and it can easily be generalized to account
more realistic situations.
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