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Transformation of the Bethe Equations for Finite Cycles into Secular Polynomials in Energy
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The study of spin Hamiltonians is facilitated by the use of the Bethe equations. Up to now, these
equations were primarily used for the study of the energy of the lowest state of a given symmetry. In
this paper, we would like to show that there is a technique by which these equations for finite cycles
can be transformed into an algebraic equation for the energy in which the coefficients are polynomials
in the coupling constant, or just numbers. From this algebraic equation, we can get all energies of a
given symmetry in a straightforward way. [S0031-9007(96)00513-3]

PACS numbers: 03.65.Ge, 02.70.Rw

Lattice spin models are of great importance both ininput data for the calculation of the partition function and
solid state physics as well as in quantum chemistry andyther thermodynamic quantities. We would like to return
therefore, they have been the subject of considerabl® the original paper of Bethe and show that energies
investigation over the years. For infinite chains, it iscan also be obtained in closed form as polynomials in
often possible to get an exact result. However, there¢he energy and coupling constants of the Hamiltonian.
are many physically interesting quantities, namely, thos&Ve outline a unified program for the calculation of these
that occur in statistical physics, which are not possible tgolynomials. We shall study two important classes of
calculate analytically. Consequently, many authors havenodels which will be referred to as A and B. First, we
studied finite chains and calculated physical propertieshall describe these models.
using extrapolation. For these studies, it is necessary to (A) First of all, we have already developed a substantial
know all the states of the given symmetry. One techniquaet of results for the isotropic Heisenberg Hamiltonian.
which is frequently used is the direct diagonalization ofOur technique is the transformation of the Bethe equations
the Hamiltonian, while the use of the Bethe equationdo a system of algebraic equations which can be solved
for cyclic chains [1] has been primariljmited just to  using the Grébner method [13] and in which symmetric
the lowest state of the given symmetin fact, for this  functions can be introduced for simplifying the equations
lowest state numerical results can be obtained by iterationyhen N becomes larger.
while excited states of the given symmetry are much more (B) These results have been extended to the study of
difficult to extract from the Bethe equations. Furtherthe anisotropic spin Hamiltonian which contains a single
details can be found in Refs. [2—6]. anisotropy parametes [14]. Much the same holds here

Direct diagonalization was proposed by Hulthén [7]as in the case of the isotropic model. The modified
for the case of the isotropic Hamiltonian fof = 2, 4,  Bethe equations can be transformed into a set of algebraic
6, 8, and10 member systems. Here he studied theequations which depend on the anisotropy parameter.
ground and excited states df and B type symmetry. To begin with, let us write down the equations for all of
Orbach [8] has calculated energies by direct diagonalizathe model Hamiltonians which are relevant to the Letter.
tion for all statesN = 4, 6, 8, and 10, while Klein and The spin Hamiltonian up to an additive and multiplicative
Seitz [9] calculated the energies upAXo= 12. Orbach constant will assume the general form for cyclic chains
as well as Bonner and Fischer [10] have calculated
guantities for the anisotropic model. It is interesting
to note that Majumdar, Krishan, and Mubayi [11] con-
sidered hidden symmetry for the anisotropic case while
Hashimoto [12] has calculated some excited states for thErom this anisotropic Hamiltonian, one obtains the
Heisenberg Hamiltonian. isotropic Hamiltonian forp = 1, the XY Hamiltonian

The main purpose of this Letter is to demonstrate thafor p = 0, and finally the Ising model fop = « after
it is possible to obtain from the Bethe equations theproper rescaling. The Bethe equations for the anisotropic
energy of all excited states in the form of polynomialsmodel are presented in a slightly modified form, which
in terms of energy and the coupling constant in theavoids complex numbers and which is convenient for our
Hamiltonian. The energies of these excited states arpurposes,

N
Hg = Z[S" “Siv1 + (p — DSiSi, —p/4]. ()
i=1
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INtan '(27,) = 27dy + 2 ). bap,
B=1

)

where
ap = tanl( plre — 7l ) 3)
2[00 + p)/4 = (1 = p)TaTg]
The energy is found from the equation

i 2
P= (-1

a=1

+1—p>. ()]

The equations for the isotropic case are found by letting
p = 1. In the isotropic case, the Bethe equations can be

expressed as

N M
2 Ztan_l(ZTa) =27d, +2 Y tan (7, — 7y). (5)
=1 =1

Here,M = N/2.

Y

In order to illustrate the application of the aboveand introducing the notatiom = 3y =

to show all aspects of the problem, but small enough to
be presented here. There are sewgnvariables such
that 7, = 0 and the remaining ones are antisymmetric.
This means thatg_, = —7,, a = 1,2,3. With these
assumptions, the number of independent reduces

to three. These variables are determined by the three
equations

l4tan '(27,) = 7d, + tan (74)
3
+ Z[tan_l(Ta - Ty)
y=1

+ tan (7, + 7y)],

(6)
Herea = 1,2, 3, and thed,, are positive integers. When
the inverse tangents are combined using the identity

+
tan '(u) + tan '(v) = tan‘1<u

>+kﬂ- @)

1 — uv

73, andz =

mentioned methods, we shall present the isotropic casef, then we get fora = 1 from Eq. (6) the following
for N = 14 in detail. This case is complicated enoughexpression:

—21 — 23(y + z) — 25yz + [978 + 1429(y + z) + 1976yz]x + [—3873 — 13416(y + z) — 29 744yz]x>

+ [—20904 + 2288(y + z) + 109824yz]x® + [—11440 + 73216(y + z) — 36 608yz]x*
+[49920 + 49920(y + z) — 133 120yz]x> + [88320 — 34816(y + z) + 45056yz]x°

+ [55296 — 28672(y + 2)]x7 + 12288x8.

We denote the other equations fer= 2,3 by Y and
Z, respectively. Y is obtained fromX by interchanging
x andy and keepingz fixed. Similarly, Z is obtained
from Y by interchangingy and z and keepingx fixed.
ConsequentlyX is symmetric iny andz, Y is symmetric
in x andz, and Z is symmetric inx andy. By adding
these three functions together, we obtain an equation

F=X+Y+2Z=0, )

which is symmetric irnx, y, andz. Next, we introduce the
functions

G, =¥ - 2)/(y —2), (10)
Gy, =(Z—-X)/(z—x), (11)
G.=X-Y)/(x —y). (12)
It can be shown that the function
G=G,+G,+G,=0 (13)

is a second independent symmetric functionejry, and
z. Finally,
G, — G G, -G - G,
H= Ly = 2, G TG (14)
X —y y — 2 =X

is a third symmetric equation. The functioAsG, andH

212

(8)

are complicated, but can be simplified by the introduction
of the new variables described next.

Since we have a system of three equations which
are symmetric in their variables, it is reasonable to
introduce new unknowns defined as the coefficients of the
polynomial

w? + Pw? + Qw +R =0, (15)
where the roots are just the above variables suchithat
—x—y—z, Q=uxy+yz+xz, andR = —xyz are

three elementary symmetric functions. The equatiBns
G, and H will simplify after substituting these variables.
After applying the Grébner elimination scheme [13], we
obtain a polynomial of degree 20 fét. The variableQ
can be expressed through the polynomiaPiand finally,
one getsk as a polynomial inP.

The energy is a rational symmetric function of the
variablesx, y, andz. Therefore, it can be expressed in
terms ofP, Q, andR:

43 - 8P +16Q)
1 — 4P + 160 — 64R
If we substitute into this expressiof and R in terms

of P, the energy is expressed as a ratio of two rational
functions of P. With the use of the resultant, it is then

E=—

2. (16)
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easy to obtain from this equation and the polynomial inand so on; however, we are working on a more efficient
P another polynomial which gives directly the energy.algorithm.

This procedure has been carried out alsaNo 6 to 14. The secular polynomial for the&v = 14 ground state

In principle, one is able to calculate it fav = 16,18,  'A, takes the form

E® + 90E" + 3791E'® + 99330E'7 + 1814739E'® + 24559 806E"> + 255298 049E'* + 2085639 739E"
+ 13587286 107E'? + 71206008 153E'" + 301436293 156E'° + 1030976495 948E° + 2838437223 906E®
+ 6241247040767E7 + 10819799727 199ES + 14501443 108 368E° + 14591509201 376E*

+ 10536 885559 363E> + 5072469 026424E> + 1420272996 516E + 166552673007 = 0.

(17)

Here E is in the same units as Orbach’s [8], which in be combined in the same way as for the ground state us-
turn is different by a factor of 2 from the one used bying the identity above. The quantum numbers are integers
Hulthén. and ther, will satisfy the antisymmetry constraint. This

The 'B,, state is described by two complex which  procedure has been carried out fér= 6 to 14, and the
we write as27= = +i. This introduces a slight modi- secular polynomial for théB,, state forN = 14 has the
fication into the equations. The resulting equations carfiorm

EB + 70E™ + 2249E'3 + 43972E' + 584760E'! + 5598 792E'° + 39837921E° + 214308 613E®
+ 877805606E" + 2734052369E°® + 6412755365E° + 11103 818 047E* + 13711 066 334E>
+ 11371319099E? + 5648 846224E" + 1263484747 = 0. (18)

I
The size of these polynomials is in agreement with These days, the open chains with const#ht and
those of Klein and Seitz when hidden symmetry is takeropen and closed chains with alternatifgy as well as
into account. This is described in the note at the end ofhe two dimensional Heisenberg Hamiltonian are the
their paper [15]. subject of intensive research. We are working on the
Finally, we shall briefly describe our results on theimplementation of some ideas presented in this Letter on
anisotropicHamiltonian which are based on the general-these Hamiltonians which are topical today.
ization of the first section. Calculations fof = 6 and$8 In conclusion, we would like to stress the simplicity and
have been done. The Bethe equations have been trarampactness of these results. It should be emphasized
formed into algebraic equations, and the calculated polythat it has been shown that analytic studies of the Bethe
nomial for N = 8 is given in Table |. Let us mention equations represent a valuable complement to the contem-
that our compact results permit us to decide that Jaiporary large scale calculations based on a direct diagonal-
et al. [16] are indeed obtaining a level crossing for= 8.  ization of the Hamiltonian. Let us mention that even on
To go further does not represent any conceptual difficultythe topics treated in this Letter, we have presented only
exploratory calculations which fit into the format of this
communication. All work reported was made possible by
the systematic use of the symbolic manipulation language
TABLE I. Secular polynomialE” + Y°_,c,E" for aniso- Maple [17].
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