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The study of spin Hamiltonians is facilitated by the use of the Bethe equations. Up to now, these
equations were primarily used for the study of the energy of the lowest state of a given symmetry. In
this paper, we would like to show that there is a technique by which these equations for finite cycles
can be transformed into an algebraic equation for the energy in which the coefficients are polynomials
in the coupling constant, or just numbers. From this algebraic equation, we can get all energies of a
given symmetry in a straightforward way. [S0031-9007(96)00513-3]
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Lattice spin models are of great importance both
solid state physics as well as in quantum chemistry a
therefore, they have been the subject of consider
investigation over the years. For infinite chains, it
often possible to get an exact result. However, th
are many physically interesting quantities, namely, th
that occur in statistical physics, which are not possible
calculate analytically. Consequently, many authors h
studied finite chains and calculated physical proper
using extrapolation. For these studies, it is necessar
know all the states of the given symmetry. One techni
which is frequently used is the direct diagonalization
the Hamiltonian, while the use of the Bethe equatio
for cyclic chains [1] has been primarilylimited just to
the lowest state of the given symmetry. In fact, for this
lowest state numerical results can be obtained by itera
while excited states of the given symmetry are much m
difficult to extract from the Bethe equations. Furth
details can be found in Refs. [2–6].

Direct diagonalization was proposed by Hulthén
for the case of the isotropic Hamiltonian forN ­ 2, 4,
6, 8, and10 member systems. Here he studied
ground and excited states ofA and B type symmetry.
Orbach [8] has calculated energies by direct diagonal
tion for all statesN ­ 4, 6, 8, and10, while Klein and
Seitz [9] calculated the energies up toN ­ 12. Orbach
as well as Bonner and Fischer [10] have calcula
quantities for the anisotropic model. It is interesti
to note that Majumdar, Krishan, and Mubayi [11] co
sidered hidden symmetry for the anisotropic case w
Hashimoto [12] has calculated some excited states for
Heisenberg Hamiltonian.

The main purpose of this Letter is to demonstrate t
it is possible to obtain from the Bethe equations
energy of all excited states in the form of polynomia
in terms of energy and the coupling constant in
Hamiltonian. The energies of these excited states
0031-9007y96y77(2)y211(4)$10.00
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input data for the calculation of the partition function an
other thermodynamic quantities. We would like to retu
to the original paper of Bethe and show that energ
can also be obtained in closed form as polynomials
the energy and coupling constants of the Hamiltonia
We outline a unified program for the calculation of the
polynomials. We shall study two important classes
models which will be referred to as A and B. First, w
shall describe these models.

(A) First of all, we have already developed a substant
set of results for the isotropic Heisenberg Hamiltonia
Our technique is the transformation of the Bethe equatio
to a system of algebraic equations which can be solv
using the Gröbner method [13] and in which symmetr
functions can be introduced for simplifying the equatio
whenN becomes larger.

(B) These results have been extended to the study
the anisotropic spin Hamiltonian which contains a sing
anisotropy parameterr [14]. Much the same holds here
as in the case of the isotropic model. The modifi
Bethe equations can be transformed into a set of algeb
equations which depend on the anisotropy parameter.

To begin with, let us write down the equations for all o
the model Hamiltonians which are relevant to the Lett
The spin Hamiltonian up to an additive and multiplicativ
constant will assume the general form for cyclic chains

HS ­
NX

i­1

fSi ? Si11 1 sr 2 1dSz
i Sz

i11 2 ry4g . (1)

From this anisotropic Hamiltonian, one obtains th
isotropic Hamiltonian forr ­ 1, the XY Hamiltonian
for r ­ 0, and finally the Ising model forr ­ ` after
proper rescaling. The Bethe equations for the anisotro
model are presented in a slightly modified form, whic
avoids complex numbers and which is convenient for o
purposes,
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2N tan21s2tad ­ 2pda 1 2
MX

b­1

fab , (2)

where

fab ­ tan21

√
rfta 2 tbg

2fs1 1 rdy4 2 s1 2 rdtatbg

!
. (3)

The energy is found from the equation

E ­
MX

a­1

µ
2

2
1 1 4t2

a

1 1 2 r

∂
. (4)

The equations for the isotropic case are found by let
r ­ 1. In the isotropic case, the Bethe equations can
expressed as

2
NX

j­1

tan21s2tad ­ 2pda 1 2
MX

g­1

tan21sta 2 tgd . (5)

Here,M ­ Ny2.
In order to illustrate the application of the abo

mentioned methods, we shall present the isotropic c
for N ­ 14 in detail. This case is complicated enou
212
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to show all aspects of the problem, but small enough
be presented here. There are seventa variables such
that t4 ­ 0 and the remaining ones are antisymmetr
This means thatt82a ­ 2ta , a ­ 1, 2, 3. With these
assumptions, the number of independentta reduces
to three. These variables are determined by the th
equations

14 tan21s2tad ­ pda 1 tan21stad

1

3X
g­1

ftan21sta 2 tgd

1 tan21sta 1 tgdg , (6)

Herea ­ 1, 2, 3, and theda are positive integers. When
the inverse tangents are combined using the identity

tan21sud 1 tan21syd ­ tan21

µ
u 1 y

1 2 uy

∂
1 kp (7)

and introducing the notationx ­ t
2
1 , y ­ t

2
2 , and z ­

t
2
3 , then we get fora ­ 1 from Eq. (6) the following

expression:
X ­ 221 2 23s y 1 zd 2 25yz 1 f978 1 1429s y 1 zd 1 1976yzgx 1 f23873 2 13 416s y 1 zd 2 29 744yzgx2

1 f220 904 1 2288s y 1 zd 1 109 824yzgx3 1 f211 440 1 73 216s y 1 zd 2 36 608yzgx4

1 f49 920 1 49 920s y 1 zd 2 133 120yzgx5 1 f88 320 2 34 816s y 1 zd 1 45 056yzgx6

1 f55 296 2 28 672s y 1 zdgx7 1 12 288x8. (8)
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We denote the other equations fora ­ 2, 3 by Y and
Z, respectively. Y is obtained fromX by interchanging
x and y and keepingz fixed. Similarly, Z is obtained
from Y by interchangingy and z and keepingx fixed.
Consequently,X is symmetric iny andz, Y is symmetric
in x and z, and Z is symmetric inx and y. By adding
these three functions together, we obtain an equation

F ­ X 1 Y 1 Z ­ 0 , (9)

which is symmetric inx, y, andz. Next, we introduce the
functions

Gx ­ sY 2 Zdys y 2 zd , (10)

Gy ­ sZ 2 Xdysz 2 xd , (11)

Gz ­ sX 2 Y dysx 2 yd . (12)

It can be shown that the function

G ­ Gx 1 Gy 1 Gz ­ 0 (13)

is a second independent symmetric function inx, y, and
z. Finally,

H ­
Gx 2 Gy

x 2 y
1

Gy 2 Gz

y 2 z
1

Gz 2 Gx

z 2 x
­ 0 (14)

is a third symmetric equation. The functionsF, G, andH
are complicated, but can be simplified by the introducti
of the new variables described next.

Since we have a system of three equations wh
are symmetric in their variables, it is reasonable
introduce new unknowns defined as the coefficients of
polynomial

w3 1 Pw2 1 Qw 1 R ­ 0 , (15)

where the roots are just the above variables such thatP ­
2x 2 y 2 z, Q ­ xy 1 yz 1 xz, and R ­ 2xyz are
three elementary symmetric functions. The equationsF,
G, andH will simplify after substituting these variables
After applying the Gröbner elimination scheme [13], w
obtain a polynomial of degree 20 forP. The variableQ
can be expressed through the polynomial inP and finally,
one getsR as a polynomial inP.

The energy is a rational symmetric function of th
variablesx, y, and z. Therefore, it can be expressed
terms ofP, Q, andR:

E ­ 2
4s3 2 8P 1 16Qd

1 2 4P 1 16Q 2 64R
2 2 . (16)

If we substitute into this expressionQ and R in terms
of P, the energy is expressed as a ratio of two ratio
functions ofP. With the use of the resultant, it is the



VOLUME 77, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 8 JULY 1996

l in
y.

ent
easy to obtain from this equation and the polynomia
P another polynomial which gives directly the energ
This procedure has been carried out also forN ­ 6 to 14.
In principle, one is able to calculate it forN ­ 16, 18,
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and so on; however, we are working on a more effici
algorithm.

The secular polynomial for theN ­ 14 ground state
1A1g takes the form
E20 1 90E19 1 3791E18 1 99 330E17 1 1 814 739E16 1 24 559 806E15 1 255 298 049E14 1 2 085 639 739E13

13 587 286 107E12 1 71 206 008 153E11 1 301 436 293 156E10 1 1 030 976 495 948E9 1 2 838 437 223 906E8

1 6 241 247 040 767E7 1 10 819 799 727 199E6 1 14 501 443 108 368E5 1 14 591 509 201 376E4

1 10 536 885 559 363E3 1 5 072 469 026 424E2 1 1 420 272 996 516E 1 166 552 673 007 ­ 0 .
(17)
us-
ers
s

HereE is in the same units as Orbach’s [8], which
turn is different by a factor of 2 from the one used b
Hulthén.

The 1B2u state is described by two complexta which
we write as2t6 ­ 6i. This introduces a slight modi
fication into the equations. The resulting equations c
 n

be combined in the same way as for the ground state
ing the identity above. The quantum numbers are integ
and theta will satisfy the antisymmetry constraint. Thi
procedure has been carried out forN ­ 6 to 14, and the
secular polynomial for the1B2u state forN ­ 14 has the
form
E15 1 70E14 1 2249E13 1 43 972E12 1 584 760E11 1 5 598 792E10 1 39 837 921E9 1 214 308 613E8

1 877 805 606E7 1 2 734 052 369E6 1 6 412 755 365E5 1 11 103 818 047E4 1 13 711 066 334E3

1 11 371 319 099E2 1 5 648 846 224E1 1 1 263 484 747 ­ 0 . (18)
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The size of these polynomials is in agreement wi
those of Klein and Seitz when hidden symmetry is tak
into account. This is described in the note at the end
their paper [15].

Finally, we shall briefly describe our results on th
anisotropicHamiltonian which are based on the genera
ization of the first section. Calculations forN ­ 6 and8
have been done. The Bethe equations have been tr
formed into algebraic equations, and the calculated po
nomial for N ­ 8 is given in Table I. Let us mention
that our compact results permit us to decide that J
et al. [16] are indeed obtaining a level crossing forN ­ 8.
To go further does not represent any conceptual difficul

TABLE I. Secular polynomialE7 1
P6

n­0 cnEn for aniso-
tropic model,N ­ 8.

n cn

0 88r3 2 376r5 1 288r7

1 125r2 2 934r4 1 984r6

2 56r 2 891r3 1 1388r5

3 8 2 411r2 1 1054r4

4 292r 1 467r3

5 28 1 121r2

6 17r
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n
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These days, the open chains with constantb, and
open and closed chains with alternatingb, as well as
the two dimensional Heisenberg Hamiltonian are t
subject of intensive research. We are working on
implementation of some ideas presented in this Letter
these Hamiltonians which are topical today.

In conclusion, we would like to stress the simplicity an
compactness of these results. It should be emphas
that it has been shown that analytic studies of the Be
equations represent a valuable complement to the cont
porary large scale calculations based on a direct diago
ization of the Hamiltonian. Let us mention that even
the topics treated in this Letter, we have presented o
exploratory calculations which fit into the format of th
communication. All work reported was made possible
the systematic use of the symbolic manipulation langua
Maple [17].
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Note added in proof.—See also The Many-Body
Problem—An Encyclopedia of Exactly Solved Models
One DimensionRef. [18] and Adams and Loustaunau,An
Introduction to Gröbner BasesRef. [19].
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