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We construct a generally applicable short-time perturbative expansion for coherence loss. Successive
terms of this expansion yield characteristic times for decorrelation processes involving successive pow-
ers of the Hamiltonian. The second order results are sufficient to precisely reproduce expressions for
“decoherence times” obtained in the literature by much more involved and indirect methods. Examples
illustrating the influence of initial conditions and the need to evaluate higher order terms are given in
the context of the Jaynes-Cummings model. It is shown that, in this case, the short-time decoherence
behavior can probe the importance of antiresonant contributions. [S0031-9007(96)00590-X]

PACS numbers: 03.65.Db, 05.45.+b

The study of open quantum systems and/or subsystents situations in which the subsystem of interest appears
has recently attracted the attention of physicists fromas part of a larger, closed Hamiltonian system. They
very different areas: cosmology [1], condensed matteare based on a hierarchical analysis of the short-time
[2], quantum optics [3], particle physics [4], as well asdynamics ofintersubsystentorrelation processes which
of theorists working on the fundamentals of the quantunbears a strong resemblance in spirit to ordinary time-
measurement process [5]. The problem can be stated vedgpendent perturbation expansions.
generally by considering several interacting subsystems We consider the general case of a dynamically closed
and asking for the looks of the effective dynamics of(i.e., autonomous) quantum system which is described as
one such subsystem. Generic, exact answers within tHeeing composed of two interacting subsystems, so that the
standard framework of quantum mechanics have beefull Hamiltonian is written as a sum of three terms
given before [6]. Recgnt experimental developments [7] H = Hy + Hy + Hiy = Hy + Hi, 1)
as well as the analysis of models related to them [8]
now indicate, however, that the specific knowledge of thehe last of which represents the interaction between the
(often very short) time scale for the onset of decoherenceubsystems, whil&, describes their bare dynamics. Note
processes may be of considerable value. In order to me#tat no a priori limitation is being imposed on the
such demand we develop here a short-time perturbativeature or complexity of the subsystems. In particular,
scheme to extract decorrelation time scales from thall current models involving quantum systems coupled to
in general highly nonlinear effective dynamics of opendynamically implemented reservoirs (e.g., [9]) fit into the
quantum subsystems. Our results are generally applicab&bove characterization, the same being true all the way to
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very simple systems (e.g., models involving coupled spins s dp3 2 d?p3
[10] or the Jaynes-Cummings model for the interaction of =1 =T p3(0) + IW(O) + 2 dr? 0 + -
atoms with radiation [8,11,12]). The state of the system is ; 2
described in full generality in terms of a density operator =8 - ———5 — . (4)
p(t) evolving in the Schrddinger picture as T T

p(t) = e M p(0)e™, (2)  Here we use the normalization condition,#5(0) = 1

where p(0) stands for the initial density operator (at and the fact that it is preserved in time. The coefficients
t = 0). We consider then the reduced density for oneof this expansion are readily obtained from Eq. (2). Up

of the subsystems (say, subsystem 2) to orders? they read explicitly
p2(t) = Tri{p(1)}, ®3)
where Ti denotes the trace over the degrees of freedom 8o = 1 — Tra{p3(0)}, (5)

of subsystem 1.
A simple and direct measure of the degree of deco- 1 .
herence in subsystem 2 is provided by the “idempotency T1 2Tr24p2(0)p2(0)}
defect” 5(¢) of the reduced density,(¢) [13]. This is the = 2iTry{p2(0) Tri[p(0), H]}
quantity written in the equation below, where it is further- —
more subjected to a short-time power series expansion: = 2iTnlp(0),. H]) .0 6)

8(t) = Tradpa(t) — p3(1)} | and

% = Tr{p3(0) + p2(0)p2(0)} = —Tro{(Tri[p(0), HD* + p2(0) Tri[[p(0), H], H]}
p

= —Tn{(Tr[p(0), HD*} — (Trillp(0), H], HD)p,0) » (7)
where the symbol:--),,) Stands for an average value iz = Tra{p2(0) (([p2(0), (H) 0] (H D py0)]
over the state,(0). The above expressions constitute the T2
first few terms in the short-time expansion of the time de- — Tri[[p1(0)p2(0), H], H])} . (9)

velopment of those quantum processes which are specifi- i i
cally related with coherence loss (decoherence) within th&/here {:--),,) again denotes an average taken with
subsystems. These processes involve the dynamics of if€SPect to the density,(0). If furthermore p,(0) =
tersubsystem correlations, which cause the time evol 1) (1| and pa(0) = |42) (| are idempotent densities

tion of the reduced densities to be nonunitary. In fact{Puré quantum states)jo = 0 and Eg. (9) simplifies

a change o (1) is associated to a change of the eigen-urther to

values of the reduced density [6]. The coefficients of the 1 » )
expansion furnish characteristic times associated with 2 (Wl Hlg )™ + i [KH 1)
correlation processes involvirfd;,,, to ordern. Note that 5 5

they can be evaluated once the Hamiltonian is specified + WallH)ilg) — ol Holyn) . (10)

and the initial state of the composite system is given. It hare NOWH), stands foKy, | H i)
n n n/-
may be noted that the double commutators such as thoseEquation (8) shows in general that for two initially

afPea“”g Ibnl Eq. (7) have b;:en d;}scussed in the contexf, qrrelated subsystems decoherence processes evoive at
of Irreversible processes where they appear in CoNN€Ga5q; quadratically in time for short times. In order to
tion with dynamical semigroups related to master equa-

L ) . ¢ gain further insight into the content of these expressions
tion time evolution [9]. Equations (6) and (7) involve all o now show that Eq. (9) corresponds precisely to the

the physical ingredients which may contribute to the timee|_known expression for the decoherence time obtained
deveI(_)pment of quantum correlgtlons to first an_d Secongh; the popular model of Refs. [2,14] through the use of
order inHi,. The same expressions can be obtained from, £qyer-Planck equation or directly from the Feynman-
the exact dynamics of the eigenvalues of the reduced deRyeon [15] influence functional. This model consists of
sity matrix, as given in Ref. [6]. a harmonic oscillator (to be considered as subsystem 2)

In the frequently considered special case in which thene a1y coupled to a heat bath (subsystem 1) made also of
two subsystems are initially uncorrelated, i.e., when th,,monic oscillators, the Hamiltonian being written as
initial density p(0) factors asp(0) = p;(0) ® p,(0), the

2
above expressions simplify considerably. We get H— o 1,22+ Z(ﬂ " lmkw2x2>
, 1 2m 200 =\2m; 2" Kk
8o =1 — Tr{p7(0)}, 50 (8)
+ , 11
and X%Cm (11)

208



VOLUME 77, NUMBER 2 PHYSICAL REVIEW LETTERS 8 ULy 1996

wherec; are the coupling constants. If one considers thavhere the parameter§ and 6 reparametrize the initial

initial state state of the two level subsystem according to the definition
e PH: 1+ ¢ .
p0 = (T3 ) ewwl. a2 pm P cize=1 @
where g is the usual Boltzmann facto#,(Z;) is the We remark first that, is independent of the displace-

Hamiltonian (partition function) of théth oscillator in menta characterizing the coherent state of the field. Also
the heat bath, anfl) (/| the initial state of the oscillator the well-known result for, in the so-called rotating wave

with frequencywy, from Eq. (10) one gets approximation (RWAg’ = 0) and assuming the spin‘2
2 initial state to bg+ = 1) is obtained from Eq. (19):
1 2A2x|:z _d COU(BﬁZwk)} a3 d >(§1 ) a. (19)
2 kSRR ‘7@E = V2g. (21)
where A%x is the variance of the position coordinate of 2
the w( oscillator in the statéy)). This reflects the well-known result that for the atom-initial
Now, with the usual Ohmic dissipation assumptions [3],condition |+) the RWA of the Jaynes-Cummings model
ie., predicts Rabi oscillations with decreasing amplitude. The
0w> L amplitude has in fact an envelope which can be repre-
s ]“’d D)2 | ¥ n sented for short times by the Gaussiart™ [12]. Had
— wD(w) with ——= = , : .
. 0 w?m, 2 <L we started with the atomic state-), we would get that
T T

the envelope is also a Gaussian, but with second order de-
(14) cay time proportional to the antiresonant couplig

whereD(w) is the density of modes of the heat bath and

7 related to a friction coefficient. It is easy to show that, ’ 1= V2g' for p(0) = [-)(~| ® |a)(al. (22)
for Bhiw < 1, this leads to the standard result [2] 72_ ) o
52 An interesting situation occurs when, perhaps more
|7y = B ) (15) realistically, g = gt If we take the initial condition
2n Ax? £=0,0=0,
We turn now to a different example, of relevance 1
in quantum optics: the Jaynes-Cummings model whose )l = = (+) + =) (+] + (=) (23)
Hamiltonian including both resonant and antiresonant 2
contributions is given by we get1/7, = 0. In such a situation (as in the case

of any perturbative expansion) we have to examine the
higher order contributions. For the specific initial spin
+ g'atoy +ac), (16) state Eqg. (23) and with the field in a coherent state we get
that the lowest contributing order is

H = hor(ata + %) + %GO'Z + glato. + aoy)

wherea andat are the field boson creation and annihi-

lation operators, respectivelwx(e) is the field (atomic) 1 1.,

frequency, and ther matrices the usual Pauli matrices ;4 — 4<h1>p1(0)<[[H02,h2],[[Hz,hz], p2(0)1D 5,0

with o0+ = o, * ioy. We consider the case of an ini- 1

tially factorized density - Z(M)il(o)([[Hoz, h2], p2(0) )00 - (24)
p(0) = [pw){ul ® [a){al, (17)

where we have rewritten the Hamiltonia&has
where |a) stands for a coherent state of the field, .
considered to be subsystem dla) = a|a) [16], and H = Hov + Ho> + ghih (25)
|w) is the most general state for the sgif2 subsystem with Hy, = hiwp(ata + %), Hy = %601, hy = (a +

written as at), andh, = o.. When the initial density, (0) is given
1 by Eq. (23) angp,(0) = |a){a| we find
lu) = W(|—> + ul+)), (18) 1\
—<—> = 262g2. (26)
the stated+) being normalized eigenvectors of,. In 74

this case the second order decoherence time scale is givenThese results immediately imply that the antiresonant

by terms tend to change the shape of the envelope of Rabi
| g2 pe oscillations of the atomic inversion for short times. Also,
- =0+ &> + (1 — ¢)? in the hypothetical situation where we could control the
72 2 2 parameters and g our results indicate that by carefully
— gg'(1 — &%) cos9, (19) choosing the initial condition, special states, namely, the
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