VOLUME 77, NUMBER 10 PHYSICAL REVIEW LETTERS 2 BPTEMBER 1996

Mesoscopic Fluctuations of Elastic Cotunneling
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We study mesoscopic fluctuations of the conductance through a quantum dot at the wings of the
Coulomb blockade peaks. At low temperatures, the main mechanism of conduction is elastic cotun-
neling. The conductance strongly fluctuates with an applied magnetic field. The magnetic correlation
field is shown to be controlled by the charging energy, and the correlation function has a universal
form. The distribution function for the conductance obtained analytically shows a nontrivial crossover
between the orthogonal and unitary ensembles. [S0031-9007(96)01096-4]

PACS numbers: 73.23.Hk, 03.65.Sq, 73.40.Gk

Statistical theory of electron eigenfunctions in complexmagnetic fieldB, between the orthogonaB(= 0) and
systems was developed in the early 1950s [1] for theunitary (B — <) ensembles.
description of the absorption spectra of large atoms. Soon The situation changes drastically if the system is tuned
it was realized that the same random matrix (RMT)away from the charge degeneracy poiit> A = T. In
approach can be applied to the excitation spectrum ahis case the transport is due to the virtual transitions of
small metallic grains [2]. An important distinction should an electron via excited states of the dot (so-called elastic
be made between the excitations that preserve the numbeotunneling [9]); many levels with energies exceedig
of electrons in the grain and the excitations that changeontribute to the tunneling. The superposition of a large
this number. This distinction is most easily seen in thenumber of tunneling amplitudes changes the properties of
case where the introduction of an additional electrorthe conductance fluctuations, which is studied for the first
causes charging of the grain and, thus, is associateime in this Letter.
with the charging energ¥.. In this case, the addition  We will show that the correlation functio@(AB) for
spectrum shows the gap of the widH), whereas the the conductance in the cotunneling regime is universal
spectrum of electron-hole excitations is controlled by(i.e., all the dependences for differefitcan be collapsed
typically a much smaller energy scale (here A is the to a single curve upon rescaling of the magnetic field);
mean level spacing of the grain). magnetic correlation fiel®,. is inversely proportional to
The addition spectrum manifests itself in transporty/E, and thus the charging energy controls the fluctuations
experiments on electron tunneling between two leadsf the elastic cotunneling. Furthermore, the functional
through a quantum dot. The electrostatic potential oform of C(AB) is entirely different from the known results
the dot, and therefore the energy of the electron additiof]. Finally, we will find the distribution function of the
E, can be controlled by a capacitively coupled gateconductance for all values of the magnetic field.

electrode [3]. At temperaturé& much smaller thark,, The quantum dot attached to two leads is described by
the presence of the gap results in suppression of thi#e Hamiltonian
conductance at almost all gate voltages. Only if the gate H=H, + Hy + Hp + Hy, (1a)

\églgt]z%(Er:c;??ZdEtO:OOr?ei SOIhE:eSS;JS;:St:i opr? |Iri1fttsédo.f (.:rr;]?;g(\e/vherg the Hamiltonians of the lefL] and right R) leads
phenomenon is known as the Coulomb blockade. Th&'® 9Iven by

question arises whether and when the results of RMT 2 g 1t o rpt

(which does not take into account any charging gap) e %‘gkakak’ H gfkb" i (16)
can be applied to the statistics of the conductance in th
C(_)ulomb ploc_kade regime. Being interesting on it§ OWNcormilevel. The Hamiltonian of the déi, has the form
this question is also relevant for the recent experiment ]

studies of the conductance fluctuations [4]. The answe

to this question depends on how close the system is to thegy,) — kaCZCk + E.(h — N3, o= ZC]:er,
charge degeneracy point. Right at the degeneracy point, % 3

and at low temperatureB < A, the transport occurs by (1c)
means of resonant tunneling through a single state. Thusshere &, describes the one-electron spectrum of the dot,
the charging energ¥. is irrelevant, and RMT provides and the second term iff, corresponds to the charging
an adequate description of the distribution function ofenergy, ande. = ¢2/2C. HereC is the capacitance of
the peak heights [5,6]. Supersymmetry calculation [7]the dot, and/\V is the conventional dimensionless param-
allows for a description of the crossover [8], with the eter related to the gate voltadfg by N = V,/eC,, with

&nd f,ﬁ"‘ is the one-electron energy measured from the
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C, being the gate capacitance. The tunneling Hamiltonadvanced one-electron Green functig®* of the dot,

ian couples the leads with the dot, and it has the form FR,.R.) — 1 f do G2 — GX ol N — N
) l + + ( I r) - vy 27Tl |(1)| +E [(1)( m)]a
Hr = Ztkpakc,, + Ztl:pbkcﬂ + H.c. (1d) (7)
k,p k,p
where «
Operatorsa, b, and ¢ in Egs. (1b)—(1d) are the corre- GRA = GRAR,,R,) = Z Py (R )iy (R))

sponding fermionic operators. T 0 — & £i0°

If tunneling is weak, the charge of the daét is  (we puts = 1 in all the intermediate calculations.)
quantized. Obviously, degeneracy of the charging energy Equations (5) and (7) express the elastic cotunneling
In qu- (1c) corresponds to half-integer valué¥,, =  conductance in terms of the exact electron wave functions
m + 5 of the dimensionless gate voltag¥ . of the dot. These functions vary strongly when the

If V, is tuned away from a degeneracy point, it takes amagnetic field is applied to the dot or the shape of
finite energyE to add one electron (or hole) to the dot,  the dot is changed. Thus, the conductance is a random

E=E|N — N, IN — Nl <1/2. () quantity and one s'hou_ld consid_erdifferent moments of the

conductance distribution function. We will employ the

Positive (negative) values v — N, correspond to the ensemble averaging, which is equivalent to the averaging
electronlike (holelike) lowest charged excitations. over applied magnetic field or over the peak index

We are considering the strong Coulomb blockadeAccording to Egs. (5) and (7), the averaged moments of
away from the resonance. Thus, we employ perturbatiothe conductance are expressed in the terms of the averaged
theory in the tunneling Hamiltonian (1d). The lowest product of the Green functions. It is well known [11] that

nonvanishing contribution to the conductar@es if the dot in the metallic regime (the transport mean free
27re? path or the size of the dot is much larger than the Fermi
G = ; ZIAk,,IZB(g,ﬂ)cS(f;). (3) wavelength) and the relevant energies are much larger
k.p than A, these products can be related to the generalized

The amplitudet,,, corresponds to the process in which anclassical correlators—diffuso and Cooperort:

electron (hole) tunnels from statein the left lead into a (GR 5. (r,8)Gh 5 (s, 1)) = 2mv, DS (r,s), (8a)

virtual state in the dot, and then it tunnels out to state R A B,.B,

of the second lead. This amplitude is given by (G, 5,(r,8)G,, 5, (r,8)) = 2mvyC, 1% (r,s), (8D)

1 where (- --) stand for the ensemble averaging perfomed
Ay = > 11, (17 ) ——— [, (N — N;)]. (4) under the fixed magnetic field,, B,. The averages of
g %‘ G g+ E the type(GRGR) and(GAG4) are much smaller and can
The denominator in Eq. (4) corresponds to the energy o€ neglected. If the sample is dirty, so that the motion
virtual stateq involved in the cotunneling process, and ©f €lectrons in the dot is diffusive, the diffuson and
the step functiord(x) selects the dominating (electron or C00Peron (8) satisfy the equations

2
hole) channel. [_~ n D<—'V + EA- ) }DBI,BZ = 5(r —
In the most realistic case [4,10] of point contacts, e r c (r) @ (x =),
Egs. (3) and (4) may be further simplified. The tunneling (9a)

matrix elementslt,lgqu2 do not depend on the indices e » V155
k,q, and can be related to the conductances of the point[—iw + D<—in + ?A (r)> i|Ca)l’ =68 —s),
contactsG;, = 2me?/R)v v, |t | herev,, , are the (9b)
Znifgﬁge (?c\)/tezla)lg?gs(:)eercljil\tlflf/ ijts?azstﬁirs:rzgfli?]i:ir:)ilse%jﬁereD is the diffusion constant, and™ is the vector
) o ' ; ' . ' potential due to the magnetic fied, X A= = B; + B,.
substituting Eq. (4) into Eq. (3), and performing theF the dot in the ballistic regime, the diffusion operator
summation ovek andp in Eq. (3), we find or . gime, P X
on the left-hand side of Eqgs. (9) should be replaced with
the Liouvillean operator. The solution of Egs. (9) with
the condition of vanishing normal component of the gauge
invariant current at the boundary of the dot will enable
us to find all the relevant correlation functions of the
conductance and we are turning to this calculation now.
. The averaged cotunneling conductance is obtained
F(R,.R,) = Vi Z Yy R)Y,(R,) LE(N — Nyl immediately by the averaging of Eq. (5) with the help of
d

G = G/G,|F(R;, R, (5)

21re?
The dimensionless functio#(R;,R,) contains all the
information about elastic cotunneling through the dot
between the point contacts locatedRgtandR .,

- &+ E © Egs. (7) and (8a). The result is
GG, “d E +
| - ) = 728 [ 48 poog, g,y L1
wherey, is the one-electron wave function in the closed 2mivge? ) |ol E
dot. It is useful to rewrite” in terms of the retarded and (10)
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Calculation of the second moment of the conductance is performed by taking into account that, because the relevant
energy scale is much larger than the average of the product of four Green functions can be decoupled into a product

of the pairwise averaged Green functions, which are in turn given by Egs. (8). This yields
2

GG, \ *d E +
CwG®B +ap) = (329 Y| | [ 42 poow, v,y EL1]
272y e? —» o] E
2
“d E +
| [ Lo ppsrrm, rym L1
—o |(l)| E
2
“d E +
w| [ e cpmrnr R B } (11)

The term in the second line of Eq. (11) corresponds to thezﬁD/S, with shape-dependent coefficiemtof the order
square of the average conductance, and the last two terro$ unity. Equation (12) holds also for ballistic cavities;
describe the conductance fluctuations. The term in théhe only difference is that the expression for the Thouless
third line of Eq. (11) depends only ofB [cf. Eq. (9a)], energy changes tBr = 5/ 7, with 7 being the time of
and it is present both for the orthogon#l & 0) and for  flight of an electron across the dot. Thouless energy can
the unitary B — ) ensembles. To the contrary, the lastbe independently measured by studying the correlation
term in Eqg. (11) dies out for the unitary ensemble. function of mesoscopic fluctuations for the same dot but

It is easily seen from Eq. (11) that the fluctuations arewith the contacts adjusted to the ballistic regime.
always of the order of the conductance itself. This may be Substitution of Eq. (12) into Eq. (10) immediately
understood from the following qualitative consideration.yields the known [9] result for the averaged conductance
There areN ~ E/A > 1 contributions corresponding to KG,G, A
different eigenstates in the cotunneling amplitude (4). (G) = 2’ —.
Assume that the phases of these contributions are com- i 2me” E
pletely random. Conductance is proportional to the modutiowever, the fluctuationssG(B) = G(B) — (G) are
lus squared of the sum of these contributions, and thu&rge. We find from Eq. (11) with the help of Egs. (12),
there areN? terms in the conductance. Among thoae, (6G(B)6G(B + AB)) AB 2B + AB
terms do not fluctuate, and the re¢t — N are random. (G)? - A(B_C> + A(B—C>
These random terms, however, do contribute to the fluc- (14)
tuation (§G?), and the number of nonvanishing terms in
itis N> — N. Therefore, the average conductance is pro
portional toN, and its rms fluctuation is-+vVN2? — N =
N. Thus, conductance in the cotunneling regime is not a
self-averaging quantity despite a naive expectation that a 1 2
large number of virtual states participating in the cotun- + = Liz(—x4)j| , (15)
neling may decrease the fluctuations. 2

Equations (10) and (11) are quite general; i.e., theyyith Li,(x) being the second polylogarithm function [12].
are valid for an arbitrary relation between the energyThe asymptotic behavior of function is A(x) =1 +
of charged excitationE and Thouless energy¥r = (2x%Inx?)/m, for x < 1 and A(x) = (wx?)"%In* x> for
ED/L* (here L is the linear size of the dot). In the x > 1.
most interesting regime; < Er, the correlation function  The correlation magnetic fiel@. in Eq. (14) is con-
of conductance fluctuation§(AB) acquires a universal trolled by the charging energy

(13)

where the scaling functioA(x) is given by

1
A(x)=— {Inlen(l + x*) + 7 arctan?
mX

form, as will be shown below. P £
BecauseE < Er, the characteristic frequency in B, = =2 |=. (16)
Egs. (9) is much smaller than the lowest nonzero eigen- S VEr

value of the diffusion operator (which is of the order of It is worth noticing from Egs. (13) and (16) that the corre-
D/L?). Therefore, only the zero frequency mode canlation magnetic fieldB, drops with approaching a charge
be retained in the solutions of Egs. (9). This mode cordegeneracy point (in agreement with the recent experi-
responds to the probability density homogeneously disment [4]), whereas the quantityz)B> remains invariant.

tributed over the dot, and the solution has the form This invariance can be easily checked experimentally.
BB — s! CBiB — s! Let us present also the expression for the experimen-
@ —iw + Q_° @ —iw + Q7 tally measurable correlation function of the conductance

S2(B, + B,)? (12) fluctuations C(AB) = (6G(B)6G(B + AB))/{8G(B)?).
Qe =Er —————, For both orthogonal and unitary ensembles we obtain

. b _ . from Eq. (14)
where S is the area of the dotpy = 27hc/e is the
flux quantum, and the Thouless energy is giventyy= C(AB) = A(AB/B,), a7
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C(AB) the distribution functionP(g) coincides with the Porter-

1 Thomas distribution [1,13] for the orthogonal and unitary
ensembles, respectively.

So far we considered elastic cotunneling only. It domi-
nates over the inelastic processes [9]at v/EA, which
is the typical regime for the modern experiments with
semiconductor quantum dots [4,10]. At higher tempera-
tures, the main conduction mechanism switches to the in-
elastic cotunneling. Nevertheless, the fluctuations are still
determined by the elastic mechanism (BA)!/2 < T <
(E2A)'/3. At even higher temperatures, the inelastic con-
tribution dominates also in the fluctuations. Their rela-
tive magnitude, however, is smal§ G2 )/(Gin)? = A/T.
The correlation magnetic field is controlled by the tem-
perature rather than by the charging energy and therefore
is independent on the gate voltage.

In conclusion, we studied the statistics of mesoscopic

FIG. 1. The correlation functiolC(AB) for the conductance quctuatlons_ of the elagtlc_ cot_unnellng. We showed that

fluctuations in the elastic cotunneling regime (solid line) and forth€ correlation magnetic field is controlled by the charging

the peak height fluctuation§ = [1 + (AB/B.)*]"2 (dashed energy and the correlation function of the conductance is

line). For elastic cotunneling;(AB) is nonanalytic ahB — universal.
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