
VOLUME 77, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 2 SEPTEMBER1996

f the
otun-
lation
ersal
over
Mesoscopic Fluctuations of Elastic Cotunneling
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We study mesoscopic fluctuations of the conductance through a quantum dot at the wings o
Coulomb blockade peaks. At low temperatures, the main mechanism of conduction is elastic c
neling. The conductance strongly fluctuates with an applied magnetic field. The magnetic corre
field is shown to be controlled by the charging energy, and the correlation function has a univ
form. The distribution function for the conductance obtained analytically shows a nontrivial cross
between the orthogonal and unitary ensembles. [S0031-9007(96)01096-4]

PACS numbers: 73.23.Hk, 03.65.Sq, 73.40.Gk
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Statistical theory of electron eigenfunctions in compl
systems was developed in the early 1950s [1] for t
description of the absorption spectra of large atoms. So
it was realized that the same random matrix (RM
approach can be applied to the excitation spectrum
small metallic grains [2]. An important distinction shoul
be made between the excitations that preserve the num
of electrons in the grain and the excitations that chan
this number. This distinction is most easily seen in t
case where the introduction of an additional electr
causes charging of the grain and, thus, is associa
with the charging energyEc. In this case, the addition
spectrum shows the gap of the widthEc, whereas the
spectrum of electron-hole excitations is controlled
typically a much smaller energy scaleD (here D is the
mean level spacing of the grain).

The addition spectrum manifests itself in transpo
experiments on electron tunneling between two lea
through a quantum dot. The electrostatic potential
the dot, and therefore the energy of the electron addit
E, can be controlled by a capacitively coupled ga
electrode [3]. At temperaturesT much smaller thanEc,
the presence of the gap results in suppression of
conductance at almost all gate voltages. Only if the g
voltage is tuned to one of the discrete points of char
degeneracy, i.e.,E ­ 0, is this suppression lifted. This
phenomenon is known as the Coulomb blockade. T
question arises whether and when the results of RM
(which does not take into account any charging ga
can be applied to the statistics of the conductance in
Coulomb blockade regime. Being interesting on its ow
this question is also relevant for the recent experimen
studies of the conductance fluctuations [4]. The answ
to this question depends on how close the system is to
charge degeneracy point. Right at the degeneracy po
and at low temperaturesT ø D, the transport occurs by
means of resonant tunneling through a single state. Th
the charging energyEc is irrelevant, and RMT provides
an adequate description of the distribution function
the peak heights [5,6]. Supersymmetry calculation
allows for a description of the crossover [8], with th
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magnetic fieldB, between the orthogonal (B ­ 0) and
unitary (B ! `) ensembles.

The situation changes drastically if the system is tun
away from the charge degeneracy point,E . D . T . In
this case the transport is due to the virtual transitions
an electron via excited states of the dot (so-called elas
cotunneling [9]); many levels with energies exceedingE
contribute to the tunneling. The superposition of a larg
number of tunneling amplitudes changes the properties
the conductance fluctuations, which is studied for the fi
time in this Letter.

We will show that the correlation functionCsDBd for
the conductance in the cotunneling regime is univers
(i.e., all the dependences for differentE can be collapsed
to a single curve upon rescaling of the magnetic field
magnetic correlation fieldBc is inversely proportional top

E, and thus the charging energy controls the fluctuatio
of the elastic cotunneling. Furthermore, the function
form of CsDBd is entirely different from the known results
[6]. Finally, we will find the distribution function of the
conductance for all values of the magnetic field.

The quantum dot attached to two leads is described
the Hamiltonian

Ĥ ­ ĤL 1 ĤR 1 ĤD 1 ĤT , (1a)

where the Hamiltonians of the left (L) and right (R) leads
are given by

ĤL ­
X

k

j
l
ka

y
k ak , ĤR ­

X
k

jr
kb

y
k bk , (1b)

and j
l,r
k is the one-electron energy measured from th

Fermi level. The Hamiltonian of the dot̂HD has the form
[3]

ĤD ­
X
k

jkc
y
k ck 1 Ecsn̂ 2 N d2, n̂ ­

X
k

c
y
k ck ,

(1c)

wherejk describes the one-electron spectrum of the d
and the second term in̂HD corresponds to the charging
energy, andEc ­ e2y2C. HereC is the capacitance of
the dot, andN is the conventional dimensionless param
eter related to the gate voltageVg by N ­ VgyeCg, with
© 1996 The American Physical Society 2057
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Cg being the gate capacitance. The tunneling Hamilt
ian couples the leads with the dot, and it has the form

ĤT ­
X
k,p

tl
kpa

y
k cp 1

X
k,p

tr
kpb

y
k cp 1 H.c. (1d)

Operatorsa, b, and c in Eqs. (1b)–(1d) are the corre
sponding fermionic operators.

If tunneling is weak, the charge of the dot̂n is
quantized. Obviously, degeneracy of the charging ene
in Eq. (1c) corresponds to half-integer valuesNm ­
m 1

1
2 of the dimensionless gate voltageN .

If Vg is tuned away from a degeneracy point, it take
finite energyE to add one electron (or hole) to the dot,

E ­ EcjN 2 Nmj, jN 2 Nmj , 1y2 . (2)

Positive (negative) values ofN 2 Nm correspond to the
electronlike (holelike) lowest charged excitations.

We are considering the strong Coulomb blocka
away from the resonance. Thus, we employ perturba
theory in the tunneling Hamiltonian (1d). The lowe
nonvanishing contribution to the conductanceG is

G ­
2pe2

h̄

X
k,p

jAkp j2dsjl
kddsjr

p d . (3)

The amplitudeAkp corresponds to the process in which
electron (hole) tunnels from statek in the left lead into a
virtual state in the dot, and then it tunnels out to statep
of the second lead. This amplitude is given by

Akp ­
X
q

tl
kqstr

pqdp 1
jjqj 1 E

ufjqsN 2 Nmdg . (4)

The denominator in Eq. (4) corresponds to the energ
virtual stateq involved in the cotunneling process, an
the step functionusxd selects the dominating (electron
hole) channel.

In the most realistic case [4,10] of point contac
Eqs. (3) and (4) may be further simplified. The tunnel
matrix elementsjt

l,r
kq j2 do not depend on the indice

k, q, and can be related to the conductances of the p
contacts,Gl,r ­ s2pe2yh̄dndnl,r jtl,r j2; herenl,r ,d are the
ensemble-averaged densities of states per area in the
sl, rd and dot (d), respectively. Using these definition
substituting Eq. (4) into Eq. (3), and performing t
summation overk andp in Eq. (3), we find

G ­
h̄

2pe2
GlGr jFsRl , Rrdj2. (5)

The dimensionless functionFsRl , Rr d contains all the
information about elastic cotunneling through the d
between the point contacts located atRl andRr ,

FsRl , Rrd ­
1

nd

X
q

cp
qsRldcqsRrd
jjqj 1 E

ufjqsN 2 Nmdg ,

(6)

wherecq is the one-electron wave function in the clos
dot. It is useful to rewriteF in terms of the retarded an
2058
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advanced one-electron Green functionsGR,A of the dot,

FsRl , Rr d ­
1

nd

Z dv

2pi

GA
v 2 GR

v

jvj 1 E
ufvsN 2 Nmdg ,

(7)
where

GR,A
v ­ GR,A

v sRl , Rr d ­
X
q

cp
qsRr dcqsRld

v 2 jq 6 i0
.

(We puth̄ ­ 1 in all the intermediate calculations.)
Equations (5) and (7) express the elastic cotunne

conductance in terms of the exact electron wave functi
of the dot. These functions vary strongly when t
magnetic field is applied to the dot or the shape
the dot is changed. Thus, the conductance is a ran
quantity and one should consider different moments of
conductance distribution function. We will employ th
ensemble averaging, which is equivalent to the averag
over applied magnetic field or over the peak indexm.
According to Eqs. (5) and (7), the averaged moments
the conductance are expressed in the terms of the aver
product of the Green functions. It is well known [11] th
if the dot in the metallic regime (the transport mean fr
path or the size of the dot is much larger than the Fe
wavelength) and the relevant energies are much la
than D, these products can be related to the general
classical correlators—diffusonD and CooperonC :

kGR
v1,B1

sr, sdGA
v2,B2

ss, rdl ­ 2pndD B1 ,B2
v12v2

sr, sd , (8a)

kGR
v1,B1

sr, sdGA
v2,B2

sr, sdl ­ 2pndC B1,B2
v12v2

sr, sd , (8b)

where k· · ·l stand for the ensemble averaging perfom
under the fixed magnetic fieldsB1, B2. The averages o
the typekGRGRl and kGAGAl are much smaller and ca
be neglected. If the sample is dirty, so that the mot
of electrons in the dot is diffusive, the diffuson an
Cooperon (8) satisfy the equations∑

2iv 1 D

µ
2i=r 1

e
c

A2srd
∂2∏

D B1,B2
v ­ dsr 2 sd ,

(9a)∑
2iv 1 D

µ
2i=r 1

e
c

A1srd
∂2∏

C B1,B2
v ­ dsr 2 sd ,

(9b)

whereD is the diffusion constant, andA6 is the vector
potential due to the magnetic field,= 3 A6 ­ B1 6 B2.
For the dot in the ballistic regime, the diffusion operat
on the left-hand side of Eqs. (9) should be replaced w
the Liouvillean operator. The solution of Eqs. (9) wi
the condition of vanishing normal component of the gau
invariant current at the boundary of the dot will enab
us to find all the relevant correlation functions of th
conductance and we are turning to this calculation now

The averaged cotunneling conductance is obtai
immediately by the averaging of Eq. (5) with the help
Eqs. (7) and (8a). The result is

kGl ­
GlGr

2p2nde2

Z `

2`

dv

jvj
D 0,0

v sRl , Rrd ln
E 1 jvj

E
.

(10)
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Calculation of the second moment of the conductance is performed by taking into account that, because the
energy scale is much larger thanD, the average of the product of four Green functions can be decoupled into a pr
of the pairwise averaged Green functions, which are in turn given by Eqs. (8). This yields

kGsBdGsB 1 DBdl ­

µ
GlGr

2p2nde2

∂2
" É Z `

2`

dv

jvj
D 0,0

v sRl , Rrd ln
E 1 jvj

E

É2
1

É Z `

2`

dv

jvj
D B,B1DB

v sRl , Rrd ln
E 1 jvj

E

É2
1

É Z `

2`

dv

jvj
C B,B1DB

v sRl , Rrd ln
E 1 jvj

E

É2#
. (11)
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The term in the second line of Eq. (11) corresponds to
square of the average conductance, and the last two te
describe the conductance fluctuations. The term in
third line of Eq. (11) depends only onDB [cf. Eq. (9a)],
and it is present both for the orthogonal (B ­ 0) and for
the unitary (B ! `) ensembles. To the contrary, the la
term in Eq. (11) dies out for the unitary ensemble.

It is easily seen from Eq. (11) that the fluctuations a
always of the order of the conductance itself. This may
understood from the following qualitative consideratio
There areN , EyD ¿ 1 contributions corresponding to
different eigenstates in the cotunneling amplitude (
Assume that the phases of these contributions are c
pletely random. Conductance is proportional to the mo
lus squared of the sum of these contributions, and t
there areN2 terms in the conductance. Among those,N
terms do not fluctuate, and the restN2 2 N are random.
These random terms, however, do contribute to the fl
tuation kdG2l, and the number of nonvanishing terms
it is N2 2 N. Therefore, the average conductance is p
portional toN , and its rms fluctuation is,

p
N2 2 N .

N . Thus, conductance in the cotunneling regime is no
self-averaging quantity despite a naive expectation tha
large number of virtual states participating in the cotu
neling may decrease the fluctuations.

Equations (10) and (11) are quite general; i.e., th
are valid for an arbitrary relation between the ener
of charged excitationE and Thouless energyET .
h̄DyL2 (here L is the linear size of the dot). In the
most interesting regime,E , ET , the correlation function
of conductance fluctuationsCsDBd acquires a universa
form, as will be shown below.

BecauseE , ET , the characteristic frequencyv in
Eqs. (9) is much smaller than the lowest nonzero eig
value of the diffusion operator (which is of the order
DyL2). Therefore, only the zero frequency mode c
be retained in the solutions of Eqs. (9). This mode c
responds to the probability density homogeneously d
tributed over the dot, and the solution has the form

D B1,B2
v ­

S21

2iv 1 V2

, C B1,B2
v ­

S21

2iv 1 V1

,

V6 ­ ET
S2sB1 6 B2d2

F
2
0

,
(12)

where S is the area of the dot,F0 ­ 2p h̄cye is the
flux quantum, and the Thouless energy is given byET ­
the
rms
the

st

re
be
n.

4).
om-
du-
hus

uc-
in
ro-
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t a
n-

ey
gy

l

en-
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ah̄DyS, with shape-dependent coefficienta of the order
of unity. Equation (12) holds also for ballistic cavitie
the only difference is that the expression for the Thoul
energy changes toET . h̄ytfl, with tfl being the time of
flight of an electron across the dot. Thouless energy
be independently measured by studying the correla
function of mesoscopic fluctuations for the same dot
with the contacts adjusted to the ballistic regime.

Substitution of Eq. (12) into Eq. (10) immediate
yields the known [9] result for the averaged conductan

kGl ­
h̄GlGr

2pe2

D

E
. (13)

However, the fluctuationsdGsBd ­ GsBd 2 kGl are
large. We find from Eq. (11) with the help of Eqs. (12

kdGsBddGsB 1 DBdl
kGl2

­ L

µ
DB
Bc

∂
1 L

µ
2B 1 DB

Bc

∂
,

(14)

where the scaling functionLsxd is given by

Lsxd ­
1

p2x4

"
ln x2 lns1 1 x4d 1 p arctanx2

1
1
2

Li 2s2x4d

#2

, (15)

with Li2sxd being the second polylogarithm function [12
The asymptotic behavior of functionL is Lsxd ­ 1 1

s2x2 ln x2dyp, for x ø 1 and Lsxd ­ spx2d22 ln4 x2 for
x ¿ 1.

The correlation magnetic fieldBc in Eq. (14) is con-
trolled by the charging energy

Bc ­
F0

S

s
E
ET

. (16)

It is worth noticing from Eqs. (13) and (16) that the corr
lation magnetic fieldBc drops with approaching a charg
degeneracy point (in agreement with the recent exp
ment [4]), whereas the quantitykGlB2

c remains invariant.
This invariance can be easily checked experimentally.

Let us present also the expression for the experim
tally measurable correlation function of the conducta
fluctuations CsDBd ­ kdGsBddGsB 1 DBdlykdGsBd2l.
For both orthogonal and unitary ensembles we ob
from Eq. (14)

CsDBd ­ LsDByBcd , (17)
2059
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FIG. 1. The correlation functionCsDBd for the conductance
fluctuations in the elastic cotunneling regime (solid line) and
the peak height fluctuationsC ­ f1 1 sDByBcd2g22 (dashed
line). For elastic cotunneling,CsDBd is nonanalytic atDB !
0; see inset, and Eq. (17).

function Lsxd is defined by Eq. (15). We emphasize th
the functional form ofCsDBd is different from the results
for the peak heights fluctuations [6]; see Fig. 1.

As we saw, fluctuations of the conductance are of
order of the averaged conductance. Thus the distribu
function is non-Gaussian; i.e., it is not characterized
its second moment only. Fortunately, for the elas
cotunneling the calculation of all the moments is poss
which enables us to find the distribution functionPsgd
[here we introduced random variableg ­ GsBdykGl].
The functionPsgd is defined as

Psgd ;

*
d

√
g 2

G
kGl

!+
­

Z dq
2p

eiqg
X̀
n­0

s2iqdnkGnl
n! kGln

.

(18)

Calculation of the averagekGnsBdl entering into Eq. (18)
is performed in a fashion similar to the derivation
Eq. (11). In the universal regimeE , ET , we find

kGsBdnl
kGln

­
X

0#j#ny2

sn!d2

sj!d2sn 2 2jd!

µ
l

4

∂j

, (19)

where we introduced the shorthand notationl ;
LsByBcd. The substitution of Eq. (19) into Eq. (18
yields

Psgd ­
usgd

p
1 2 l

exp

µ
2

g
1 2 l

∂
I0

√
g
p

l

1 2 l

!
, (20)

whereI0sxd is the zeroth order modified Bessel functi
of the first kind. In the limiting casesl ­ 1 andl ­ 0,
2060
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the distribution functionPsgd coincides with the Porter
Thomas distribution [1,13] for the orthogonal and unita
ensembles, respectively.

So far we considered elastic cotunneling only. It dom
nates over the inelastic processes [9] atT ,

p
ED, which

is the typical regime for the modern experiments w
semiconductor quantum dots [4,10]. At higher tempe
tures, the main conduction mechanism switches to the
elastic cotunneling. Nevertheless, the fluctuations are
determined by the elastic mechanism forsEDd1y2 & T &

sE2Dd1y3. At even higher temperatures, the inelastic co
tribution dominates also in the fluctuations. Their re
tive magnitude, however, is small,kdG2

inlykGinl2 . DyT .
The correlation magnetic field is controlled by the te
perature rather than by the charging energy and there
is independent on the gate voltage.

In conclusion, we studied the statistics of mesosco
fluctuations of the elastic cotunneling. We showed t
the correlation magnetic field is controlled by the charg
energy and the correlation function of the conductanc
universal.
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