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Current-Dependent Exchange-Correlation Potential for Dynamical Linear Response Theory
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The frequency-dependent exchange-correlation potential, which appears in the usual Kohn-Sham
formulation of a time-dependent linear response problem, is a strongly nonlocal functional of the
density,so that a consistent local density approximation generally does not exist. This problem can be
avoided by choosing theurrent densityas the basic variable in a generalized Kohn-Sham theory. This
theory admits a local approximation which, for fixed frequency, is exact in the limit of slowly varying
densities and perturbing potentials. [S0031-9007(96)01133-7]

PACS numbers: 71.45.Gm, 73.20.Dx, 73.20.Mf, 78.30.Fs

The time-dependent density functional theory (TDFT)systems of slowly varying(7):
of Runge and Gross [1] potentially holds great promise S sl N eh (2 2 e (2
as a tool for studying the dynamics of many-particle sys- Fre® 7 @) = fie(F = 7, @3 m0(7)) 3)
tems, as well as for the computation of excitation enerThe superscript: refers to a homogeneous electron gas
gies which are not accessible within the ordinary stati@nd the functionf}, is a property of the homogeneous
density functional theory. At sufficiently low frequencies €lectron gas [3,6].
applications of the so-called adiabatic local density ap- However, it was noted later by Dobson [4] that the ap-
proximation (ALDA) [2] have given very useful results. Proximation (3), when applied to an electron gas in a static
Progress in the application of this theory to higher fre-harmonic potentiagkr2 and subjected to a uniform elec-
quency phenomena has been hindered by inconsistencies field, v, (7, w) = —E - 7e~'®!, violates the so-called
in the local density approximation for the frequency de-harmonic potential theorem (HPT), related to the general-
pendent exchange-correlation (xc) potential [3,4]. Thiszed Kohn's theorem [7], according to which the density
paper presents a resolution of these difficulties, by profollows rigidly the classical motion of the center of mass:
viding the correct form of the frequency dependent xc poy,, (7, w) = Vno(7) - §CM(w)- This raised serious ques-
tential in the regime of linear response and slowly varyingions about the validity of the approximation (3). Dobson
densities and perturbing potentials. observed that one could satisfy the HPT by requiring that

Our objective is t‘he determination of the linear denSitythe GK approximation (3) be app“ed in a frame of refer-
responsen (7, w)e '®" of a system of interacting elec- ence moving with the local velocity of the electron fluid.
trons in their ground state to a time-dependent potentiathe xc potential obtained by this construction is a func-
vi(F, w)e '’ In TDFT the problem is reduced to a sét tional of thecurrent densityas well as the density [8].
of self-consistent single particle equations, analogous to Further light on the problem with approximation (3)
the Kohn-Sham equations for time-independent systemgas thrown by Vignale’s observation [9] that the co-

[5], with an effective potential of the form variance of the time-dependent Schrédinger equation un-
(7, o) der transformation to an accelerated frame of reference
Vi1 (F, 0) = vi(F, ©) + E — a,ldl’ requires the total force exerted on the system by the
. rer exchange-correlation and Hartree potentials to vanish, in
+ Vixe(F, 0); 1) agreement with the third law of Newtonian mechanics.

the xc potentiab (7, ) is linear inn; (7, ), This implies that the exacf,. must satisfy the sum

rule [10]
wGo0) = [ foG om0 i, @) [ 1G5 ) = o), @)

and the kernelfy.(7,7'; w) is a functional of the unper- where v, (7) is the static xc potential. This sum rule

turbed ground state density (7). is violated by Eq. (3). More generally, one can deduce

In the spirit of the local density approximation Gross[10,11] that fx.(7, 7/, ) for a nonuniform system is of
and Kohn (GK) [3] considered the case whéreth ny  long range in space and a nonlocal functional of the den-
and n; are sufficiently slowly varying functions of.  sity distribution. These results indicate that, contrary to
As fx. is of short range for shomogeneousystem, more optimistic expectations, a local-density approxima-
they proposed the following plausible approximation fortion for time-dependent linear response in general does
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not exist as long as one insists on describing dynamicaias the form
exchange-correlation effects in terms of the density.

In this paper, we want to demonstrate, however, that £, (k, w) = 1 —[fh (0, Dkik; + I (0,7)
a local approximation for the time-dependent linear re- 7 2
sponse theory can be constructed in terms of che X (kZ(S,-j — kikj)], (10)

rent density. We consider the lineacurrent response

}1(?,w)e‘i“’f of interacting electrons in their ground state ) o . e
to a time-dependentector potentiald; (7, w)e !, This the functlonfxcL(w n) coincides with thek — 0 limit

problem includes, as a special case, the scalar potef?]c fxe(k, 0, 7) introduced byGK [see Eq. (3)]. Both
tial problem studied by GK, because any scalar potenfxcL(‘U 71) and fx.r(w,7) can, in principle, be computed
tial v,(7,w) can be gauge transformed to a Iongitudinalfrom the current response func_tlon of the homogeneous
vector potentiald; (7, ) = §U1(;’w)/iw, and the den- electron gas [see Eg. (8)]. While some aspects of these

sity response can be calculated from the current responéléncnonS are known [3,14], further work is needed for a

using the continuity equatiom; (7, w) =V - j (F,w)/ complete evaluation.

gA al, Yy €q thel " ‘;’ t_ d ]ijr @ + a5 From Eq. (10) we can obtain the xc potential in real
fw. AS usual, we express exact Induced current ag, .6 for a homogeneous electron gas subjected to a
the response of a noninteracting reference system (t

. N erturbation which is slowly varying on the scallz,yé1
*ff?h” -Sham” system) to an effective vector pOtentIaI(~interelectron distance) andr/w (~distance traveled

ar = artdig Tt dixe by an electron during a period of the perturbing field),

where the factorl/a)2 has been put in evidence so that

e _ > - ->eff-> ol s 1 = N
J1i(r,w) = f ;XKS,ij(l",r/,w) - ay "w)dr', (5) a{zxc(r’w) — 7{V[fch(w’”)V (L )]

where =V X [fler(@.m)V - 17 o))
(11)
ap(F, w) = )2 ] Ve [V/ W, @)]di" (6) Next, in the spirit of the local-density approximation,

_ o _ _ let us consider a system in which the unperturbed static
is the Iongltudlnal vector potential corresponding to thedensityn,(7) is slowly varying on the scales of the local

dynamic Hartree potential of Eq. (1), and kr' andvy/w, but not necessarily on the scale iof!,
the wavelength of the perturbing field.
dixe(F, @) = f f (77, 0) - 17, 0)dF (7) The simplest case is that of a periodically modulated
electron gas, where the unperturbed density, given by

is a linear functional of the current. TheX 3 tensor no(7) = @[l + 2y codq - 7)1, (12)

kernelf . is defined as ] o
is not only slowly varying (i.e.qg < kr, w/vF), but, also,

freij(F 7 ) = xgs,;(F 7 o) = x; ' (F.F, o) almost uniformj.e.,y < 1.
| We shall compute the exatf. for this system, to first
- Vie—— V’ (8) orderinvy. Itis convenient to represefif. in momentum
7 =7 space. Translational invariance of the unifgrm density
where y and yxs are the current response tensors [12]gives, to first order iny, fxc(k k w) = fh (k, w) [see

of the interacting system and the “Kohn-Sham” non-Eg. (10)] andfxc(k + mq,k w) = 0 for mtegerSm with
interacting system, respectively. The latter is given as |m|_)>1 It remains to calculate the matrix element
foo(k + g,k w).
8(F — 7)6ij + % Z(fa — f) This is facilitated by two exact identities which
m follow from the transformation of the time-dependent
N Schrédinger equation in accelerated reference frames
¢pa(r)V (ZAGL 7GRS, ¢“(r ) , (9) [15]. The physical content of these identities is that the
w — (g — €) +in total force and the total torque exerted by the Hartree and
Xc potentials on the system must vanish, in accordance
with Newton'’s third law. In the specific instance consid-
ered here, the identities take the form

no(F)

xks.ij(F F ) =

where ¢, (¥) are the solutions of the static Kohn-Sham
equation, with eigenvalues,. (We have pute = ¢ =

1.) For ahomogeneouslectron gas of density, fy. is

a function of 7 — 7/, which can be Fourier transformed
to f?.(k, w). In the limit of small wave vectok, which,

at fixed frequencyw, meansk < kr, w/vr (kr is the — _Yirsen h 26

Fermi momentum and is the Fermi velocity) [13]f". w2 xerdids + frer (@78 = aiqp)] - (13)

I'{Ln})fxc,t/(k + 57 ks (1))
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and Ward identity [12]
_ofl (k, w,7)
n————.

d - -
lim > €jx — fxcij(k + ¢, k, ®) limf (k + 4.k, @) = 16
k—»()j% J akk Xty g—0 XC( q, ,(l)) 97 ( )

= —%[éffd - 3fch]Ze,k,»qk, (14)  Finally, we note the symmetry relation
k

where ¢;; is the Levi-Civita tensor and we have sup- freijtk + ¢k, @) = fxeji(=k, =k = g, @), (A7)
pressedv andz in £, andf!.;; and which holds for a system invariant under time rever-
A — Lk _ h o sal. Equations (13)—(17) require that, for smakndg,

Ofser @) = frer(@,7) = fier(@ = 0.7). (15) £, ,](kq+ .k, a)() b)e (exgres(sllble as a linear comcllznna—
These identities are valid fdr, ¢ < kr, w/vr andtofirst tion of ¢;q;, g 28:j, (ki + qi)kj, ki(k; + ¢;), and k -
order iny. The condition ory has been used to replace (k + ¢)6;;. Equations (13), (14), and (16), completely
fh (g, ®) and f.7(¢q, w) by their smallg limit [13]. A determine the coefficients of this combination. Thus, to
third limiting form of f,.;; is obtained from the usua‘ first order iny, we obtain

fxc,ij(l_é + ZI’I})’ w) = _%{(5](ch - XcT)QlQ] + fchq 51] n fXCT k - (k + q)Blj + A(” w)
X (ki + gk; — BT, ki (k) + q,,->}, (18)
WhereA(n w) = [n(28fch/8n — 8fxcL/8n) + 3fch ~ s applicable in particular, to the periodically modulated

8fh.1 and B(m,w) = [rofly/om + 3fkr — 6f8,].  electron gas of Eq. (12), in which case it must yield the
The essential point is that Eq. (18) is analytic for smallsame perturbative (iry) result that one obtains from the
k and g. It is this feature that will enable us to con- combination of Eqgs. (7), (10), and (18). Thus, by requir-
struct a local approximation foé,. in terms of the ing agreement between the gradient and the perturbative
current density. [By contrast, the off-diagonal componenexpansions, we are able to determine the coefficients
fxc(k + ¢,k,w) in the usual time-dependent denS|ty of all the terms appearing in the gradient expansion,
functional theory has a singularity of the forin- 4/k>  except the last two, which are of ordi¥nl?, or 2 in
whenk — 0 at finite g. This smallk singularity reflects the periodically modulated electron gas. We note that
the already mentioned long rangednessfqf and the the part ofa;, which is determined by this procedure
consequent nonlocality of the description of xc effects insatisfies the HPT up to corrections of ordﬁnolz To fix
terms of the density.] the coefficients of the second order terms, an additional
Let us now return to the more general problem ofcondition must be imposed. We require that if the system
determininga;. for a system whose density Howly s subjected to an external field, which causes it to trans-
varying in the sense [Vng(F)/no(F) < kp(F) and |aterigidly as a whole, i.e.ji (7, ®) = no(F)5(w), then
w/vp(F), but may have large global deviations from 7, . must reduce tO—V[fxcL(w = Q)V j1(F, )]/ w2,
uniformity. We assume thaiiixc of such a system g3 rigid displacement of thetatic exchange-correlation
can be expanded in a power series of gradients of thﬁotentlal [9]. In the special case of electrons confined
local unperturbed density. The most general form ofpy a harmonic potential and subjected to a uniform
dixe containing up to two gradient operators is then aelectric field, this condition guarantees that the HPT is
linear combination of the following termgy, Vny X ]1, satisfied.
V X i, ﬁV(V J1) V X (V% J1) V(Vny - J1) The final result of our analysis, obtained after lengthy
(Vno X, Vno(V J1) Vno X (VX J1), (Vng - V)J1. but elementary manipulations, is the complete form of the
VnO(Vno Jis Vno X (Vno X ]1) with coefficients that local approximation foi (7, @) up to second order in
are functions ofng() and w. This gradient expansion| the gradient expansion,

> > _ _L = gL 7w _]1(7” w) _]1(7_:,(1))
o7 0) = =5 ¥ 78 G160 = ol Faalr) - L | = § o | o x L)
S Jl(" w) Jl(r w) Jl(r w)
+ ol T - L) gt () - FA) — 4y - L
- j1(F. 0 . p ehF) o o L w)
+ 3Zv, 0PV pwes }+ 2n0(r)[;ijchV ) \A LAY ) }} (19)

Wherefch andfch are functions of the local density(7) and the frequencyw.
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