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Current-Dependent Exchange-Correlation Potential for Dynamical Linear Response Theory
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The frequency-dependent exchange-correlation potential, which appears in the usual Kohn-Sham
formulation of a time-dependent linear response problem, is a strongly nonlocal functional of the
density,so that a consistent local density approximation generally does not exist. This problem can be
avoided by choosing thecurrent densityas the basic variable in a generalized Kohn-Sham theory. This
theory admits a local approximation which, for fixed frequency, is exact in the limit of slowly varying
densities and perturbing potentials. [S0031-9007(96)01133-7]

PACS numbers: 71.45.Gm, 73.20.Dx, 73.20.Mf, 78.30.Fs
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The time-dependent density functional theory (TDF
of Runge and Gross [1] potentially holds great promi
as a tool for studying the dynamics of many-particle sy
tems, as well as for the computation of excitation en
gies which are not accessible within the ordinary sta
density functional theory. At sufficiently low frequencie
applications of the so-called adiabatic local density a
proximation (ALDA) [2] have given very useful results
Progress in the application of this theory to higher fr
quency phenomena has been hindered by inconsisten
in the local density approximation for the frequency d
pendent exchange-correlation (xc) potential [3,4]. Th
paper presents a resolution of these difficulties, by p
viding the correct form of the frequency dependent xc p
tential in the regime of linear response and slowly varyi
densities and perturbing potentials.

Our objective is the determination of the linear dens
responsen1s$r , vde2ivt of a system of interacting elec
trons in their ground state to a time-dependent poten
y1s $r, vde2ivt . In TDFT the problem is reduced to a se
of self-consistent single particle equations, analogous
the Kohn-Sham equations for time-independent syste
[5], with an effective potential of the form

yeff
1 s$r , vd ­ y1s$r , vd 1

Z n1s $r , vd
j$r 2 $r 0j

d $r

1 y1xcs$r, vd; (1)

the xc potentialy1xcs$r , vd is linear inn1s$r , vd,

y1xcs$r, vd ­
Z

fxcs$r, $r 0; vdn1s$r 0, vd d $r 0 , (2)

and the kernelfxcs$r , $r 0; vd is a functional of the unper-
turbed ground state densityn0s$rd.

In the spirit of the local density approximation Gros
and Kohn (GK) [3] considered the case whereboth n0
and n1 are sufficiently slowly varying functions of$r.
As fxc is of short range for ahomogeneoussystem,
they proposed the following plausible approximation f
0031-9007y96y77(10)y2037(4)$10.00
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systems of slowly varyingn0s$rd:

fxcs$r , $r 0; vd , fh
xcsssj$r 2 $r 0j, v; n0s$rdddd . (3)

The superscripth refers to a homogeneous electron g
and the functionfh

xc is a property of the homogeneou
electron gas [3,6].

However, it was noted later by Dobson [4] that the a
proximation (3), when applied to an electron gas in a st
harmonic potential12 kr2 and subjected to a uniform elec
tric field, y1s$r , vd ­ 2 $E ? $re2ivt , violates the so-called
harmonic potential theorem (HPT), related to the gene
ized Kohn’s theorem [7], according to which the dens
follows rigidly the classical motion of the center of mas
n1s$r, vd ­ $=n0s$rd ? $RCMsvd. This raised serious ques
tions about the validity of the approximation (3). Dobs
observed that one could satisfy the HPT by requiring t
the GK approximation (3) be applied in a frame of refe
ence moving with the local velocity of the electron flui
The xc potential obtained by this construction is a fun
tional of thecurrent densityas well as the density [8].

Further light on the problem with approximation (3
was thrown by Vignale’s observation [9] that the c
variance of the time-dependent Schrödinger equation
der transformation to an accelerated frame of refere
requires the total force exerted on the system by
exchange-correlation and Hartree potentials to vanish
agreement with the third law of Newtonian mechani
This implies that the exactfxc must satisfy the sum
rule [10]Z

fxcs$r , $r 0; vd $=0n0s$r 0d d $r 0 ­ $=y0xcs$rd , (4)

where y0xcs$rd is the static xc potential. This sum rul
is violated by Eq. (3). More generally, one can dedu
[10,11] thatfxcs$r, $r 0, vd for a nonuniform system is o
long range in space and a nonlocal functional of the d
sity distribution. These results indicate that, contrary
more optimistic expectations, a local-density approxim
tion for time-dependent linear response in general d
© 1996 The American Physical Society 2037
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not exist as long as one insists on describing dynam
exchange-correlation effects in terms of the density.

In this paper, we want to demonstrate, however, th
a local approximation for the time-dependent linear r
sponse theory can be constructed in terms of thecur-
rent density. We consider the linearcurrent response
$j1s$r , vde2ivt of interacting electrons in their ground stat
to a time-dependentvectorpotential $a1s$r , vde2ivt . This
problem includes, as a special case, the scalar po
tial problem studied by GK, because any scalar pote
tial y1s$r , vd can be gauge transformed to a longitudin
vector potential$a1s$r, vd ­ $=y1s$r , vdyiv, and the den-
sity response can be calculated from the current respo
using the continuity equationn1s$r, vd ­ $= ? $j1s$r , vdy
iv. As usual, we express the exact induced current
the response of a noninteracting reference system
“Kohn-Sham” system) to an effective vector potenti
$aeff

1 ­ $a1 1 $a1H 1 $a1xc,

j1is$r, vd ­
Z X

j

xKS,ijs$r , $r 0, vd ? $aeff
1j s$r 0, vd d $r 0 , (5)

where

$a1Hs$r, vd ­
1

sivd2

Z
$=

1
j$r 2 $r 0j

f $=0 ? $j1s$r 0, vdg d $r 0 (6)

is the longitudinal vector potential corresponding to th
dynamic Hartree potential of Eq. (1), and

$a1xcs$r, vd ­
Z

fxcs$r , $r 0, vd ? $j1s$r 0, vd d $r 0 (7)

is a linear functional of the current. The3 3 3 tensor
kernelfxc is defined as

fxc,ijs$r , $r 0, vd ­ x21
KS,ijs$r, $r 0, vd 2 x21

ij s$r, $r 0, vd

2 =i
1

j$r 2 $r 0j
=0

j , (8)

where x and xKS are the current response tensors [1
of the interacting system and the “Kohn-Sham” no
interacting system, respectively. The latter is given as

xKS,ijs$r , $r 0, vd ­
n0s$rd

m
ds$r 2 $r 0ddij 1

1
m2

X
a,b

s fa 2 fbd

3
cp

as$rd=icbs$rdcp
bs$r 0d=0

jcas$r 0d
v 2 seb 2 ead 1 ih

, (9)

where cas$rd are the solutions of the static Kohn-Sha
equation, with eigenvaluesea. (We have pute ­ c ­
1.) For ahomogeneouselectron gas of densityn, fxc is
a function of $r 2 $r 0, which can be Fourier transforme
to fh

xcs $k, vd. In the limit of small wave vectork, which,
at fixed frequencyv, meansk ø kF , vyyF (kF is the
Fermi momentum andyF is the Fermi velocity) [13],fh

xc
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has the form

fh
xc,ijs $k, vd ­

1
v2

f fh
xcLsv, ndkikj 1 fh

xcT sv, nd

3 sk2dij 2 kikjdg , (10)

where the factor1yv2 has been put in evidence so th
the functionfh

xcLsv, nd coincides with thek ! 0 limit
of fh

xcsk, v, nd introduced byGK [see Eq. (3)]. Both
fh

xcLsv, nd andfh
xcT sv, nd can, in principle, be compute

from the current response function of the homogene
electron gas [see Eq. (8)]. While some aspects of th
functions are known [3,14], further work is needed for
complete evaluation.

From Eq. (10) we can obtain the xc potential in re
space for a homogeneous electron gas subjected
perturbation which is slowly varying on the scalesk21

F
(,interelectron distance) andyFyv (,distance traveled
by an electron during a period of the perturbing field),

$ah
1xcs $r , vd ­ 2

1
v2

h $=f fh
xcLsv, nd $= ? $j1s$r , vdg

2 $= 3 f fh
xcT sv, nd $= ? $j1s$r, vdgj .

(11)

Next, in the spirit of the local-density approximatio
let us consider a system in which the unperturbed st
densityn0s$rd is slowly varying on the scales of the loc
k21

F and yFyv, but not necessarily on the scale ofk21,
the wavelength of the perturbing field.

The simplest case is that of a periodically modula
electron gas, where the unperturbed density, given by

n0s $rd ­ n f1 1 2g coss $q ? $rdg , (12)

is not only slowly varying (i.e.,q ø kF , vyyF), but, also,
almost uniform,i.e., g ø 1.

We shall compute the exactfxc for this system, to first
order ing. It is convenient to representfxc in momentum
space. Translational invariance of the uniform densityn
gives, to first order ing, fxcs $k, $k, vd ­ fh

xcs $k, vd [see
Eq. (10)] andfxcs$k 1 m $q, $k, vd ­ 0 for integersm with
jmj . 1. It remains to calculate the matrix eleme
fxcs $k 1 $q, $k, vd.

This is facilitated by two exact identities whic
follow from the transformation of the time-depende
Schrödinger equation in accelerated reference fra
[15]. The physical content of these identities is that
total force and the total torque exerted by the Hartree
xc potentials on the system must vanish, in accorda
with Newton’s third law. In the specific instance consi
ered here, the identities take the form

lim
k!0

fxc,ijs $k 1 $q, $k, vd

­ 2
g

v2 fdfh
xcLqiqj 1 fh

xcT sq2dij 2 qiqjdg (13)
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k!0

X
j,k

eljk
≠

≠kk
fxc,ijs $k 1 $q, $k, vd

­ 2
g

v2
fdfh

xcL 2 3fh
xcT g

X
k

elkiqk , (14)

where eijk is the Levi-Civita tensor and we have sup-
pressedv andn in fh

xcL andfh
xcT ; and

dfh
xcLsv, nd ; fh

xcLsv, nd 2 fh
xcLsv ­ 0, nd . (15)

These identities are valid fork, q ø kF , vyyF and to first
order ing. The condition onq has been used to replace
fh

xcLsq, vd andfh
xcT sq, vd by their smallq limit [13]. A

third limiting form of fxc,ij is obtained from the usual

Ward identity [12]

lim
q!0

fxcs $k 1 $q, $k, vd ­ gn
≠fh

xcs $k, v, nd
≠n

. (16)

Finally, we note the symmetry relation

fxc,ijs $k 1 $q, $k, vd ­ fxc,jis2 $k, 2$k 2 $q, vd , (17)

which holds for a system invariant under time reve
sal. Equations (13)–(17) require that, for smallk andq,
fxc,ijs $k 1 $q, $k, vd be expressible as a linear combina
tion of qiqj , q2dij, ski 1 qidkj , kiskj 1 qjd, and $k ?

s $k 1 $qddij. Equations (13), (14), and (16), complete
determine the coefficients of this combination. Thus,
first order ing, we obtain
fxc,ijs $k 1 $q, $k, vd ­ 2
g

v2

Ω
sdfh

xcL 2 fh
xcT dqiqj 1 fh

xcT q2dij 2 n
≠fh

xcT

≠n
$k ? s $k 1 $qddij 1 Asn, vd

3 ski 1 qidkj 2 Bsn, vdki skj 1 qjd
æ

, (18)
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whereAsn, vd ; fns2≠fh
xcT y≠n 2 ≠fh

xcLy≠nd 1 3fh
xcT 2

dfh
xcLg and Bsn, vd ; fn≠fh

xcT y≠n 1 3fh
xcT 2 dfh

xcLg.
The essential point is that Eq. (18) is analytic for small
k and q. It is this feature that will enable us to con-
struct a local approximation for$a1xc in terms of the
current density. [By contrast, the off-diagonal component
fxcs $k 1 $q, $k, vd in the usual time-dependent density
functional theory has a singularity of the form$k ? $qyk2

whenk ! 0 at finite q. This small-k singularity reflects
the already mentioned long rangedness offxc and the
consequent nonlocality of the description of xc effects in
terms of the density.]

Let us now return to the more general problem of
determining $a1xc for a system whose density isslowly
varying in the sense j $=n0s$rdjyn0s$rd ø kFs$rd and
vyyFs$rd, but may have large global deviations from
uniformity. We assume that$a1xc of such a system
can be expanded in a power series of gradients of the
local unperturbed density. The most general form of
$a1xc containing up to two gradient operators is then a
linear combination of the following terms:$j1, $=n0 3 $j1,
$= 3 $j1, $=s $= ? $j1d, $= 3 s $= 3 $j1d, $=s $=n0 ? $j1d, $= 3

s $=n0 3 $j1d, $=n0s $= ? $j1d, $=n0 3 s $= 3 $j1d, s $=n0 ? $=d$j1,
$=n0s $=n0 ? $j1d, $=n0 3 s $=n0 3 $j1d with coefficients that
are functions ofn0s $rd and v. This gradient expansion

is applicable in particular, to the periodically modulate
electron gas of Eq. (12), in which case it must yield th
same perturbative (ing) result that one obtains from the
combination of Eqs. (7), (10), and (18). Thus, by requi
ing agreement between the gradient and the perturbat
expansions, we are able to determine the coefficien
of all the terms appearing in the gradient expansio
except the last two, which are of orderj $=n0j

2, or g2 in
the periodically modulated electron gas. We note th
the part of $a1xc which is determined by this procedure
satisfies the HPT up to corrections of orderj $=n0j

2. To fix
the coefficients of the second order terms, an addition
condition must be imposed. We require that if the syste
is subjected to an external field, which causes it to tran
late rigidly as a whole, i.e.,j1s$r , vd ­ n0s$rd $ysvd, then
$a1xc must reduce to2 $=f fxcLsv ­ 0d $= ? j1s$r , vdgyv2,
a rigid displacement of thestatic exchange-correlation
potential [9]. In the special case of electrons confine
by a harmonic potential and subjected to a uniform
electric field, this condition guarantees that the HPT
satisfied.

The final result of our analysis, obtained after length
but elementary manipulations, is the complete form of th
local approximation for$a1xcs$r , vd up to second order in
the gradient expansion,
$a1xcs$r , vd ­ 2
1

v2

Ω
$=

∑
fh

xcL
$= ? $j1s$r, vd 2 dfh

xcL
$=n0s$rd ?

$j1s$r , vd
n0s$rd

∏
2 $= 3

∑
fh

xcT n0
$= 3

$j1s$r , vd
n0s $rd

∏
1 dfh

xcL
$=n0s $rd $= ?

$j1s$r, vd
n0s$rd

1 fh
xcT

∑
f $=n0s$rd ? $=g

$j1s$r , vd
n0s$rd

2 4 $=n0s $rd $= ?
$j1s$r , vd
n0s$rd

1 3
X

j

=jn0s$rd $=
$j1js$r , vd

n0s$rd

∏
1 2n0s$rd

∑X
j

=jfh
xcT

$=
$j1s$r , vd
n0s$rd

2 $=fh
xcT

$= ?
$j1s$r, vd
n0s$rd

∏æ
, (19)

wherefh
xcL andfh

xcT are functions of the local densityn0s$rd and the frequencyv.
2039



VOLUME 77, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 2 SEPTEMBER1996

s
h
a

a
r
e

h
s

s
n

n
m
n
b

e
i
n

.
t
t

s

Our result simplifies considerably in two limiting case
(1) The density is slowly varying on the scale set by t
wavelength of the perturbation. In this regime we c
neglect the terms containing$=n0, and we recover the
former results of GK [1] for the response to a scal
potential, and of Ng [16] for the response to a gene
vector potential. This result can also be simply obtain
from Eq. (11) by the substitutionn ! n0s$rd. (2) The
velocity field j1yn0 is constant in space. This is the cas
when the static external potential is parabolic and t
perturbing electric field is uniform, the regime of Kohn’
theorem [7] and the HPT [4]. Then all derivatives o
j1yn0 vanish, and Eq. (19) reduces to

$a1xcs$r, vd ­ 2
1

v2
$=

∑
fh

xcL
$= ? $j1s$r , vd

2 dfh
xcL

$=n0s$rd ?
$j1s$r , vd
n0s$rd

∏
. (20)

By a gauge transformation, this longitudinal vector pote
tial can be transformed to the scalar xc potential propo
by Dobson [4] to satisfy the HPT. However, for the ge
eral case of slowly varyingn0s$rd and $a1s$r, vd, the full
expression (19) is required.

In conclusion, our analysis uniquely specifies a loc
current density functional theory of the linear curre
(and density) response, which becomes exact in the li
of slowly varying unperturbed densities and perturbi
potentials. The scale on which the variations must
slow is set by the smaller of the wave vectorskF and
vyyF . Therefore, this theory is applicable to the stud
of high frequency phenomena, such as electromagn
absorption, for which the adiabatic approximation [2]
in general not justified. A complete local current de
sity response theory, for spatially slowly varying unpe
turbed density and perturbing field, andall frequencies
s0 , v , `d remains to be developed.
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