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We present a quantum error correction code which protects a qubit of information against general
one qubit errors. To accomplish this, we encode the original state by distributing quantum information
over five qubits, the minimal number required for this task. We describe a circuit which takes the
initial state with four extra qubits in the staj@) to the encoded state. It can also be converted into
a decoder by running it backward. The original state of the encoded qubit can then be restored by a
simple unitary transformation. [S0031-9007(96)00480-2]

PACS numbers: 89.70.+c, 02.70.—c, 03.65.—w, 89.80+h

Quantum computation—which has attracted so mucterrors with the minimum number of extra qubits) quantum
attention as a result of progress in designing efficienerror correction code using only five qubits (shown to be
quantum algorithms [1,2]—is still far from practical im- the smallest possible number). Our codadsa classical
plementation. The biggest difficulty is the fragility of the linear code [11] but a truly quantum code. Some of its
guantum states required to process information. All thenathematical properties are discussed below but others
proposed implementations will suffer from the interactioncertainly deserve further study. A notable property of
with the environment, and even a weak coupling may reeur error correction code is that the encoding can be
sult in decoherence [3—5]. Moreover, other sources otlone using a remarkably simple circuit which is itself the
errors (i.e., timing of laser pulses in the linear trap com-central piece of the error correction scheme enabling us to
puter of Ref. [6]) will add to the problem. recover from general one-bit errors.

In classical computers, errors can also occur and are Before presenting our perfect code, let us mention what
handled through various error correcting techniques [7]requirements it must satisfy. An encoding of one qubit
However, in the quantum case different error correctiorinto n qubits is a representation of the logical stal&s
techniques are needed to protect quantum superpositi@nd|1;) as entangled states in theparticle Hilbert space
and entanglement (which are essential ingredients of -1 -1
quantum computation). The simplest scheme [8] of this 0.) = D pili), 1) = > wili), (1)
sort can be based on a purely quantum watchdog effect. i=0 i=0
It has been recently demonstrated to show promise [9where the state§) = |i,—1,...,io) form a basis of the
but it suffers from an imperfection of being essentially n-particle Hilbert space withi; defining the binary rep-
probabilistic; i.e., in principle only some of the correctableresentation of the integer To serve as a quantum er-
errors will actually be corrected by its application. Thusror correction code Eq. (1) must satisfy certain conditions
in the terminology of the error correction community, this whose origin is best understood by analyzing the effect of
scheme is not perfect [7]. the interaction with the environment. A general interac-

Shor [10] has championed a different strategy (basedon between theth qubit and its environment will lead
on classical schemes using redundancy). The idea is t@ an evolution of the form

store quantum information not in a single qubit but in le) 105 — leo) 10&) + 1eBY15)
an entanglement of nine qubits. This scheme allows one (; ’ (2)
to correct for any error incurred by any one of the nine le) 1) — leny [1x) + ler) 10x),

qubits. Steane [11] and Calderbank and Shor [12] havghere|e), |eq,), le5,) are states of the environment which
proposed a different scheme which uses only seven bitgijl| remain arbitrary throughout this paper [apart from
for this purpose and demonstrated that this is the leaghe obvious orthogonality and normalization constraints
required for the strategies inspired by the classical codingmposed by unitarity of the evolution in Eq. (2)]. The

theory which is based on linear codes [11]. Howevergffect of the interaction given by Eq. (2) upon the logical
these codes are not perfect as they use more bits thandgateq0, ) and|1,) is easily calculated,
absolutely necessary to correct one-bit errors [7]. 10,)

In the quantum case at hand, classical coding theorje), ~/ —
seems to be too restrictive. All classical codes are based |12) 10,)
on the Hamming distance [13] (the number of different (les)I + leYa* + 1eByo* — |eB)ia®) 7, (3)
bits between two code words). Efficient quantum codes T
will have to use a quantum analog of this distance. Belowvhere of are the Pauli matrices acting on théh bit.
we present a perfect (i.e., capable of correcting all one-bithe states of the environment appearing in Eg. (3) are
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lex) = (leo) = ler))/2 and |eB) = (lef) + |ef))/2.  for all k,1 =1,...,5 (and a similar condition for;).
Four types of outcome due to interaction with the en-The sums are ovet even andk odd numbersk even
vironment exhaust all possibilities. First, the state mayk odd) numbers are those with a 0 (1) in théh bit.
remain unchanged (the operatdris proportional to the If we restrict ourselves to encodings satisfyihg;| =
identity). Second, the state of the system may pick d»;| = 1, an assumption based on simplicity, the above
minus sign in front of all the states with a 1 in tik¢h  condition implies that we need at least eight states in
qubit (thus corresponding to action of the operatdd).  the superposition. Thus, five bits and eight states in the
This alternative is correlated with the environméat).  superposition seem to be the minimum required by the
Third, the state of the system may be altered by flippingorthogonality conditions (and the simplicity assumption).
the kth bit (through the operatosX) getting correlated Moreover, it is easily shown that it is impossible to satisfy
with the statedeZ). Fourth, and finally, the system may all the constraints by using only positive numbers fds
get a bit flip in thekth bit together with a sign flip for or »’s (+1 in our case) so either phases or minus signs
which the operator is—iajf, an option correlated with are essential.
le8). The second operation is denoted By (for sign The conditions of Eg. (5), while still incomplete, are
flip), the third by B, (for bit flip), and the fourth one by nevertheless extremely restrictive: In fact, one can
BS; (which is self-explanatory). Note that the same statgprove that they essentially determine (up to permutations
of the environment is coupled to the respective states dfetween bits) what are the eight stafgsallowed in the
|0.) and|1;). This is essential in what follows. superposition of Eq. (1). This determines the encoding
A sufficient property to define a quantum error cor-of each of the logical states, thus defining the support of
rection code Eq. (1) is the following: the original two- the code. It is interesting to note that the solution can
dimensional Hilbert space spanned [0y) and|1;) must be guessed from Steane’s encoding [11] by dropping any
be mapped coherently into orthogonal two-dimensionatwo of its qubits. The only remaining freedom is in the
Hilbert spaces corresponding to each of the differensign distribution between states, which can be found by
environment-induced errors (denoted$yy B, andBS,).  solving simple algebraic equations. This is how we have
This is sufficient to recover from a one-qubit error sincearrived at the class of possible encodings exemplified by
it is possible to measure in which 2D Hilbert space thethe following perfect five-bit code:

system is without destroying the relevant coherence. Af{g,) = — |00000) + |01111) — [10011) + |11100)

ter the measurement it is possible to restore the original

quantum state by means of simple unitary transformations +100110) + [01001) + [10101) + [11010),

(which depend upon the result of the measurement). [1,) = — [11111) + [10000) + [01100) — |00011)
Orthogonality of the subspaces corresponding to the

different errors imposes a rather stringent constraint on + [11001) + [10110) — [01010) — |00101)

the dimension of the Hilbert space which must be larggup to the obvious normalization). Other allowed codes
enough to accommodate so many orthogonal subspacezn be found from Eq. (6) by permutations of bits and
How big should this space be? Orthogonality requires &oordinated sign changes. Thus, all the allowed codes
subspace for each of the three errors every qubit can suffédave the same sign pattern, with two minus signs in one
and another one for the unperturbed logical state. Thisf the logical states and four in the other (these results
makes a total oBrn + 1. We must double this to have will be proven in detail elsewhere). The mathematical
enough space to accommodate both logical states and theiiructure behind this sign distribution (which, as we said
erroneous descendants. Thus, the number of subspaced@fore, is the only freedom we have, save for the “gauge
2(3n + 1). To have enough room in the Hilbert space thetransformation” in the form of sign and coordinated bit
condition flips) still lies beyond our present understanding.

23n + 1) = 2" (4) The encoding Eq. (6) can be implemented by using the
must be satisfied. Both Shors= 9 code and Steane’s Circuit depicted in Fig. 1(a). The original information
n =7 code satisfy this constraint while = 5 is the carrier is the qubifQ) which may be in a general state

number which saturates Eq. (4). The code we present hé@ - al0) + Bl1).  After the action of the encoding
5 bits. circuit, and when the other input states are all sef0jp

The orthogonality conditions can be written as alge-tN€ output state will always be given l0.) + Bl1.).
braic constraints on the coefficients and »; which de- This circuit is just a comblnatlo_n of quantum I_oglc gates
fine the encoding. For the sake of space and time we wiffcontrolled not, controlled rotations, etc.) which can be
not write them all explicitly but just mention the follow- MPlemented (at leasn principle) in various physical

ing simple subset: settings. .
g P Until now we exhibited a quantum code and a quantum

Dl = D wilP= D wlP = D il circuit which acts as encoder. However, the error cor-
k even k even k odd k odd rection method would not be complete without the circuit
[ even [ odd [ even [ odd . . .

(5) for actuallycorrectingall the possible one-bit errors. The
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(a) 5-bit encoder py quking at the circuit frqm the left to the right: In fact,
if the input to the encoder is nt) = |b) = |¢) = |d) =
la> (R) [0) but |a) = |1}, |b) = |c) = |d) = |0), the output state
% is easily seen to be the one corresponding toStherror
fb> ® (since the first rotation would produce a state with a minus

sign in front of the|1) state). Other alternatives are less
1Q>— "‘—I 3 obvious but they all work in the same way.
le> Thus, after using the encoding circuit in backwards
direction we have a precise diagnosis of what went wrong
(if anything) with our quantum bit. The state of the qubit
|Q’) may be easily restored to the original0) + B|1)
by a unitary transformation which depends upon the
measurement of the stateg), |b'), |c’), and|d’) [14].
Assuming that the interaction affected at most one bit
la™> in any way, we have shown that there exists a five-qubit
b'> code which corrects perfectly, i.e., has perfect fidelity
[15]. It is not difficult to convince yourself that if the
% - 1Q> probability of an error in only one qubit ig, the fidelity
I of the code where the restriction to only one error is
¢ le> lifted will be 1 — cp? + ---, for some constant. This is
an improvement on the uncorrected evolution of a single
qubit which has fidelityl — p as long as: < 1/p.

FIG. 1. (a) Circuit for the encoding of the states described,. The support of our code is unique under the Condltlor?s
in Eq. (6). R describes the rotatiol) — (0) + |1))/~/2 and () that the cqefﬁments of the codewords have u.nlt
11y — (10) — [1))/+/2. The element with an< corresponds to Modulus and (ii) that under error due to the interaction
a control not (with control on the filled circle); if the control With the environment the logical states would go to
is [1) then the state aX is flipped. The element including  mutually orthogonal states [16].

corresponds to a conditional rotation by a phasewhere the  we would like to thank E. Knill and B. Schumacher for
?grn?;]téolgpfftgﬁgg v;l;gn fh%ftt?]ts Hﬁ‘g dthoenglt '?bgh%i?cﬁti?t%any useful comments concerning classical and quantum
of (a) run in the opposite way. The stai€, b, ¢',d’) gives  ©rfor correction codes as well as R. Hughes for general

the syndromes of Table I. A unitary transformation brings backcomments about quantum computation. We are also
|Q’) to |Q), which can be reencoded using the circuit of (a).

@
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) ~ TABLE I. Error with corresponding syndromes and states for
most remarkable feature of our method is that the circuithe decoder shown in Fig. 1B, S, andBS correspond to a bit,
for this is exactly the same as the one for encoding bug sign, or a bit and a sign flipped with the following number

previous schemes discussed in the literature where a di#_nltary operations must be performed consisting of bit and sign

. . L ips on the statéQ’).
ferent decoding or correction circuit was necessary. P 40"

A heuristic argument has guided us in searching forError Syndrome Resulting state
this circuit. The fact that we are using exactly= 5 bits la'b'c'd’) 10"
allows usin principle to have a circuit like the one we None 0000 al0y + Bl1)
found. To distinguish the 16 different error syndromes Bs3 1101 —a|l) + Bl0)
(the “no error alternative” plus the 15 ones correspondinggss 1111 —al0) + BI1)
to five errors of each typ&, By, andBS;) we would need g, 0001
to make four binary tests (which would provide us with g3 1010
16 results). This is precisely what the circuit does: when s5 1100 al0) = A1)
any one of the sixteen possible states inputs the encodess2 0101
from the right, the statels’), |b'), |¢), and|d’) uniquely BS 0011
identify the input and allow us to know what the state of S1 1000 —aloy = BIN)
the qubit|Q’) is. All possibilities are exhibited in Table I. 52 0100
Some of them are easily understood. For example, theS4 0010
trivial case |a’) = |b'y = |¢') = |d’) = |0) corresponds Bl 0110
to the “no error” alternative (since in that case the input 83 0111
in the left is identical to the one used for encoding). B4 1011 —all) — Bl0)
Other alternatives, such as the one corresponding t§;the BS1 13(1)(1)

syndrome (an error in the first bit), can be easily identified
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