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Perfect Quantum Error Correcting Code
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We present a quantum error correction code which protects a qubit of information against gen
one qubit errors. To accomplish this, we encode the original state by distributing quantum informa
over five qubits, the minimal number required for this task. We describe a circuit which takes
initial state with four extra qubits in the statej0l to the encoded state. It can also be converted into
a decoder by running it backward. The original state of the encoded qubit can then be restored
simple unitary transformation. [S0031-9007(96)00480-2]

PACS numbers: 89.70.+c, 02.70.–c, 03.65.–w, 89.80+h
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Quantum computation—which has attracted so mu
attention as a result of progress in designing efficie
quantum algorithms [1,2]—is still far from practical im
plementation. The biggest difficulty is the fragility of th
quantum states required to process information. All
proposed implementations will suffer from the interactio
with the environment, and even a weak coupling may
sult in decoherence [3–5]. Moreover, other sources
errors (i.e., timing of laser pulses in the linear trap co
puter of Ref. [6]) will add to the problem.

In classical computers, errors can also occur and
handled through various error correcting techniques
However, in the quantum case different error correct
techniques are needed to protect quantum superpos
and entanglement (which are essential ingredients
quantum computation). The simplest scheme [8] of t
sort can be based on a purely quantum watchdog eff
It has been recently demonstrated to show promise
but it suffers from an imperfection of being essentia
probabilistic; i.e., in principle only some of the correctab
errors will actually be corrected by its application. Th
in the terminology of the error correction community, th
scheme is not perfect [7].

Shor [10] has championed a different strategy (bas
on classical schemes using redundancy). The idea i
store quantum information not in a single qubit but
an entanglement of nine qubits. This scheme allows
to correct for any error incurred by any one of the ni
qubits. Steane [11] and Calderbank and Shor [12] h
proposed a different scheme which uses only seven
for this purpose and demonstrated that this is the le
required for the strategies inspired by the classical cod
theory which is based on linear codes [11]. Howev
these codes are not perfect as they use more bits tha
absolutely necessary to correct one-bit errors [7].

In the quantum case at hand, classical coding the
seems to be too restrictive. All classical codes are ba
on the Hamming distance [13] (the number of differe
bits between two code words). Efficient quantum cod
will have to use a quantum analog of this distance. Bel
we present a perfect (i.e., capable of correcting all one
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errors with the minimum number of extra qubits) quantu
error correction code using only five qubits (shown to
the smallest possible number). Our code isnot a classical
linear code [11] but a truly quantum code. Some of
mathematical properties are discussed below but ot
certainly deserve further study. A notable property
our error correction code is that the encoding can
done using a remarkably simple circuit which is itself t
central piece of the error correction scheme enabling u
recover from general one-bit errors.

Before presenting our perfect code, let us mention w
requirements it must satisfy. An encoding of one qu
into n qubits is a representation of the logical statesj0Ll
andj1Ll as entangled states in then-particle Hilbert space

j0Ll ­
2n21X
i­0

mijil, j1Ll ­
2n21X
i­0

nijil , (1)

where the statesjil ­ jin21, . . . , i0l form a basis of the
n-particle Hilbert space withij defining the binary rep-
resentation of the integeri. To serve as a quantum e
ror correction code Eq. (1) must satisfy certain conditio
whose origin is best understood by analyzing the effec
the interaction with the environment. A general intera
tion between thekth qubit and its environment will lead
to an evolution of the form

jel j0kl ! je0l j0kl 1 jeB
0 l j1kl ,

jel j1kl ! je1l j1kl 1 jeB
1 l j0kl ,

(2)

wherejel, je0,1l, jeB
0,1l are states of the environment whic

will remain arbitrary throughout this paper [apart fro
the obvious orthogonality and normalization constrai
imposed by unitarity of the evolution in Eq. (2)]. Th
effect of the interaction given by Eq. (2) upon the logic
statesj0Ll andj1Ll is easily calculated,

jel
j0Ll
j1Ll

!

sje1lI 1 je2lsk
z 1 jeB

1lsk
x 2 jeB

2lisk
y d

j0Ll
j1Ll

, (3)

where s
k
i are the Pauli matrices acting on thekth bit.

The states of the environment appearing in Eq. (3)
© 1996 The American Physical Society
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je6l ­ sje0l 6 je1ldy2 and jeB
6l ­ sjeB

0 l 6 jeB
1 ldy2.

Four types of outcome due to interaction with the e
vironment exhaust all possibilities. First, the state m
remain unchanged (the operatorI is proportional to the
identity). Second, the state of the system may pick
minus sign in front of all the states with a 1 in thekth
qubit (thus corresponding to action of the operatorsk

z ).
This alternative is correlated with the environmentje2l.
Third, the state of the system may be altered by flipp
the kth bit (through the operatorsk

x ) getting correlated
with the statesjeB

1l. Fourth, and finally, the system ma
get a bit flip in thekth bit together with a sign flip for
which the operator is2isk

y , an option correlated with
jeB

2l. The second operation is denoted bySk (for sign
flip), the third byBk (for bit flip), and the fourth one by
BSk (which is self-explanatory). Note that the same st
of the environment is coupled to the respective states
j0Ll andj1Ll. This is essential in what follows.

A sufficient property to define a quantum error co
rection code Eq. (1) is the following: the original two
dimensional Hilbert space spanned byj0Ll and j1Ll must
be mapped coherently into orthogonal two-dimensio
Hilbert spaces corresponding to each of the differ
environment-induced errors (denoted bySk , Bk, andBSk).
This is sufficient to recover from a one-qubit error sin
it is possible to measure in which 2D Hilbert space t
system is without destroying the relevant coherence.
ter the measurement it is possible to restore the orig
quantum state by means of simple unitary transformati
(which depend upon the result of the measurement).

Orthogonality of the subspaces corresponding to
different errors imposes a rather stringent constraint
the dimension of the Hilbert space which must be la
enough to accommodate so many orthogonal subspa
How big should this space be? Orthogonality require
subspace for each of the three errors every qubit can su
and another one for the unperturbed logical state. T
makes a total of3n 1 1. We must double this to hav
enough space to accommodate both logical states and
erroneous descendants. Thus, the number of subspac
2s3n 1 1d. To have enough room in the Hilbert space t
condition

2s3n 1 1d # 2n (4)
must be satisfied. Both Shor’sn ­ 9 code and Steane’
n ­ 7 code satisfy this constraint whilen ­ 5 is the
number which saturates Eq. (4). The code we present
5 bits.

The orthogonality conditions can be written as alg
braic constraints on the coefficientsmi andni which de-
fine the encoding. For the sake of space and time we
not write them all explicitly but just mention the follow
ing simple subset:X

k even
l even

jmi j
2 ­

X
k even
l odd

jmij
2 ­

X
k odd
l even

jmi j
2 ­

X
k odd
l odd

jmi j
2,

(5)
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for all k, l ­ 1, . . . , 5 (and a similar condition forni).
The sums are overk even andk odd numbers:k even
(k odd) numbers are those with a 0 (1) in thekth bit.
If we restrict ourselves to encodings satisfyingjmi j ­
jnij ­ 1, an assumption based on simplicity, the abo
condition implies that we need at least eight states
the superposition. Thus, five bits and eight states in
superposition seem to be the minimum required by
orthogonality conditions (and the simplicity assumptio
Moreover, it is easily shown that it is impossible to satis
all the constraints by using only positive numbers form’s
or n’s (11 in our case) so either phases or minus sig
are essential.

The conditions of Eq. (5), while still incomplete, ar
nevertheless extremely restrictive: In fact, one c
prove that they essentially determine (up to permutati
between bits) what are the eight statesjil allowed in the
superposition of Eq. (1). This determines the encod
of each of the logical states, thus defining the suppor
the code. It is interesting to note that the solution c
be guessed from Steane’s encoding [11] by dropping
two of its qubits. The only remaining freedom is in th
sign distribution between states, which can be found
solving simple algebraic equations. This is how we ha
arrived at the class of possible encodings exemplified
the following perfect five-bit code:

j0Ll ­ 2 j00000l 1 j01111l 2 j10011l 1 j11100l

1 j00110l 1 j01001l 1 j10101l 1 j11010l ,

j1Ll ­ 2 j11111l 1 j10000l 1 j01100l 2 j00011l
(6)

1 j11001l 1 j10110l 2 j01010l 2 j00101l
(up to the obvious normalization). Other allowed cod
can be found from Eq. (6) by permutations of bits a
coordinated sign changes. Thus, all the allowed co
have the same sign pattern, with two minus signs in
of the logical states and four in the other (these res
will be proven in detail elsewhere). The mathemati
structure behind this sign distribution (which, as we s
before, is the only freedom we have, save for the “gau
transformation” in the form of sign and coordinated b
flips) still lies beyond our present understanding.

The encoding Eq. (6) can be implemented by using
circuit depicted in Fig. 1(a). The original informatio
carrier is the qubitjQl which may be in a general stat
jQl ­ aj0l 1 bj1l. After the action of the encoding
circuit, and when the other input states are all set toj0l,
the output state will always be given byaj0Ll 1 bj1Ll.
This circuit is just a combination of quantum logic gat
(controlled not, controlled rotations, etc.) which can
implemented (at leastin principle) in various physical
settings.

Until now we exhibited a quantum code and a quant
circuit which acts as encoder. However, the error c
rection method would not be complete without the circ
for actuallycorrectingall the possible one-bit errors. Th
199
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FIG. 1. (a) Circuit for the encoding of the states describ
in Eq. (6). R describes the rotationj0l ! sj0l 1 j1ldy

p
2 and

j1l ! sj0l 2 j1ldy
p

2. The element with an3 corresponds to
a control not (with control on the filled circle); if the contro
is j1l then the state at3 is flipped. The element includingp
corresponds to a conditional rotation by a phasep, where the
condition is satisfied when the state has the bit in the 0 s
for the empty circle and 1 for the filled one. (b) Circu
of (a) run in the opposite way. The stateja0, b0, c0, d0l gives
the syndromes of Table I. A unitary transformation brings ba
jQ0l to jQl, which can be reencoded using the circuit of (a).

most remarkable feature of our method is that the circ
for this is exactly the same as the one for encoding
run backwards[see Fig. 1(b)]. This is in contrast with a
previous schemes discussed in the literature where a
ferent decoding or correction circuit was necessary.

A heuristic argument has guided us in searching
this circuit. The fact that we are using exactlyn ­ 5 bits
allows us in principle to have a circuit like the one we
found. To distinguish the 16 different error syndrom
(the “no error alternative” plus the 15 ones correspond
to five errors of each typeSk, Bk , andBSk) we would need
to make four binary tests (which would provide us wi
16 results). This is precisely what the circuit does: wh
any one of the sixteen possible states inputs the enc
from the right, the statesja0l, jb0l, jc0l, andjd0l uniquely
identify the input and allow us to know what the state
the qubitjQ0l is. All possibilities are exhibited in Table I
Some of them are easily understood. For example,
trivial case ja0l ­ jb0l ­ jc0l ­ jd0l ­ j0l corresponds
to the “no error” alternative (since in that case the inp
in the left is identical to the one used for encoding
Other alternatives, such as the one corresponding to thS1

syndrome (an error in the first bit), can be easily identifi
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by looking at the circuit from the left to the right: In fac
if the input to the encoder is notjal ­ jbl ­ jcl ­ jdl ­
j0l but jal ­ j1l, jbl ­ jcl ­ jdl ­ j0l, the output state
is easily seen to be the one corresponding to theS1 error
(since the first rotation would produce a state with a min
sign in front of thej1l state). Other alternatives are le
obvious but they all work in the same way.

Thus, after using the encoding circuit in backwar
direction we have a precise diagnosis of what went wro
(if anything) with our quantum bit. The state of the qub
jQ0l may be easily restored to the originalaj0l 1 bj1l
by a unitary transformation which depends upon t
measurement of the statesja0l, jb0l, jc0l, andjd0l [14].

Assuming that the interaction affected at most one
in any way, we have shown that there exists a five-qu
code which corrects perfectly, i.e., has perfect fidel
[15]. It is not difficult to convince yourself that if the
probability of an error in only one qubit isp, the fidelity
of the code where the restriction to only one error
lifted will be 1 2 cp2 1 · · ·, for some constantc. This is
an improvement on the uncorrected evolution of a sin
qubit which has fidelity1 2 p as long asc , 1yp.

The support of our code is unique under the conditio
(i) that the coefficients of the codewords have u
modulus and (ii) that under error due to the interacti
with the environment the logical states would go
mutually orthogonal states [16].

We would like to thank E. Knill and B. Schumacher fo
many useful comments concerning classical and quan
error correction codes as well as R. Hughes for gene
comments about quantum computation. We are a

TABLE I. Error with corresponding syndromes and states
the decoder shown in Fig. 1.B, S, andBS correspond to a bit,
a sign, or a bit and a sign flipped with the following numb
which identifies the bit. To recover the initial state, 5 differe
unitary operations must be performed consisting of bit and s
flips on the statejQ0l.

Error Syndrome Resulting state
ja0b0c0d0l jQ0l

None 0000 aj0l 1 bj1l
BS3 1101 2aj1l 1 bj0l
BS5 1111 2aj0l 1 bj1l
B2 0001
S3 1010
S5 1100

BS2 0101

aj0l 2 bj1l

B5 0011
S1 1000
S2 0100
S4 0010

2aj0l 2 bj1l

B1 0110
B3 0111
B4 1011

BS1 1110
BS4 1001

2aj1l 2 bj0l
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grateful to A. Ekert for discussions on the size of er
correcting codes.

Note added.—After completion of this work the IBM
group [17] let us know that they also found a five-bit cod
Their code is a “gauge transformation” of our code.
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