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Lyapunov Exponents from Kinetic Theory for a Dilute, Field-Driven Lorentz Gas
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Positive and negative Lyapunov exponents for a dilute, random, two-dimensional Lorentz gas in
an applied field,$E, in a steady state at constant energy are computed to orderE2. The results are
l6  l0

6 2 a6sqEymyd2t0 wherel0
6 are the exponents for the field-free Lorentz gas,a1  11y48,

a2  7y48, t0 is the mean free time between collisions,q is the charge,m is the mass, andy is
the speed of the particle. The calculation is based on an extended Boltzmann equation in which a
radius of curvature, characterizing the separation of two nearby trajectories, is one of the variables in
the distribution function. The analytical results are in excellent agreement with computer simulations.
[S0031-9007(96)01100-3]
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One of the outstanding problems in transport theo
is to relate macroscopic quantities such as transport
efficients to microscopic quantities that characterize
chaotic dynamics of the system. This chaotic dynam
is responsible for the stochasticlike behavior which lea
to normal hydrodynamic processes taking place in flui
One approach is to consider the system as a Hamilt
ian system, obeying classical mechanics, and to apply
escape-rate formalism which can be used to express tr
port coefficients in terms of Lyapunov exponents a
Kolmogorov-Sinai entropies for trajectories in phase spa
on an appropriate fractal repeller [1]. Another approach
this problem is to consider driven, thermostated system
a nonequilibrium steady state where the system is subje
to an applied force as well as to a “Gaussian thermost
which allows the system to reach a steady state by rem
ing the heat produced by the applied force [2,3]. Here o
can relate the transport coefficients to the change in
sum of all, or in some cases, a pair [2], of the Lyapun
exponents in the steady state.

The system considered here is a dilute, thermosta
two-dimensional Lorentz gas, where a particle with cha
q and massm moves in an infinite random array of fixe
hard disk scatterers of radiusa and densityn, na2 ø 1,
subject to a constant, uniform, external field$E as well
as to a frictional thermostat which maintains the spe
of the particle at a constant valuey. The system ap-
proaches a nonequilibrium steady state, characterized
an attractor in phase space. In this steady state, the
lowing relation holds for the macroscopic diffusion coef
cient D for the particle [or, equivalently, the conductivit
s related toD by an Einstein formulaD  msyyqd2s]
and the Lyapunov exponentsl1s´d andl2s´d [2,4]: D 
2 lim´!0hy2fl1s´d 1 l2s´dgj´22, wheré  sqEyymd.
Here we report the first theoretical calculation of bo
l1s´d andl2s´d, for this system, using kinetic theory. W
also present a comparison with extensive computer sim
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ry
co-
he
ics
ds
s.

on-
the
ns-
d
ce
to
in

ted
t,”

ov-
ne
the
v

ted
ge

ed

by
fol-
-

th

la-

tions, as well as with the general relation, given above. W
apply a method based on the extended Lorentz-Boltzm
(LB) equation developed by van Beijeren and Dorfman f
computing the Lyapunov exponents [5,6].

The motion of the particle is described by a positio
vector $r, and velocity $y. Between collisions with the
disks, the (non-Hamiltonian) equations of motion of th
particle in the field and with an energy conservin
Gaussian thermostat are

Ùx  yx  y cosu, Ùy  yy  y sinu ,

Ùyx  y´ 2 ayx , Ùyy  2ayy .
(1)

Here u is the angle the particle’s velocity makes wit
the applied field, in thex direction, anda  yx´yy

represents the strength of the frictional force provided
the Gaussian thermostat [2], determined by the condit
that the kinetic energy remains constant.

The instantaneous change in velocity of the movi
particle upon collisions is$y0 2 $y  22k̂s $y ? k̂d, where
$y0 is its velocity after collision, and̂k is the unit vector in
the direction from the center of the scatterer to the po
of impact.

To determine the positive Lyapunov exponentl1 we
first consider the separation of two diverging trajectori
that start simultaneously at the same initial spatial poi
but have slightly different initial velocity directions, spec
fied by anglesu and u0, with ust  0d  u0 andu0st 
0d  u0 1 du0. We choose to measure the separation
trajectories along a line which is at all timest . 0 perpen-
dicular to the reference trajectory. Because the trajec
ries are curved by the thermostated field, the intersect
of this line with the adjacent trajectory does not occur
the point that a particle following the adjacent trajecto
will reach at timet, even to first order in the infinitesima
quantities, such asdu0. In order to determine the Lya-
punov exponents, one must take effects produced by
curving of the trajectories into account (see Fig. 1). T
© 1996 The American Physical Society
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FIG. 1. Geometry for the curvaturerstd in the applied field.

separation between the two trajectories at timet, dSstd,
can be written as the product of a radius of curvaturerstd
andd0ustd, the difference between the velocity angles of
the two trajectories at the points of intersection with the
perpendicular line, orrstd  Sstdyd0ustd. The radius of
curvature changes continuously between collisions, and in-
stantaneously at the collisions of the particle with the scat-
terers. Simple geometric considerations yield an equation
for the rate of change ofrstd between collisions as

Ùr  y 1 sr´d cosu 1
r2´2

y
sin2 u . (2)

The instantaneous change in the radius of curvature due to
a collision is given by [7]

1
r1


1

r2

1
2

a cosf
, (3)

where $y ? k̂  2 cosf, f is the angle of incidence at
collision, andr2 andr1 are the radii of curvature before
and after collision, respectively.

We now compute the positive Lyapunov exponentl1

from the rate of separation of diverging trajectories. The
result of Sinai [7] for the positive Lyapunov exponent in a
field-free Lorentz gas can be straightforwardly generalized

to include the case under discussion:

l1  lim
T!`

1
T

Z t01T

t0

y

rstd
dt 

ø
y

r

¿
s.s.

. (4)

Here we assume ergodicity and calculate the ensemble
erage in the steady state, denoted by the angular brac
with subscripts s.s., using a nonequilibrium steady s
distribution function for the moving particle in the con
stant thermostated applied field. The main idea is to c
sider an ensemble of similarly prepared systems, ass
that the distribution function for the moving particle,
this ensemble, reaches a spatially homogeneous st
state (since there is no way to distinguish one spatial p
from another in the ensemble average), and to derive
solve a LB equation for the distribution function for th
moving particlefs $y, rd, where the variables include bot
the velocity and the radius of curvature describing
separation of trajectories of the moving particle and
adjacent trajectory, as described above.

Thus we write

l1 
Z

d $y
Z `

0
dr

y

r
fs $y, rd , (5)

assuming thatf has been normalized to unity. The L
equation forf is

= $y ? s f Ù$yd 1
≠

≠r
s Ùrfd 

µ
≠f
≠t

∂
coll

. (6)

Since the dynamics between collisions is not Hamiltoni
the usual form of the streaming terms on the left ha
side of the LB equation must be replaced by the form t
reflects the total conservation of particles under the act
non-Hamiltonian dynamics. The left hand side of the L
equation can be obtained from the equations of mot
Eq. (1), and Eq. (2) forÙr
2´
≠

≠u
s f sinud 1

≠

≠r

∑µ
y 1 r´ cosu 1

r2´2

y
sin2 u

∂
f

∏


µ
≠f
≠t

∂
coll

, (7)
where we used the constant speed of the particle to denotefs $y, rd by fsu, rd. The right hand side (rhs) of the LB
equation is the change inf due to collisions given previously [5] asµ

≠f
≠t

∂
coll

 nay
Z py2

2py2
df cosf

Z `

0
dr0d

µ
r 2

sa cosfdy2
1 1 sa cosfdy2r0

∂
fs $y0, r0d 2 2nayfs $y, rd . (8)
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-
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To leading order in the density, the collision terms can
be simplified further by approximating the factor1 1

sa cosfdy2r0 inside the d function by unity sincer0

is typically on the order of the mean free path, so that
r0 ¿ a. Then Eq. (7) can be solved by expandingf as
a power series iń and inserting the solution into Eq. (5).
We obtain

l1s´d  l0 2
11
48

t0´2 1 Os´4d , (9)

wheret0  ,yy, with ,  s2nad21 the mean free path of
the moving particle, andl0 is given in Ref. [5].

The calculation ofl2s´d requires the study of trajec
tories thatasymptoticallyconverge to the reference tra
jectory of the moving particle rather than diverge fro
it. That is, the negative Lyapunov exponent can only
determined if one can find trajectories that lie on the s
ble manifold of the reference trajectory, which is typical
difficult since almost all of the adjacent trajectories w
eventually diverge from it. To overcome this difficult
we consider the time-reversed motion of the moving p
ticle [8]. This allows us to consider diverging trajectorie
again. We thus consider the steady state distribution fu
1975
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at-

he
tion f2s $y, rd for trajectories of the particle with velocity
$y and radius of curvaturer on the time reversal of the
stable manifold. The equation forf2 takes the form of
an “anti–Lorentz-Boltzmann” (ALB) equation. This un-
usual form is dictated by the observation that if the mov-
ing particle and the scatterer with which it collides are

uncorrelatedbeforecollision in the forward motion, then
in the time-reversed motion the moving particle and sc
terer will be uncorrelatedafter the collision. That is, to
obtain the ALB, one must use theStosszahlansatzfor the
exitingcollision cylinders, rather than for those before t
collision [6,9]. The ALB then reads
2´
≠

≠u
s f2 sinud 1

≠

≠r

∑µ
y 1 r´ cosu 1

r2´2

y
sin2 u

∂
f2

∏


µ
≠f2

≠t

∂
coll

, (10)

where µ
≠f2

≠t

∂
coll

 nay
Z py2

2py2
df cosf

Z `

0
dr0dsssr 2 sa cosfdy2dddf2s $y, r0d 2 nay

3
Z py2

2py2
df cosf

R
`

0 dr0f2s $y0, r0dR`

0 dr0f2s $y, r0d
f2s $y, rd . (11)
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The first term on the rhs of Eq. (11) is the gain term.
It is constructed by (a) using theStosszahlansatzfor
the collision cylinders centered on particles which are
produced in collisions with velocity$y, (b) requiring that
the radius of curvature after collision ber, and (c) noting
that before collision the radius of curvature will typically
be on the order of a mean free path, so that after collision
r will be very close tosay2d cosu. The loss term in
Eq. (11) can be obtained by noting that (a) the rate at which
particles with velocity$y disappear due to collisions with
angle of incidencef is nay cosf

R`
0 dr0f2s $y0, r0d, and

(b) the fraction of those which disappear having radius
of curvaturer is f2s $y, rd f

R`
0 dr0f2s $y, r0dg21. These

considerations lead directly to the rhs of Eq. (11), and a
more detailed explanation will be given elsewhere [6].

Equation (10) can be solved by imposing the require-
ment that Z

dr f2s $y, rd  f2s $yd , (12)

with f2s $yd the time-reversed steady state solution of the
spatially homogeneous Lorentz-Boltzmann equation. To
understand this condition, we note that when Eq. (10)
is integrated over all values ofr to obtain an equation
for the velocity distribution functionf2s $yd one obtains
an ALB equation with a collision operator that has the
opposite sign from the usual Lorentz-Boltzmann equation,
due to the fact that we are considering the time-reversed
motion, and using theStosszahlansatzafter collisions [9].
For consistency, we then require that the steady state
solutions of ther integrated LB and ALB equations be
related by a simple time-reversal operation, as indicated
by Eq. (12).

The negative Lyapunov exponent is obtained fromf2

by

l2  2
Z

d $y
Z `

0
dr

y

r
f2s $y, rd , (13)

with f2 normalized to unity. The negative sign on the r
of Eq. (13) is the result of the time-reversal procedu
Again, the equation forf2 can be solved by expandin
f2 in powers of́ . We finally obtain

l2  2l0 2
7

48
t0´2 1 Os´4d . (14)

Using the relation between the diffusion coefficientD and
the sum of the Lyapunov exponents discussed earlier
recover the correct low density valueD  s3y8dt0y2.

It is important to compare these results with tho
obtained from computer simulations of the same s
tem. For this purpose we distributed105 nonoverlap-
ping scatterers randomly in a square simulation cell w
periodic boundaries. Between collisions the trajecto
of the moving particle is computed from an analytic
solution [10] of the thermostated equations of motio
The collision points with the scatterers are determin
numerically with an accuracy of10212. The Lyapunov
exponents were computed in tangent space by a sim
taneous integration of the linearized equations of mot
for the intercollisional streaming and an exact lineariz
tion of the map which relates the separation of trajecto
after collision to that before collision [11]. In Fig. 2 w
show the deviation of the nonvanishing Lyapunov exp
nents from their equilibrium values as a function of t
squared applied field. All numbers are made dimensi
less by usinga, y, m, and q as the respective units fo
length, velocity, mass, and charge. Two reduced s
terer densitiesnp  na2 were considered, 0.001 (circles
and 0.002 (squares). Each point is obtained by ave
ing over ten simulation runs with different scatterer co
figurations and a total of4 3 106 collisions for each run.
The standard deviation for the exponents is,0.1%. The
lines refer to the theoretical expressions, Eqs. (9) and (
Both l1 and l2 exhibit the predicted quadratic wea
field behavior. These results are clearly consistent w
the theoretical predictions for the field-dependent Ly
punov exponents, though at densities somewhat hig
1976
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FIG. 2. Field dependence of the deviation of the Lyapun
exponents from their equilibrium value for the reduced densit
np  0.001 and np  0.002. ´  qEyym, where E is the
applied field. , is the mean free path, andq, m, and y are
the charge, mass, and velocity of the particle, respectively.a
is the diameter of the scatterers.

than those for which the LB results hold without de
sity corrections. Figure 3 showsDys,yd as a function
of ´2,ayy2 for np  0.001 (full circles) and0.002 (open
circles). The diffusion coefficientD is obtained from the
conductivity s through the Einstein formula, ands is
numerically computed froms  kqyxls.s.yE, the ratio of
the time-averaged dissipative current to the applied fie
Alternatively,D can be obtained also from the Lyapuno
exponents as indicated above. On the scale of Fig. 3 b
methods yield indistinguishable results.

We mention here that to obtain agreement between
simulation data forD and theory it was necessary to ad
to the low-density Lorentz-Boltzmann results3y8d,y, the
dotted top horizontal line in Fig. 3, known [12] modera
density corrections, which include essential contributio
from logarithmic terms of the formnp ln np 1 Osnpd.
The numerical nonequilibrium results converge well

FIG. 3. Dependence of the diffusion coefficientD on the
field for the two densitiesnp  0.001 and 0.002. All other
quantities are as in Fig. 2. The horizontal lines are explain
in the text.
v
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these corrected values for vanishing field indicated by
dashed (np  0.001) and solid (np  0.002) horizontal
lines. Thus the computer results confirm the presence
these nonanalytic terms in the density expansion.

As a check we computed the Lyapunov exponents
still smaller densities,np  0.0001, and fields,1025 with
a very efficient direct-simulation Monte Carlo method [1
and found perfect agreement with our other simulati
results quoted above.

We conclude by remarking that this work illustrates t
power of kinetic theory methods for computing quantiti
of interest to both statistical mechanics and dynami
systems theory [5,6,14].
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