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Quantum chaotic dynamics is obtained for a tight-binding model in which the energies of the ato
levels at the boundary sites are chosen at random. Results for the square lattice indicate th
energy spectrum shows a complex behavior with regions that obey the Wigner-Dyson statistics
localized and quasi-ideal states distributed according to Poisson statistics. Although the averaged
extension of the eigenstates in the present model scales with the size of the system as in the Ga
orthogonal ensemble, the fluctuations are much larger. [S0031-9007(96)01111-8]
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Recent advances in nanotechnology have made p
ble the fabrication of devices in which carriers are mai
scattered by the boundaries and not by impurities or
fects located inside them [1–3]. As these devices, wh
are commonly referred to as quantum dots, resem
quantum billiards, the interest in the latter has increa
considerably in the last few years. Although chaotic
liards have been intensively investigated in the last twe
years [4], the behavior of their quantum analogs has
yet been fully characterized. Some general characteri
of quantum chaotic systems have, however, a wide ac
tance. It has been shown, for instance, that the quan
counterparts of billiards having chaotic trajectories h
an energy spectrum which obeys Wigner-Dyson statis
[4–6]. This is the case of the stadium and Sinai’s billia
[7–10]. On the other hand, it is commonly believed t
there is a perfect mapping of quantum chaotic billia
into the more general and intensively investigated pr
lem of random matrices [2,8,9,11].

The purpose of this Letter is to present a new mo
of a quantum chaotic billiard and investigate its sp
tral statistics and its relationship with random matric
of the Gaussian orthogonal ensemble (GOE). The m
is a practical implementation of surface roughness an
main characteristics are the following. The quantum s
tem is described by means of a tight-binding Hamilton
with a single atomic level per lattice site in which the e
ergies of the atomic levels at the surface sitesS are chosen
at random, namely,

H ­
X
i[S

eic
y
i ci 1

X
kijl

Vijc
y
i cj , (1)

where the operatorci destroys an electron on sitei, and
Vij is the hopping integral between sitesi and j (the
symbol kijl denotes that the sum is restricted to nea
neighbor sites) [12]. We takeVij ­ V ­ 21. The
energies of the atomic levels at the boundary sitesei are
randomly chosen between2Wy2 andWy2. Calculations
have been carried out onL 3 L clusters of the squar
lattice of sizes up toL ­ 200. Schwarz algorithm fo
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symmetric band matrices [13] was used to compute
whole spectrum including eigenvectors forL # 64 and
the complete set of eigenvalues forL # 170. Instead, for
larger matrices individual eigenvalues and eigenfuncti
were obtained by inverse iteration [14].

The basis for expecting chaotic behavior in this mo
lies in the fact that the shift of the eigenvalues p
moted by the perturbation at the surface would be ab
sWy

p
3dL23y2 if first-order perturbation theory were ap

plicable, which is larger than the average level separa
(,8L22). This implies a mixture of,W

p
L ideal eigen-

states to form a given wave function of the perturbed s
tem. A similar reasoning suggests quantum chaos for
model in any dimension greater than 2. Note also tha
contrast with standard chaotic billiards, our model has
length scales, namely, the sizeL and the lattice constan
a. Thus even in the macroscopic limit (Lya ! `), mi-
croscopic roughness remains and is consequently fe
quantum particles, i.e., by particles of wavelengths of
order ofa.

According to the theory of random matrices and
numerical results for the stadium and Sinai’s billiards
clear hallmark of chaotic behavior is a level separat
statistics of the Wigner-Dyson type. Figure 1 shows
variance of the nearest-level spacings distribution for s
eral cluster sizes of the billiard described by Hamilton
(1) in the full energy spectrum. Away from the bottom
the band the levels are distributed according to Wign
Dyson statistics (this is explicitly shown in the inset
the figure). The behavior is, nonetheless, somewhat
ferent depending on the particular energy region. In f
whereas for energies in the rangef22, 20.5g, the variance
is close to that of the Wigner-Dyson distribution (0.28
even for small clusters, away from that region the va
ance tends to 0.286 as the size is increased. On the
hand, near the band edges the variance of the distribu
clearly tends to 1 (uncorrelated levels) as the system
increases, while the distribution approaches Poisson
tribution (see inset of Fig. 1). A similar behavior was o
tained by Pavloff and Hansen in their study of the effe
© 1996 The American Physical Society
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FIG. 1. Variance of nearest-level spacings in the wh
energy spectrum. The circle size is proportional to the ac
size of the system (L ­ 15, 30, 60, 110, and 150). Th
horizontal chain line indicates the value of the varian
corresponding to the Wigner-Dyson distribution (0.286). In
Distribution of nearest-level spacings in a170 3 170 cluster
for energy levels between24 and 23.7 (empty circles) and
21.2 and20.9 (filled circles); for the sake of comparison, th
Wigner-Dyson and the Poisson distributions (continuous lin
are also shown. The disorder parameter isW ­ 2.

of surface roughness on metallic clusters [15]: in the b
tom of the spectrum the de Broglie wavelength is lar
only the averaged disorder is felt, and the perturbatio
accordingly small. These features differ from those
random matrices which show a spectrum characterize
the Wigner-Dyson statistics throughout the whole ene
range, suggesting that, at least at a mesoscopic level
dom matrices and chaotic billiards are not equivalent.

The spatial dependence of the probability density
an eigenfunction in the energy range where cha
behavior is expected is illustrated in Fig. 2. The patt
shows speckles with valleys in between, reminiscen
the patterns found in billiards showing quantum chao
behavior [4] and in prelocalized states in 2D [16].
comparing our results with those for prelocalized sta
it should be noted that in the latter case disorder is pre
at all lattice sites of the system, whereas in our mo
disorder is restricted to the surface (it is in this sense
our model can be called a billiard). Another importa
difference, which is a consequence of the previous o
is the fact that in the present case Anderson localiza
should not be expected.

To further investigate the nature of the states in the
ferent energy ranges we have calculated the participa
ratio, which is a good measure of the spatial extensio
l
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FIG. 2. Probability amplitude of the eigenstate atE ø 23.3
of a 200 3 200 cluster of the square lattice with the energ
of the atomic levels at the boundary sites randomly cho
between 21 and 1. The probability amplitude is rough
proportional to the darkness.

a given eigenstate. Inverse participation numbers are
fined as the moments of the distribution function of t
local weights of the eigenstates, namely,

tqa ­
L3LX
i­1

jaai j
2q, (2)

whereaai is the amplitude of theath eigenstate at sitei,
i.e., jfal ­

P
i aaijil. Then the participation ratioPa is

given by the inverse of the second moment defined by

Pa ­ t21
2a . (3)

Pa is interpreted as the number of lattice sites covered
the eigenstatea. Figure 3 showsPa in the whole energy
spectrum for two values of the disorder parameterW . For
low disorder (W ­ 2) the energy levels close to the ba
edges and part of the states close to the band cente
quasi-ideal. The probability amplitude of eigenstates
that energy region is much like that of eigenfunctio
in the fully ordered system [17]. These states appea
energy regions in which the wave functions of the orde
cluster have small weight on the surface layer (at b
edgesall states have a small surface sensibility wher
close to the band centersomeof the states show sma
amplitudes at the surface) whenever the value ofW is
small enough to allow them to keep their unperturb
characteristics. In any case, what matters in the pre
analysis is that the size of the regions of appeara
of quasi-ideal states diminishes both with the incre
of L and the strengthW of surface disorder. Result
of Fig. 1 are consistent with this qualitative analys
The behavior is even more complex for largeW (see
1971
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FIG. 3. Spatial extension of all eigenstates corresponding
realization of Hamiltonian (1) for a64 3 64 cluster and two
values of the disorder parameter, namely,W ­ 2 (top) and
W ­ 5 (bottom).

bottom of Fig. 3).Bona fideexponentially localized state
appear outside the band (see circles close to thex axis in
Fig. 3). Quasi-ideal states still appear at band edges
at the band center but in a reduced amount. Other s
show now a small spatial extent due to their characte
bulk states resonating with a particular surface impur
Actually, we have collected a large sample of sta
showing different characteristics and allowing theref
for different names. To the best of our knowledge t
complex behavior has not been pointed out in previ
discussions of quantum chaotic billiards. In the limit
infinite disorder we expect a rather simple scenario
which bulk and surface are decoupled and, conseque
ordered states would lie on bulk sites whereas local
states would be located at surface sites. This is a tr
limit and the most interesting situations are of cou
expected for finiteW values.

It is interesting to note that a calculation for random m
trices similar to that shown in Fig. 3 gives an almost ene
independent distribution with a finite width. An interesti
question is how this width (or, more precisely, this st
dard deviation) evolves with the size of the system for b
random matrices and the present billiard. In the cas
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random matrices of dimensionN ­ L2 the results for the
participation ratio averaged over the whole energy ran
(P ­ kPal) in clusters of sizesL ­ 4, 8, . . . , 44, 48, can be
accurately fitted byP ­ 2.2 1 0.33L2, and those for the
relative standard deviation of the distribution bysyP ­
1.64yL 2 3.05yL2 (see Fig. 4). Thus in the asymptoti
limit the ratiosyP behaves as1yL. On the other hand re-
sults for the present model of quantum billiard obtain
for L ­ 4, 8, . . . , 60, 64 and W ­ 2 lead to the follow-
ing fittings: P ­ 0.71L 1 0.33L2 and syP ­ 0.074 1

1.98yL 2 11.8yL2 1 24.5yL3 (see Fig. 4). Averaging
sets always include more than 8000 eigenstates. Thes
sults indicate that in the macroscopic limitsyP is a con-
stant, suggesting that fluctuations of the spatial extens
of wave functions are much larger than for random m
trices. The reason for this significant difference shou
be the surface resonances and quasi-ideal states foun
the present chaotic billiard which seem to determine
asymptotic behavior of fluctuations in this system. On t
other hand, we note that the fittings of the numerical resu
for P show that the asymptotic behaviors of this magn
tude for random matrices and for the present billiard a
the same, and that significant differences between the
models are only found for smallL. These results would
suggest that, forL ! `, whereas averaged properties o
quantum chaotic billiards approach those of random m
trices, fluctuations are much larger in the former.

The results forP allow us to connect with a question o
much recent interest. We refer to the eventual multifra
tality [18,19] of the wave functions predicted [20,21] an
numerically calculated [16] for prelocalized states in d
ordered two dimensional systems. The point is wheth
this exotic behavior of the eigenstates could also be
characteristic of chaotic wave functions. Multifractalit
occurs whenevertqa ~ L2tsqd, tsqd being a noninteger;
in particulartsqd ­ sq 2 1dDsqd, where theDsqd are the
generalized fractal dimensions. Our results forPa (or

FIG. 4. Scaling behavior of the relative fluctuation of th
participation ratio for random matrices of the GOE (square
and for our quantum billiard (circles). Fits are shown as dash
lines.
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t2a) averaged over the whole energy range indicate t
this behavior is not expected in the present case, as f
the above fittings it is concluded thatDs2d ­ 2. In or-
der to ensure this conclusion we have carried out sev
analyses in selected energy ranges by means of the a
method and by the standard box-counting method [19]
clusters of a fixed size. If size effects are properly a
counted for, all results point to the same conclusion: T
wave functions of the billiard herewith investigated do n
show multifractal behavior. In fact all results fortqaL2q

can be most accurately fitted by parabolic functions.
Summarizing, we have presented a new model of qu

tum chaotic billiards which is an efficient implementatio
of surface roughness. The essential feature of the mod
the inclusion of diagonal disorder at the surface of the s
tem. The spectral statistics of this billiard changes throu
the band in a manner not previously reported in other m
els of chaotic billiards. In particular, exponentially loca
ized, quasi-ideal surface resonances and chaotic state
found to exist within the band. The probability amplitud
of chaotic eigenstates is reminiscent of that found in m
standard chaotic billiards and for prelocalized states in t
dimensions. We have also shown that whereas the asy
totic behavior of the participation ratio in the present b
liard is almost identical to that found in random matrice
the standard deviation (fluctuations) of that magnitude
much larger in the former. This result suggests that m
ping between chaotic billiards and the random matrix pro
lem should be expected only for averaged properties
not for their fluctuations. It is very likely that these fea
tures are not exclusive of the present billiard and that
behavior of quantum chaotic billiards cannot be fully d
scribed, at least at a mesoscopic level, by random matri
Finally, we note that the simplicity of our model allows th
study of several situations of physical interest including t
case of 3D billiards.
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