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Model of Quantum Chaotic Billiards: Spectral Statistics and Wave Functions
in Two Dimensions
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Quantum chaotic dynamics is obtained for a tight-binding model in which the energies of the atomic
levels at the boundary sites are chosen at random. Results for the square lattice indicate that the
energy spectrum shows a complex behavior with regions that obey the Wigner-Dyson statistics and
localized and quasi-ideal states distributed according to Poisson statistics. Although the averaged spatial
extension of the eigenstates in the present model scales with the size of the system as in the Gaussian
orthogonal ensemble, the fluctuations are much larger. [S0031-9007(96)01111-8]

PACS numbers: 05.45.+b, 03.65.Sq

Recent advances in nanotechnology have made possymmetric band matrices [13] was used to compute the
ble the fabrication of devices in which carriers are mainlywhole spectrum including eigenvectors for= 64 and
scattered by the boundaries and not by impurities or dethe complete set of eigenvalues for< 170. Instead, for
fects located inside them [1-3]. As these devices, whiclharger matrices individual eigenvalues and eigenfunctions
are commonly referred to as quantum dots, resemblerere obtained by inverse iteration [14].
quantum billiards, the interest in the latter has increased The basis for expecting chaotic behavior in this model
considerably in the last few years. Although chaotic bil-lies in the fact that the shift of the eigenvalues pro-
liards have been intensively investigated in the last twentynoted by the perturbation at the surface would be about
years [4], the behavior of their quantum analogs has notW /+/3)L~3/2 if first-order perturbation theory were ap-
yet been fully characterized. Some general characteristigdicable, which is larger than the average level separation
of quantum chaotic systems have, however, a wide acceg—~8L~2). This implies a mixture of~W+/L ideal eigen-
tance. It has been shown, for instance, that the quantustates to form a given wave function of the perturbed sys-
counterparts of billiards having chaotic trajectories havedem. A similar reasoning suggests quantum chaos for our
an energy spectrum which obeys Wigner-Dyson statisticenodel in any dimension greater than 2. Note also that, in
[4—6]. This s the case of the stadium and Sinai’s billiardscontrast with standard chaotic billiards, our model has two
[7—10]. On the other hand, it is commonly believed thatlength scales, namely, the sizeand the lattice constant
there is a perfect mapping of quantum chaotic billiardsa. Thus even in the macroscopic limik {a — ), mi-
into the more general and intensively investigated proberoscopic roughness remains and is consequently felt by
lem of random matrices [2,8,9,11]. quantum particles, i.e., by particles of wavelengths of the

The purpose of this Letter is to present a hew modebrder ofa.
of a quantum chaotic billiard and investigate its spec- According to the theory of random matrices and the
tral statistics and its relationship with random matricesnumerical results for the stadium and Sinai's billiards, a
of the Gaussian orthogonal ensemble (GOE). The modellear hallmark of chaotic behavior is a level separation
is a practical implementation of surface roughness and itstatistics of the Wigner-Dyson type. Figure 1 shows the
main characteristics are the following. The quantum sysvariance of the nearest-level spacings distribution for sev-
tem is described by means of a tight-binding Hamiltonianeral cluster sizes of the billiard described by Hamiltonian
with a single atomic level per lattice site in which the en-(1) in the full energy spectrum. Away from the bottom of
ergies of the atomic levels at the surface skese chosen the band the levels are distributed according to Wigner-

at random, namely, Dyson statistics (this is explicitly shown in the inset of
" t the figure). The behavior is, nonetheless, somewhat dif-
H = ecle + Viicic (1) . . .
Z iciCi Z ijCi Cjs ferent depending on the particular energy region. In fact,
i€S (i)

whereas for energies in the range2, —0.5], the variance
where the operator; destroys an electron on siigand is close to that of the Wigner-Dyson distribution (0.286)
Vi; is the hopping integral between sitésand j (the even for small clusters, away from that region the vari-
symbol(ij) denotes that the sum is restricted to nearesance tends to 0.286 as the size is increased. On the other
neighbor sites) [12]. We také/;; =V = —1. The hand, near the band edges the variance of the distribution
energies of the atomic levels at the boundary séteare  clearly tends to 1 (uncorrelated levels) as the system size
randomly chosen betweenW /2 andW /2. Calculations increases, while the distribution approaches Poisson dis-
have been carried out oh X L clusters of the square tribution (see inset of Fig. 1). A similar behavior was ob-
lattice of sizes up td. = 200. Schwarz algorithm for tained by Pavloff and Hansen in their study of the effects
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-4 -3 2 -1 0 FIG. 2. Probability amplitude of the eigenstate Aat= —3.3
ENERGY of a 200 X 200 cluster of the square lattice with the energies

of the atomic levels at the boundary sites randomly chosen

FIG. 1. Variance of nearest-level spacings in the wholepetween —1 and 1. The probability amplitude is roughly
energy spectrum. The circle size is proportional to the actuaproportional to the darkness.

size of the systemI(= 15, 30, 60, 110, and 150). The
horizontal chain line indicates the value of the variance ) S
corresponding to the Wigner-Dyson distribution (0.286). Inset:a given eigenstate. Inverse participation numbers are de-

Distribution of nearest-level spacings in1d0 X 170 cluster  fined as the moments of the distribution function of the

for energy levels betweer4 and —3.7 (empty circles) and ; ;
—1.2 and —0.9 (filled circles); for the sake of comparison, the local weights of the eigenstates, namely,

Wigner-Dyson and the Poisson distributions (continuous lines) LXL
are also shown. The disorder parameteWis= 2. tea = Z lagqil?, (2)
i=1

of surface roughness on metallic clusters [15]: in the botwherea“i is the amplitude of thevth eigenstate at sitg

tom of the spectrum the de Broglie wavelength is large' S |¢€> h 2 daili). fTEen the p(;irtICIpatIOI‘(ljr?tIBé It;s _
only the averaged disorder is felt, and the perturbation iglven y the inverse of the second moment defined by (2):
accordingly small. These features differ from those of P, =13, 3)
random matrices which show a spectrum characterized by
the Wigner-Dyson statistics throughout the whole energy,, is interpreted as the number of lattice sites covered by
range, suggesting that, at least at a mesoscopic level, rathe eigenstate.. Figure 3 shows,, in the whole energy
dom matrices and chaotic billiards are not equivalent.  spectrum for two values of the disorder paramé¥er For

The spatial dependence of the probability density ofow disorder = 2) the energy levels close to the band
an eigenfunction in the energy range where chaotiedges and part of the states close to the band center are
behavior is expected is illustrated in Fig. 2. The pattermguasi-ideal. The probability amplitude of eigenstates in
shows speckles with valleys in between, reminiscent ofhat energy region is much like that of eigenfunctions
the patterns found in billiards showing quantum chaotidn the fully ordered system [17]. These states appear in
behavior [4] and in prelocalized states in 2D [16]. In energy regions in which the wave functions of the ordered
comparing our results with those for prelocalized stategluster have small weight on the surface layer (at band
it should be noted that in the latter case disorder is preseridgesall states have a small surface sensibility whereas
at all lattice sites of the system, whereas in our modetlose to the band centaomeof the states show small
disorder is restricted to the surface (it is in this sense thaamplitudes at the surface) whenever the valueiofis
our model can be called a billiard). Another importantsmall enough to allow them to keep their unperturbed
difference, which is a consequence of the previous oneharacteristics. In any case, what matters in the present
is the fact that in the present case Anderson localizatioanalysis is that the size of the regions of appearance
should not be expected. of quasi-ideal states diminishes both with the increase

To further investigate the nature of the states in the difof L and the strengti¥ of surface disorder. Results
ferent energy ranges we have calculated the participatioof Fig. 1 are consistent with this qualitative analysis.
ratio, which is a good measure of the spatial extension oThe behavior is even more complex for lar§é (see
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FIG. 3. Spatial extension of all eigenstates corresponding to
realization of Hamiltonian (1) for &4 X 64 cluster and two

values of the disorder parameter, namely,= 2 (top) and
W = 5 (bottom).
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bottom of Fig. 3).Bona fideexponentially localized states
appear outside the band (see circles close torthgis in

random matrices of dimensiavi = L? the results for the
participation ratio averaged over the whole energy range
(P = (Py))inclusters of sized = 4,8,...,44,48, can be
accurately fitted by? = 2.2 + 0.33L2, and those for the
relative standard deviation of the distribution by P =
1.64/L — 3.05/L? (see Fig. 4). Thus in the asymptotic
limit the ratioo /P behaves a$/L. On the other hand re-
sults for the present model of quantum billiard obtained
for L =4,8,...,60,64 and W = 2 lead to the follow-

ing fittings: P = 0.71L + 0.33L? and o/P = 0.074 +
1.98/L — 11.8/L?> + 24.5/L* (see Fig. 4). Averaging
sets always include more than 8000 eigenstates. These re-
sults indicate that in the macroscopic linat/ P is a con-
stant, suggesting that fluctuations of the spatial extension
of wave functions are much larger than for random ma-
trices. The reason for this significant difference should
be the surface resonances and quasi-ideal states found in
the present chaotic billiard which seem to determine the
asymptotic behavior of fluctuations in this system. On the
other hand, we note that the fittings of the numerical results
for P show that the asymptotic behaviors of this magni-
tude for random matrices and for the present billiard are
the same, and that significant differences between the two
models are only found for small. These results would
suggest that, fof. — o, whereas averaged properties of
guantum chaotic billiards approach those of random ma-
trices, fluctuations are much larger in the former

a The results foP allow us to connect with a question of
much recent interest. We refer to the eventual multifrac-
tality [18,19] of the wave functions predicted [20,21] and
numerically calculated [16] for prelocalized states in dis-
ordered two dimensional systems. The point is whether
this exotic behavior of the eigenstates could also be a
characteristic of chaotic wave functions. Multifractality
occurs whenever,, « L9, 7(¢) being a noninteger;

Fig. 3). Quasi-ideal states still appear at band edges and particularr(q) = (¢ — 1)D(g), where theD(q) are the

at the band center but in a reduced amount. Other statgeneralized fractal dimensions.

Our results Ry (or

show now a small spatial extent due to their character of
bulk states resonating with a particular surface impurity.
Actually, we have collected a large sample of states
showing different characteristics and allowing therefore
for different names. To the best of our knowledge this
complex behavior has not been pointed out in previous
discussions of quantum chaotic billiards. In the limit of
infinite disorder we expect a rather simple scenario in
which bulk and surface are decoupled and, consequently,
ordered states would lie on bulk sites whereas localized
states would be located at surface sites. This is a trivial
limit and the most interesting situations are of course
expected for finiteW values.

It is interesting to note that a calculation for random ma-
trices similar to that shown in Fig. 3 gives an almost energy
independent distribution with a finite width. An interesting
guestion is how this width (or, more precisely, this stan-
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FIG. 4. Scaling behavior of the relative fluctuation of the
participation ratio for random matrices of the GOE (squares)

dard deviation) evolves with the size of the system for botfind for our quantum billiard (circles). Fits are shown as dashed

random matrices and the present billiard.
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