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Chemically Driven Motility of Brownian Particles
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A simple model is devised to show that an enzymatic Brownian particlesiatéc electric field can
undergo directional movement when coupled withomequilibriumchemical reaction which the particle
catalyzes, if at least one of the intermediate states of the catalytic cycle is charged. The direction of
the movement depends not only on the asymmetry of the electric field, but also on the direction of
the chemical reaction and the mechanism of the catalytic cycle. The Brownian particle can also move
against an external load and thus do mechanical work. This study suggests that enzyme molecules
could be separated based on their enzymatic activities. The formalism developed in this paper can be
extended and applied to biological motors. [S0031-9007(96)00487-5]

PACS numbers: 87.15.-v, 05.40.+j

Recently the directional movement of Brownian par-AB, A*, andB~ in solution are assumed to be time inde-
ticles in a periodic potential has attracted considerablpendent. We want to study the movement of this chemi-
attention [1-7]. It is known that the long-time move-
ment of a Brownian particle is not directionally biased a

in the presence of a periodic potential if the potential is 8 ko

static But, if the potential is asymmetric within a pe- ME ——2E:AB (9
riod and is randomly or regularly switched on and off (so . & .

that the force acting on the particles fluctuates), then ¢ ;@\? %23

net directional movement of the particle can be achievec e

[L-5]. As in other cases of external fluctuation-induced
free energy transduction [8—12], energy from a fluctuat-
ing force field is thus found to be able to do mechanical
work. Experiments using oscillating electric fields have
not only confirmed the existence of directional movement
but also shown that particles with different charges or
electric properties could be separated [3,4]. In this Let-
ter, we demonstrate with a simple model that a Brown-
ian particle can execute directional movement istatic
(nonfluctuating periodic electric field when coupled with
a nonequilibrium chemical reaction. In other words, the /

pss(x)

free energy of a nonequilibrium chemical reaction can be p |
directly transduced by a Brownian particle to do mechani- 1+
cal work. The general principle of the model can be testec | /
experimentally and should prove useful in biomolecular /
separation. Moreover, the formalism developed here cal

be generalized and used for analyzing the motility of sin-

gle biological motorsn vitro, where the effect of Brown- FIG. 1. (a) A kinetic mechanism for the reactid® — A" +
ian motion may be important. B~ which is catalyzed by the enzymatic Brownian particle

g . e (symbolized by a circle). (b) The reduced kinetic scheme after
_As shown in Fig. 1(a), the Brownian partickeis con-  pogiecting cycle Il and assuming that the bond-breaking step is
sidered as an enzyme that catalyzes the breakdowABof much faster then the binding @B to the Brownian particle,

into A* and B~. For simplicity, we consider only the which is denoted a& (to emphasize its enzymatic character).
reduced scheme in Fig. 1(b). However, the general conlhis three-state scheme is used for all the results reported here.
clusions discussed below are expected to be applicabf@) A periodic piece-linear potentidf(x) that is assumed to act

. . - on the enzymatic Brownian particle only when it is in state 3.
to Fig. 1(a) or other more complicated kinetic schemess o potential is asymmetric when # 1/2. (d) The steady-

The chemical reactiofdB — A" + B™) is assumed t0 state probabilities calculated using parameters in Table | and
be inhibited in the absence &fand the concentrations of [AB]/[AB]*9 = 10.
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TABLE |I. Parameters of the model used in the calculations. Detailed balance dictatés thatv3/a2ko3ks; = K.

k12 = alz[AB] = OOZ[AB] k21 = 20.0

k23 = 20.0 k32 = C(32[Bi](x) = 02[37]()()
k3 = 1.0 ki = ap[A*](x) = 0.1[A](x)
{A*]D =1.0 (B~])=10

K =10 [ABTY = 1.0

a=20.1 Vo = 10.0

[AT](x) = (A7) exp(=V)/(exp(—V))" [B~1(x) = (B™) exp(V)/(exp(V))

[ABice = [ABT9/(ex—V () (exdV(x)]) = 4.54 X 1073

*Angular brackets signify taking average over one period of the potential.

cally coupled Brownian particl&E when it is interact- Z]1p§5(x) de = 1 3)
ing with a periodic and asymmetric potential as that in —Jo ' ’
Fig. 1(c). Let us assume that the parti€les influenced a1 this constant is equal to thdong time velocityof

by the potentialv'(x) only in state 3 [this occurs natu- he Brownian particle. The rate of breakdown 4B at
rally if V(x) is an electric potential]. In gener#li(x) can steady state can be evaluated as
be viewed as a potential of mean force or a free energy

function (see below). For this part of the pap®(x) is ! o o
taken as an electric potential. Thus the concentrations of J = o [ki2pT*(x) — kot p3*(x)]dx . 4)

na ettt a b
the ionic speciest™ and B adopt Boltzmann distribu- e niical results fod can be obtained using either of the

tions: [A™](x) = (A" exd —V(x)]/(exd—V(x)]) and other two sides of the catalyti in Fi

_ _ ytic cycle in Fig. 1(b). The
(B 10x) = (B "D eXF{V(X)V(eXF{V.(X)])’ where th? an- - rate of dissipation of chemical free energy/isG, where
gular bracketg ) represent averaging over one period. AsSpG = IN[AB]/[AB]9) and [ABJ¢ is the equilibrium
a result, two pseudo-first-order rate constakis &ndks2;  oncentration oAAB.
see Taple ) are depeergldent. Trle Ioca[equilibrium CON-  The steady-state solutions of Egs. (1) and (2) were
centration OfAB, [ABJi,c = K[A"](x)[B"](x), whereK  ophiaineq numerically using the finite-difference method
is the equilibrium constant of the chemical reaction in so-5nq the steady-state probabilities thus obtained were
lution, is x independent. Note that ¥ (x) were absent, ien used to calculate and J from Egs. (2) and (4).

the eﬂ“'“b”_“m concentration oAB WOUL% be[ABI*! = 1pe parameters used in the calculations for the model
K{[AT]){[B"]), which is higher thafAB];,.. The cthem- in Fig. 1(b) are shown in Table I. For illustration, the
ical reaction is out of equilibrium whef#B] # [ABlioc.  periodic steady-state probabilities evaluated from Eq. (1)
The probablhtles_?,-(x,_t) of flnd_lng E atx _and instate  for [AB]/[AB]*Y = 10 are displayed in Fig. 1(d). Within
at timet obey the diffusion-reaction equations [13], each period, all three probabilities depend xrbut the
dependence gf;*(x) and p5’(x) onxis barely discernible
api/ot = —ou;/ax + Y kip; — pi D kij» (1) in the scale of the figure. The particle velocityand AB
JF J* breakdown rate) calculated for the model are shown in
Fig. 2 as functions ofAB]. Several interesting features
(2) can be seen. First, when the chemical reaction is in
i = 1,2, and 3, wherez; are used to select the state equilibrium, i.e., [AB] = [AB]., the particle has no
in which the potential is activez{ = z = 0 andz; =  net movement, consistent with thermodynamics. When
1). For convenience, the quantities t, V, and k;; [AB] > [AB]T(?C, particle E has a net movement toward
have been made dimensionless. They are related the less tilted side of the asymmetric potential [toward the
the corresponding physical quantities (signified by a baright in Fig. 1(c)], just as in external-fluctuation driven
over each symbol) through = X/L, t = Di/L?, V =  systems [1-4]. However, whefAB] < [AB].., the
V/kgT, and k;; = L*k;;/D, whereL is the length of direction of the movement is reversed. Thus, in contrast
the period of the potentialD is the diffusion constant to the external-fluctuation driven case, the movement
of the particle, andkgT is the product of Boltzmann's direction of a chemically driven Brownian particle is
constant and the temperature. By summing over the thresot solely determined by the asymmetry of the potential.
states in Eq. (1), one hasp(x,7)/dr = —du/ox where Second, agAB] increases abovfAB].., initially both
plx,t) = >, pi(x,t) and u = >, u;. At steady state, u andJ increase. Howeven rises to a maximum and
dap(x,1)/dt = 0. This implies thatu is either zero or a then decays to an asymptotic value at lafg&], while
constant quantity that is independentof SinceV(x) is  J increases monotonically and saturates at Iqg8].
periodic, bothp; andu; are also periodic at steady state. Third, values ofJ calculated forV(x) with parameters
It can be shown [14] that if the steady-state probabilitiess = 0.1 and Vy, = 10 are similar to those without the
pi’(x) of Eq. (1) satisfy the normalization condition potential and thus are insensitive to the potential. Fourth,

u; = —op;/ox — z;p;dV/dx,
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) . . FIG. 3. (a) The external loadr (solid curve) and theAB
FIG. 2. (a) The velocityu of the Brownian particle as a preakdown ratel (dashed curve) as functions of the velodity

function of the concentration 0AB calculated from EQ. (2) = of the Brownian particle. (b) The efficiency of free-energy
using the steady-state probabilities as shown in Fig. 1(d). (bjyransduction as a function af. All the curves are obtained
The breakdown ratd of AB as a function ofAB], calculated ;sing the parameters in Table | aptiB]/[AB]® = ¢2.

from the steady-state probabilities using Eq. (4). The dotteéJ

curves represent the results in the absence of the potential.

Arrows indicate the asymptotic values at lafge?]. Magnified . .
views for small valuesy oFAB] are shown ing?;e inse%s. The Movement the particle has to oscillate between charged

parameters used in obtaining the curves are listed in Table | (ind uncharged states (so that the interaction between
particular,[AB]. = 4.54 X 1073). the particle and the potential field fluctuates). However,
although it is anecessarycondition, oscillation between
charged and uncharged states is nguHicientcondition
u andJ change signs simultaneously [aB] = [AB];.  for the biased movement to occur; the driving chemical
and hence a change in the direction of the chemicaleaction has to be out of equilibrium. To our knowledge,
reaction results in a change in the direction of the particlehis is the first model with arexplicit mechanism that
movement. displays how scalar chemical free energy is converted into
The existence of directional movement means that theectorial mechanical energy.
chemically driven Brownian particle can carry an external The validity of this model can be tested by adapting a
load and do mechanical work. By adding a ternf'p;  similar setup used for studying external-fluctuation driven
to the right-hand side of Eq. (2) and calculatingas  mobility [3,4]. The results obtained in our study suggest
a function of the external load’, one can obtain the that, in addition to charges and sizes, biomolecules can
force-velocity curve. The result for the present modelbe separated according to enzymatic activities or mecha-
with the parameter set of Table | addB]/[AB]*9 = nisms. In principle, molecules with different enzymatic
¢?° is shown in Fig. 3(a). There is an apparent linearactivities or mechanisms can be separated in the presence
relationship betweerF and u for loads less than the of a static periodic and asymmetridectric potential by
isometric forceFjs,, the value ofF at which u = 0. adding different substrates. Whether this is a feasible ex-
Meanwhile,J is almost constant. The efficiency of free- periment remains to be investigated.
energy transductiom; = Fu/JAG, is shown in Fig. 3(b) The sameormalismdescribed in this paper [as those
as a function of the velocityu. For the particular in Egs. (1)—(4)] can be obtained for the so-called “cross-
parameter set, the maximum efficiency is snfal0.5%). bridge” modelsof biological motors. In biological mo-
We have demonstrated here that an enzyme molecuters, the crossbridge (the head) of a motor not only is the
is able to use the thermal Brownian motion and the freesite of chemical catalysis but also can attach (bind) to a
energy of the chemical reaction it catalyzes to movespecific binding site on a subunit of the polymer. Force is
unidirectionally in a spatially periodic and asymmetric generated between the motor and the polymer only when
electric potential, even against an external load. It ighe crossbridge is attached. That is, some or all of the
important to point out that in order to generate biasedstates of the catalytic cycle of the crossbridge can bind
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E E-AB length), fixingD at6.73 x 10! cm? s™! so that/ equals
the rate of ATP hydrolysié~100 s™!) [18], and using the
data in Fig. 3(a), one finds the calculated isometric force
and maximum velocity (whe# = 0) to be 1.14 pN and

Ee A+ 0.12 ums™!, respectively. The measured values are 4—

5 pN and0.5-0.6 ums™!, respectively [16,17].

In summary, chemically coupled Brownian particles
can be made to move unidirectionally in a static periodic
potential. The direction of movement depends on the di-
rection of the chemical reaction and the kinetic mecha-

E.P — E-AB-P nism of the catalytic cycle, as well as the asymmetry of
the potential. The formalism developed in the present pa-
per is applicable to crossbridge models and therefore is
useful in modeling the motility of single biological mo-

EsA+sP tors inin vitro measurements, where thermal Brownian

motion may contribute to the movement of the motor.
FIG. 4. A kinetic model for biological motors. The upper \We thank B. Brenner, L. Yu, and R.J. Rubin for
triangle represents the original catalytic cycle of the motor iny,5,able discussions.
solution [Fig. 1(b)], while the lower one represents the one
when the motor is attached to the polyni&y. If the dominant
cycle of the model is assumed to be the one shown in heavy
lines and if statesfA* and EP are assumed to be transient
intermediates, then the original six-state model can be reduced «
to a three-state model similar to that shown in Fig. 1(b) with
state 3 representing the attached™ P state.
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