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The line of phase transitions separating the confinement phase from the Coulomb phase in the
four-dimensional pure compact U(1) gauge theory with extended Wilson action is reconsidered. By
means of a high precision simulation on spherical lattices and a finite-size scaling analysis we find
that along a part of this line, including the Wilson action the critical scaling behavior is determined
by one fixed point with non-Gaussian critical exponent= 0.365(8). This indicates the existence
of a nontrivial and nonasymptotically free continuum limit of this theory, as well as of its dual
equivalent. [S0031-9007(96)01067-8]

PACS numbers: 11.15.Ha, 02.70.Fj, 05.70.Jk, 64.60.Fr

In contradistinction to lower dimensions, the only We find that at the confinement—Coulomb phase tran-
firmly established quantum field theories in four dimen-sition at strong bare gauge coupling= O(1), the model
sions (4D) are either asymptotically free or so-called triv-exhibits a second order scaling behavior well described by
ial theories. Both are defined in the vicinity of Gaussianthe values of the correlation length critical exponenn
fixed points, i.e., of noninteracting limit cases. In spite ofthe ranger = 0.35-0.40. The measurements have been
numerous suggestions and circumstantial evidence, untilerformed at various couplings and by different methods.
now no candidate for a non-Gaussian fixed point in 4DThe most reliable determination gives
has been established.

The suitability of numerical simulations on the lattice v = 0.365(8). (1)
for a confirmation of the existence of non-GaussianThese results are quite different fram= 0.25, expected
fixed points, and for an investigation of their properties,at a first order transition, as well as from= 0.5, ob-
has been demonstrated in dimensions lower than foumined in a Gaussian theory or in the mean field ap-
in numerous applications. For example, non-Gaussiaproximation. This strongly suggests the existence of a
values of critical exponents can be determined by meansontinuum pure U(1) gauge theory with properties dif-
of finite-size scaling (FSS) or renormalization group (RG)ferent from theories governed by Gaussian fixed points
analysis. Several attempts to use a similar approach in 4@ith or without logarithmic corrections. It can be ob-
have encountered severe problems, however. tained from the lattice theory by the RG techniques.

In this Letter we reconsider the oldest candidate for a Detailed numerical evidence for these claims will be
non-Gaussian fixed point in the 4D lattice field theory,presented elsewhere [8]. Some preliminary results have
the phase transition between the confinement and thieeen published in Refs. [9,10].

Coulomb phases in the pure compact U(1) gauge theory Since the pure U(1) lattice gauge theory with the Villain
[1,2] with Wilson action and extended Wilson action. (periodic Gaussian) action presumably belongs to the
After various pioneering studies, e.g., [3—5], the moresame universality class [11], rigorous dual relationships
detailed investigations were hindered mainly by a weakmply that also the following 4D models possess a
two-state signal [6,7]. This obscures the order of thecontinuum limit described by the same fixed point: the
phase transition and makes it difficult to determine criticalCoulomb gas of monopole loops [12], the noncompact
exponents reliably. We demonstrate that the problemf(1) Higgs model at large negative squared bare mass
encountered, when considering the continuum limit affrozen 4D superconductor) [13,14], and an effective
this phase transition, can be surmounted. The cluestring theory equivalent to this Higgs model [15].

are the observation that the two-state signal disappears These findings raise once again the question, whether
on lattices with spherelike topology, the construction ofin strongly interacting 4D gauge field theories further
homogeneous spherical lattices, the use of modern FS®n-Gaussian fixed points exist that might be of use for
analysis techniques, and larger computer resources. theories beyond the standard model.
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The pure compact U(1) gauge theory on the 4D cubic However, the lattice on the surface of a cube is rather
lattice with periodic boundary conditions (4D torus) caninhomogeneous and causes complex finite-size effects,
be described by the extended Wilson action [5] preventing a reliable FSS analysis.

For our present study ay = 0, we have chosen
_ again lattices with spherelike topology. To alleviate
S ;WP[BCOS(@P) Ty cos20,)], 2) the problem of inhomogeneity, we have used lattices
obtained by projecting the 4D surfacd[N] of a 5D
with wp = 1. Here®p € [0,27) is the plaquette angle, cubic lattice N onto a concentric 4D sphere. On such
i.e., the argument of the product of U(1) link variablesa spherical latticeS[N], the curvatures concentrated on
along a plaquette?. Taking ®p = a’gF,,, Wherea the corners, edges, etc., of the original lattiié[N] are
is the lattice spacing, ang + 4y = 1/g%, one ob- approximately homogenized over the whole sphere by the
tains for weak couplingg the usual continuum action weight factors

1
S = 4 fd4XF,l2LV' wp = A;;/AP (3)

I_n (())ne of thve\:lllvery f|r.?t stugles [‘g' rest|r||c|teg_ to thein the action (2).A» andA} are the areas of the plaquette
y = 0 case (Wilson action [1]) and small lattices, ap on S[N], and of its dual, as on any irregular, e.g.,

behavior consistent with a second order phase transition & ndom lattice [26]. These areas are determined by means
B = 1 was observed, and = 1/3 was found. However, 8f a two-triangle approximation of the plaquettes.

any inference about the continuum limit has been hindere It has been checked in some spin and gauge models

by the subsequent observation of a two-state signal %Rith second order transitions that universality for spheri-

Ia}rger,ﬁbuttflnlti Iatt'?jsf [B]I' ﬂ:'st fr:therhcouldtbe a_tflnlte— cal lattices holds, and that the FSS analysis works very
Size efiect or 1t could 1mply that the phase transition atWeII if V/? is used as a linear size paramet&r,=

v = 0 is actually of first order, preventing a continuum 1 - wp being the volume of the sphes§N] [10.27].

limitat y = 0. 6 . .

In the model with the extended Wilson action (2), it SAénothelr r!ewff(ter?tufr_e tm our S]Eut?]y of t?? th?oryt!s the
was found that the confinement Coulomb phase transitioﬁ h ana ys'? 0 Ie Irs fzti@ N I('e par I':'.OE unction
is clearly of first order fory = 0.2, and weakens with n Ie' Corrr:p ex Ipﬁﬂe of the coqpr:r!g (Fis herdzero)f.
decreasingy [5,7]. Various studies suggested that thefA‘pp ying the multinistogram reweighting metho [28] for
transition becomes second order at slightly negagiyé], its determination, the expecte? FSS behavior
or aroundy = 0[16,17]. Imzo o« V=170 (4)

The order of the transition ay = 0 has remained has been used for measuring This has turned out to be
a controversial subject [18-21]. Though the valuessuperior to—though consistent with—the more common
v = 0.3-0.4 have been obtained consistently by variousFSS analysis of specific-heat and cumulant extrema.
methods [4,5,16,17,22,23], the continuum limit has not Finally, we have performed the FSS study of the
appeared to be possible. confinement Coulomb transition not only @t= 0, but

Also the hope that the continuum limit might be takenalso aty = —0.2 and —0.5. This allows us to compare
at least at negatives was spoiled by the observation of the behavior of the system at = 0, where the order of
a weaker, but still significant, two-state signal on finitethe transition is disputed, with the commonly expected
lattices even there [7]. Though this signal is probablysecond order behavior at negatiye and to test the
only a finite-size effect, and the transition in the infinite universality of the critical properties.
volume limit is genuinely of second order, it impedes a We have performed simulations [8] af{N] for N
precise FSS and RG analysis. between 4 and 12. Note that[12] has about(19.6)*

It was known that monopole loops winding around lattice points. The values o3 were chosen in the
the toroidal lattice occur [16,24] and cause difficulties inimmediate neighborhood of its critical values fer=
simulations with local update algorithms. Suspecting thad, —0.2, and —0.5. For each lattice size at eaghvalue,
this might be a reason for the two-state signal, two of thave have accumulated typically0® updates distributed
present authors performed simulationgat 0, using the  over 8—12 points.
4D surface of a 5D cubic lattice instead of the torus. They We have found no indication of a two-state signal, nei-
observed that on such lattices with spherelike topology théher in the individual nor in the multihistogram distribu-
two-state signal vanishes [18]. This suggests that the twdions of e = [> p wp cog0»)]/(> p wp), at any of the
state signal ay = 0 is related to the nontrivial topology threey values. This is demonstrated in Fig. 1 far= 0.
of the toroidal lattice. The values of the studied cumulants at their respective ex-

Related observations have been made for the Schwingé&mema are compatible with a second order transition. The
model [25]. On the other hand, it has been checked irritical behavior at all three values is very similar, ex-
spin models that weak two-state signals are not washeckpt that the transition weakens with decreasingvhich
out on lattices with spherelike topology, if they are due tomeans that larger lattices are needed for the same height
a genuine first order transition [10]. of the specific-heat peak.
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l all the shown results are consistent withlying in the

1+ 7=0 . interval 0.35-0.40, thus supporting universality.
| B=1.0180 | The physical content of the continuum limit of the
S[10] pure compact U(1) gauge theory at the confinement
c | | Coulomb phase transition, discussed, e.g., in [13,29],

i 1 depends on the phase from which the critical line is
L 1 approached. In the confinement phase, a confining theory
with monopole condensate is expected, as the string
tension scales with a critical exponent consistent with the
value (1) [22]. The physical spectrum consists of various

- 1 gauge balls. In the Coulomb phase, massless photon and
L | massive magnetic monopoles, both already observed in
Monte Carlo simulations [30,31], should be present. The
renormalized electric chargs is large but finite [22,32],

0 ' ' and has presumably a universal value [22,32,33]. The

.62 .63 .64 .65 ; .
e numerical resulte?/47 = 0.20(2) [22] agrees with the

FIG. 1. Histogram of the energy densityon thes[10] lattice ~ LUscher bound [34], as explained in [31].
(about16* points) aty = 0 and 8 = 1.0180, very close to the To our knowledge, the existence of such continuum
pseudocritical poin,. = 1.01835(4) on that lattice. 4 is the  quantum field theories in 4D is in no way indicated by
relative occurrence of values. the perturbation expansion. The non-Gaussian character
of the fixed point might be rather understood as a
In test runs aty = +0.2, a two-state signal has been consequence of the complex dynamics of the systems
clearly observed. This confirms that at sufficiently largeobtained in the dual representation of the theory with
positive y the phase transition is of first order, and thatVillain action [12—-15,31].
the spherical lattic§[ N ] does not wash out such a signal. There are some questions deserving further discussion.
Furthermore, at all three investigated valyess 0, the  For y < 0, the studied theory does not satisfy reflection
FSS analysis assuming a second order transition workgositivity, which is a sufficient, albeit not necessary, con-
remarkably well and leads to consistent results for all ob4dition for unitarity. If the phase transition in the reflection
servables [8]. All our evidence thus points towards thepositive case ay = 0 is of second order, as strongly sug-
conclusion that the phase transition is of second ordegested by our results, then unitarity should hold also for
fory = 0. v < 0 by universality arguments. If it is of weak first
In Table | we present results for the critical exponentorder, unitarity aty < 0 is made plausible by our finding
v obtained from all the data wittv = 4. The most that the scaling behavior at = 0 (on lattices of limited
reliable ones come from the FSS analysis of the Fishesize) and aty < 0 is the same, and that the regions with
zero (first column). The approximate agreement betweery < 0 andy = 0 are connected by the RG flows [17].
the obtained values of at all threey values demonstrates
that the confinement Coulomb critical line belongs to one
universality class. The FSS behavior of #gnaccording
to (4), and the consistency of this behavior at differgnt 3L
are illustrated in Fig. 2. The value (1) has been obtained
from a joint fit by means of (4) to the data for kg with
N = 6 (parallel straight lines in Fig. 2). 4l
The next two columns in Table | show the results from
the FSS analysis of the maximum of the specific-heat
cvmax a@nd the minimum of the Challa-Landau-Binder
cumulant Verpmin. Here certain assumptions about
nonleading terms have been necessary [8], and small
systematic errors are therefore possible. Nevertheless,

TABLE I. Results for v from fits to Imzp, cyma, and
Vers.min @t variousy. The indicated errors are statistical.

Y Im 20 CV max VCLB,min 1.5 2 2.5

3
1nv'/4
0 0.345(3) 0.361(6) 0.361(6) o _
—0.2 0.378(7) 0.374(6) 0.365(6) FIG. 2. Jaint fit by Iny, according to (4) for all threey
05 0.368(8) 0.404(9) 0.396(9) values andN = 6. The values ofL = V'/* correspond to
- : - - N =4 -10,12.
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