
VOLUME 77, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 2 SEPTEMBER1996

ing
rces is
ined,
itively
iodic
ence
Stochastic Resonance with Sensitive Frequency Dependence
in Globally Coupled Continuous Systems

Hu Gang,1,2 H. Haken,3 and Xie Fagen4
1Center of Theoretical Physics, CCAST (World Laboratory), Beijing 100080, China

2Department of Physics, Beijing Normal University, Beijing 100875, China*
3Institute of Theoretical Physics, University Stuttgart, Pfaffenwaldring 57y4, D-70550 Stuttgart, Germany

4Institute of Theoretical Physics, Academia Sinica, Beijing 100080, China
(Received 12 December 1995)

A model of globally coupled bistable continuous systems with two series of cells, model
competing processes between activators and suppressors, subject to periodic and stochastic fo
investigated. In the large system size limit the exact solution of linear response theory is obta
which shows typical stochastic resonance (SR) behavior. In particular, we find a resonance, sens
depending not only on noise intensity and coupling strength, but also on the frequency of the per
forcing. The SR occurs at a noise-induced Hopf bifurcation point, and is associated with the diverg
of linear response. [S0031-9007(96)01039-3]
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The problem of stochastic resonance (SR) has attra
much attention since the last decade [1–8]. In rec
years there has been a great interest to apply the SR
cept to spatiotemporal systems [9–11]. In this directio
an extension of the model,

Ùx ­ ax 2 bx3 1 A cossVtd 1 Gstd, a, b . 0 , (1)

which has been most extensively investigated in the
study, to the coupled overdamped oscillators

Ùxi ­ aixi 2 bix
3
i 1

m

2m 1 1

k­mX
k­2m

xi1k

1 A cossVtd 1 Gistd , i ­ 1, 2, . . . , L ,

xi1L ­ xi, kGistdGjst0dl ­ 2Ddijdst 2 t0d (2)

is most natural. Lindneret al. numerically studied
Eqs. (2) in the nearest coupling case (m ­ 1) [10], and
Jung et al. investigated a master equation describi
globally coupled and two-state spin system [9], a
Morillo et al. studied Eq. (2) with global coupling [11]
The physical significance of global coupling for practic
systems, such as neural networks, multimode solid las
and array of lasers, and Josephson junction systems
been well emphasized [9,11–13].
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There has been a well known problem in the stu
of SR that one could not find active role played
frequency for the resonance, the system output is ne
peaked at certain nonzero frequency in the SR condi
if it is plotted against the frequency of the forcin
The terminology stochastic resonance is not a resona
in the conventional sense; it refers only to the peak
behavior of the output with respect to the noise intens
Recently, Gammaitoniet al. showed the relation betwee
the resident time and the period of the external forc
[14]. Nevertheless the resonance behavior with respe
frequency in terms of the amplitude of the output sign
has never been reported in the SR study.

In this Letter we will suggest a model with tw
kinds of cells indicated byxi , i ­ 1, 2, . . . , L, andyj , j ­
1, 2, . . . , N (without losing any generality we setL ­
N). The inner dynamics of each cell is described
Eq. (1), while all cells are globally coupled to each oth

through a single quantityZ ­

Pi­L

i­1
hixi 1

Pj­L

j­1
sjyj

L . x cells
are regarded active with positivehi, while y cells are
suppressive with negativesj. Specifically we sethi ­
2sj ­ 1 for all i and j. The idea of the competition
between the activators and suppressors appears in m
fields. Then our model can be formulated as
pendence
Ùxi ­ a1xi 2 b1x3
i 1 m1Zstd 1 A1 cossVt 1 g1d 1 Gistd

Ùyj ­ a2yj 2 b2y3
j 1 m2Zstd 1 A2 cossVt 1 g2d 1 Djstd

kGistdl ­ 0, kGistdGjst0dl ­ 2D1dijdst 2 t0d
(3)

kDjstdl ­ 0, kDistdDjst0dl ­ 2D2dijdst 2 t0d, kGistdDjstdl ­ 0 ,

where all parametersa1,2, b1,2 and m1,2 are positive, andZstd ­ Xstd 2 Y std, Xstd ­

Pk­L

k­1
xk

L , Y std ­

Pk­L

k­1
yk

L . With
this model we find a new type of resonance, which is purely noise induced, on one hand, and has sensitive de
on frequency, on the other hand.
© 1996 The American Physical Society 1925
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Now we start by writing down some known resul
of Eq. (1), which can be transformed to a Fokker-Plan
equation (FPE)

≠Psx, td
≠t

­ 2
≠

≠x
fax 2 bx3 1 A cossVtdg

3 Psx, td 1 D
≠2

≠x2 Psx, td . (4)

The asymptotic solution linearly responding the extern
forcing reads [6]

kxstdl ­ RehAM expfisVt 1 udgj (5)

M expsiud ­
n­X̀
n­1

gn expsiand,

gn ­
1

sl2
n 1 V2d

1

2

knjxj0l
D
n

Å
≠

≠x

Å
0
E

(6)
cossand ­ lnysl2

n 1 V2d
1

2 ,

sinsand ­ 2Vysl2
n 1 V2d

1

2 ,

with jnl and knj being thenth right and left eigenvectors
of the FP operator (4) withA ­ 0, respectively. The
corresponding eigenvalues read2ln, which are ordered
as0 ­ l0 , l1 , l2 , · · · .

In Eqs. (2), with global coupling the summation ofk
runs fromk ­ 1 to k ­ L, then all the cells are couple
to each other via the quantityXstd ­

Pi­L
i­1 xistdyL. In

the large system size limit the fluctuation ofXstd must
be negligibly small, then the motion of each cell can
computed through a single Langevin equation (LE), wh
can be transformed to a FPE

≠Psx, t, Xd
≠t

­ 2
≠

≠x
fax 2 bx3 1 mXstd 1 A cossVtdg

3 Psx, t, Xd 1 D
≠2

≠x2 Psx, t, Xd (7)

(where we use identically ai ­ a, bi ­ b, i ­
1, 2, . . . , L, and omit the subscripti since the equa-
tions for all cells are identical). The key point for solvin
1926
k

l

e
h

(7) is that in the asymptotic state Eq. (7) can be closed
a self-consistent manner by setting

kxstdl ­ Xstd (8)

where kxstdl is the statistical average ofx from Eq. (7).
The identity (8) is due to the symmetry between differe
cells in the asymptotic state. Without the external forc
(A ­ 0), we can get the explicit stationary solution
Eq. (7) asPsx, Xd ­ NsXd expf2V sx, XdyDg, V sx, Xd ­
2

a
2 x2 1

bx4

4 2 mXx. HenceX can be solved from an
implicit integral equation

kxl ­
Z `

2`
xPsx, Xd dx ­ X . (9)

It is found that a pitchfork bifurcation ofX (i.e., a
spontaneous ordering phase transition) appears at a ce
mc [12]. For m , mc the solutionX ­ 0 is stable, while
after m . mc this zero solution losses stability, and th
two new nonzero stable solutions appear.

With small forcing (A ø 1), we can separateXstd
into two partsXstd ­ X0 1 Xt , whereX0 ­ kxl0 is the
stationary solution (9), andXt ­ kxlt ­ B cossVt 1 fd
is the oscillation part. InsertingXstd into Eq. (7), we can
reduce the linear response problem to a simple algeb
equation of complex variable

B expfisVt 1 fdg ­ AMsX0d expfisVt 1 udg

1 mBMsX0d expfisVt 1 f 1 udg ,

(10)

leading to

Xt ­ kxlt ­ Re

Ω
AMsX0d expfisVt 1 udg

1 2 mMsX0d expsiud

æ
, (11)

whereMsX0d andu have exactly the same form asM and
u in (6).

The procedure for obtaining Eq. (11) can be direc
applied to study the two-series systems (3), which co
spond to the FPEs
ed in the
h

≠Psx, td
≠t

­ 2

Ω
≠

≠x
fa1x 2 b1x3 1 m1Zstd 1 A1 cossVt 1 g1dg 1 D1

≠2

≠x2

æ
Psx, td

≠Psy, td
≠t

­ 2

Ω
≠

≠y
fa2y 2 b2y3 1 m2Zstd 1 A2 cossVt 1 g2dg 1 D2

≠2

≠y2

æ
Psy, td .

(12)

The spontaneous ordering phase transition can also appear in Eq. (12). In the following we are not interest
phase transition of this kind, and will work in the region where stationary nonzeroX andY phases do not exist. Wit
nonzero while very smallA1,2, we can assumeXstd ­ B1 cossVt 1 f1d, Ystd ­ B2 cossVt 1 f2d. Inserting them into
Eq. (12) we can immediately arrive at two coupled algebraic equations

B1,2 expsif1,2d ­ m1,2M1,2 expsiu1,2d fB1 expsif1d 2 B2 expsif2dg 1 A1,2M1,2 expfisu1,2 1 g1,2dg , (13)

where the quantitiesM1,2 andu1,2 are given in Eq. (6). Equations (13) have solutions

B1,2 expsf1,2d ­
Q1,2

Q0
, Q0 ­ 1 2 m1M1 expsiu1d 1 m2M2 expsiu2d ,

Q1,2 ­ A1,2M1,2 expfisg1,2 1 u1,2dg 6 M1M2 expfisu1 1 u2dg fA1,2m2,1 expsig1,2d 2 A2,1m1,2 expsig2,1dg . (14)
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An obvious conclusion from the result (14) is that
great enhancement may take place as the denominatoQ0
vanishes. The parameter values for its vanishing can
determined by a set of two equations

m1M1 cossu1d ­ m2M2 cossu2d 1 1,

m1M1 sinsu1d ­ m2M2 sinsu2d . (15)

It is emphasized again that Eqs. (14) and (15) are g
erally valid for arbitraryD, m, and V, as well as for
arbitrary forms of the potentials. A direct analysis
Eqs. (12) and on the theoretical results (14) will be p
sented in a forthcoming full paper. In the followin
we will study Eqs. (14) and (15) in the limitsV ø 1,

a2
1,2

4b1,2h2 lnsVd1lnf2 lnsVdgj , D1,2 ø 1, m1,2 ø 1. Then we
need to keep only the first term in (6),M ­ g1, u ­ a1,
and get

M1,2 ­
a1,2l1s1, 2d

b1,2D1,2

p
l1s1, 2d2 1 V2

,

cossu1,2d ­
l1s1, 2dp

l1s1, 2d2 1 V2
, (16)

sinsu1,2d ­
2Vp

l1s1, 2d2 1 V2
,

wherel1s1, 2d are thel1 eigenvalues computed from th
two FPE’s of (12), which can be made explicit as

l1s1, 2d ­

p
2a1,2

pb1,2
exp

µ
2

a2
1,2

4b1,2D1,2

∂
. (17)

Afterwards we simply denotel1s1, 2d by l1,2, respec-
tively. Inserting (16) into (15), we get the condition f
the divergence of the linear response

l1 1 l2 ­
a1m1l1

b1D1
2

a2m2l2

b2D2
, (18)

V2 ­
sl1 2 l2d s a1m1

b1
l1 1

a2m2

b2
l2d 2 sD1l

2
1 1 D2l

2
2d

D1 1 D2
.

(19)

In the case

a1m1

b1
­

a2m2

b2
­ m, D1 ­ D2 ­ D (20)

we get rather simple and physically meaningful relatio
for the divergence

m ­
Dsl1 1 l2d

l1 2 l2
, (21)

V2 ­ l1l2 . (22)

The condition (18) [or (21)] indicates the critical linemh

for the possible divergence, while (19) [or (22)] specifi
the actual frequency of divergence. This feature remi
us the behavior of Hopf bifurcation in determinist
systems. However, in the present case there is no tra
deterministic oscillation or deterministic Hopf bifurcatio
at or nearmh. What we find is a purely noise-induce
oscillation. In Figs. 1 and 2, we fixa2 ­ b1,2 ­ 1, and
e

-

-

s

of

FIG. 1. a1 ­ 0.9, a2 ­ b1 ­ b2 ­ 1, A1 ­ A2 ­ 0. (a) mh
vs D according to Eq.(21). (b)V vs D according to (22).
(c) D ­ 0.03, m ­ 0.04 , mh, the system approaches t
steady stateX ­ Y ­ 0 asymptotically. (d)D ­ 0.03, m ­
0.08 . mh. Spontaneous oscillation exists in the asympto
state.

a1 ­ 0.9 and present some results for the case of (20)
Fig. 1(a) we plot the bifurcation curvemh vs D. Below
this curve, the steady stateX ­ Y ­ 0 is stable. At the
curve, a divergence of linear response for small perio
perturbation occurs, the corresponding frequency of
divergent perturbation is shown in Fig. 1(b). Increas
m over the curvemh, a spontaneous oscillation with th
given frequency will take place. In Figs. 1(c) and 1(d)
give some numerical results of time-dependent evolu
of the nonlinear system in the two-state approximat
The asymptotic spontaneous oscillation with vanish
external forcing [shown in (d)] is a noise-induced lim
cycle. In Fig. 2(a) we setA1 ­ A2 ­ A and fix g1 ­
g2 ­ 0, and ploth1 ­

B1

A vs V at m ­ 0.08 for different
D. A sensitive dependence of the amplification r
on the frequency is obvious, and divergence of
amplitude is observed whenD approaches the critica
point. In Fig. 2(b) we do the same thing for differentm

at D ­ 0.05 and get similar results. In Figs. 2 the line

FIG. 2. a1,2 and b1,2 are the same as in Fig. 1.A1 ­ A2,
g1 ­ g2 ­ 0. (a) h1 ­

B1

A vs V for m ­ 0.08 and variousD.
(b) D ­ 0.05, h1 vs V for variousm.
1927



VOLUME 77, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 2 SEPTEMBER1996

t
ve
ak
th
io

e
u
n
p
In

lla
th
ed
tu
re
ct
n-
he
oi
in
n

ng

ha
d
ia

-
is
m

-

on

-
igh

al
ar

nd

ev.

,

ys.

y,

d

v.

v.
response in the regionm . mh is computed with respec
to the based spontaneous oscillation state, which is gi
numerically. It is interesting to notice the double-pe
structure in Fig. 2(a). The second peak corresponds to
resonance with high-frequency harmonics. The behav
of h2 ­

B2

A is similar to that in Figs. 2.
In conclusion, we have revealed a new kind of nois

induced oscillation. Many previous works talked abo
noise-induced oscillations, where coherent circulatio
exist in the deterministic dynamics either in the asym
totic state [15] or in the transient processes [16,17].
our case, without noise there is no deterministic osci
tion in both asymptotic state and transient process for
given parameters. The oscillation is purely noise induc
For the stochastic resonance, our model has some fea
common with the conventional SR (i.e., SR at zero f
quency): The response curves are peaked with respe
D andm due to the optimal modulation in double pote
tial wells. The most interesting new feature is that t
sensitive frequency dependence, which is the central p
for conventional resonance problems while it is lacking
the conventional SR phenomena, can be clearly see
our model. Then we can talk about ageneral stochastic
resonanceand enlarge the scope of SR study, includi
the conventional SR as the case ofV ­ 0. Moreover, we
find divergence in the linear response solutions, which
never been found so far in the SR study. Three ingre
ents: noise, nonlinearity, and global coupling are cruc
for the above features.

In this Letter we tookL °! ` for our analytic study.
An estimation of the finite size effect is crucial for un
derstanding the validity of the present theory in real
tic systems. The key point in our analysis is to assu

that the fluctuation ofZstd ­ Xstd 2 Y std ­

PL

n­1
xistd

L 2PL

n­1
yistd

L can be neglected. For a theory of finiteL, Zstd
should be subject to certain fluctuationsQstd [Zstd ­
kZstdl 1 Qstd in (3)]. Qstd is of the orderL1y2 for a regu-
lar state andL1y4 at mc andmh. Then all the above analy
1928
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sis works well even for finite system under the conditi

m
2
1,2yL ø D1,2 (or

m
2
1,2p
L

ø D1,2 at the second order bifur
cations), only the divergences should be replaced by h
while finite peaks.
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