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A model of globally coupled bistable continuous systems with two series of cells, modeling
competing processes between activators and suppressors, subject to periodic and stochastic forces is
investigated. In the large system size limit the exact solution of linear response theory is obtained,
which shows typical stochastic resonance (SR) behavior. In particular, we find a resonance, sensitively
depending not only on noise intensity and coupling strength, but also on the frequency of the periodic
forcing. The SR occurs at a noise-induced Hopf bifurcation point, and is associated with the divergence
of linear response. [S0031-9007(96)01039-3]

PACS numbers: 05.40.+j, 87.10.+e

The problem of stochastic resonance (SR) has attracted There has been a well known problem in the study
much attention since the last decade [1-8]. In recendf SR that one could not find active role played by
years there has been a great interest to apply the SR cofiequency for the resonance, the system output is never
cept to spatiotemporal systems [9—11]. In this directionpeaked at certain nonzero frequency in the SR condition
an extension of the model, if it is plotted against the frequency of the forcing.

. .3 The terminology stochastic resonance is not a resonance

¥ =ax = bx* + AcodQn) + '), a,b >0, (1) in the conventional sense; it refers only to the peaked
which has been most extensively investigated in the SRehavior of the output with respect to the noise intensity.

study, to the coupled overdamped oscillators Recently, Gammaitorgt al. showed the relation between
P k=m the resident time and the period of the external forcing
X = aix; — bix; + m 1 Z Xitk [14]. Nevertheless the resonance behavior with respect to
n k=—m frequency in terms of the amplitude of the output signal
+ AcoqQr) + I';(z), i=12,...,L, has never been reported in the SR study.
Xivp = i, (T,(OT;(t")) = 2D5,;8(t — 1) @) In this Letter we will suggest a model with two

kinds of cells indicated by;,i = 1,2,...,L, andy;,j =
is most natural. Lindneret al.numerically studied 1,2,...,N (without losing any generality we sdt =
Egs. (2) in the nearest coupling case € 1) [10], and N). The inner dynamics of each cell is described by
Jung et al.investigated a master equation describingEq. (1), while all cells are globally coupled to each other
globally coupled and two-state spin system [9], and , _ S h > sy
Morillo et al. studied Eq. (2) with global coupling [11]. through a single quantity = =————="=—. x cells
The physical significance of global coupling for practical2'€ regarded active with positive;, while y cells are
systems, such as neural networks, multimode solid lasef&/PPressive with negative;. Specifically we set; =

and array of lasers, and Josephson junction systems hagj — | for all i and j. The idea of the competition
been well emphasized [9,11—13]. between the activators and suppressors appears in many

| fields. Then our model can be formulated as

)'C,' = a1x; — blx? + /.le(l) + A COiQt + ’)/1) + Fi(l)
Vi = azyj — bay? + paZ(t) + AycodQr + y2) + A;(1)

3)
(T'i(1)) = 0, (Li(0T;(t")) = 2Dy 6;;6(t — ')
(Aj(r)) =0, (Ai()A;(t)) = 2D28;;8(t — 1), (Ti(®)A(r)) =0,
where all parameters, ,, b;, and u;, are positive, and(¢) = X(¢t) — Y (1), X() = @ Y(t) = % With

this model we find a new type of resonance, which is purely noise induced, on one hand, and has sensitive dependence
on frequency, on the other hand.
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Now we start by writing down some known results (7) is that in the asymptotic state Eq. (7) can be closed in
of Eq. (1), which can be transformed to a Fokker-Planclka self-consistent manner by setting
equation (FPE)

(x()) = X(1) 8
BP(x,t) d 3 . .
o or [ax — bx” + Acog1)] where(x(1)) is the statistical average aof from Eq. (7).
5 The identity (8) is due to the symmetry between different
X P(x,1) + Da—P(x,t). (4) cells in the asymptotic state. V_\/if[hout t_he external _forcing
dx? (A = 0), we can get the explicit stationary solution of

The asymptotic solution linearly responding the externaEq. (7) aSP4(x,X) =NX)exd—V(,X)/D], V(x,X) =

forcing reads [6] —%x2 + % — uXx. HenceX can be solved from an
(x(1)) = Re[AM exdi(Q + 0)]) 5) implicit integral equation
n=o (x) = f xP(x,X)dx = X. 9
Mexpif) = D g, explia,), -
n=1 It is found that a pitchfork bifurcation ofX (i.e., a
_ 1 <n|x|0>< | 9 | O> spontaneous ordering phase transition) appears at a certain
&n —(/\,% N Qz)% ox Ko [12]. Foru < pu. the solutionX = 0 is stable, while

coda,) = A, /(A2 + Qz)% (6) after u > u. this zero squti(_)n losses stability, and the
" nen ', two new nonzero stable solutions appear.

sin(a,) = —Q /(A2 + Q)7 With small forcing @ < 1), we can separaté ()

into two partsX(r) = Xy + X,, whereX, = (x)o is the

stationary solution (9), an&, = (x); = BcodQr + ¢)

is the oscillation part. Inserting(z) into Eq. (7), we can

reduce the linear response problem to a simple algebraic

equation of complex variable

with |r) and(n| being thenth right and left eigenvectors
of the FP operator (4) witlh = 0, respectively. The
corresponding eigenvalues read\,,, which are ordered
asO = Ag < A < A < ---,

In Egs. (2), with global coupling the summation bf
runs fromk = 1to k = L, then all the cells are coupled Bexdi(Qt + ¢)] = AM(Xo) exdi(Qt + 6)]

to each other via the quantit¥(s) = iif xi(t)/L. In .
the large system size limit the fluctuation &{r) must + uBM(Xo)exli(Qr + & + 0)].
be negligibly small, then the motion of each cell can be (20)

computed through a single Langevin equation (LE), whic

can be transformed to a FPE qeading to

IP(x,1,X) 9 _ _ E‘{AM(XO) exdi(Qr + 0)]}
T = — a[ax — bx3 + ,L,LX(I) + ACOin)] X <x>’ R 1 — /.LM(X()) exp(iﬁ) > (11)
o hereM (X,) and@ have exactly th e form as and
X P(x,1,X) + DFP(x, £,X) ) \év_er(%) o) an ve exactly the same form n
X in (6).
(where we use identically a; = a,b; = b,i = The procedure for obtaining Eqg. (11) can be directly

1,2,...,L, and omit the subscript since the equa- applied to study the two-series systems (3), which corre-
tions for all cells are identical). The key point for soIvinP spond to the FPEs

AP (x,t ] 92

% = —{—[alx - b1x3 + ,ulZ(t) + A COin‘ + ’}/1)] + Dl—Z}P()C,l‘)
t ox ix

dP(y,1) 9 92 (12)
2ot) = AL sy — bay® 4 waZ(0) + AroosO + y2)] + Dz PO

The spontaneous ordering phase transition can also appear in Eg. (12). In the following we are not interested in the
phase transition of this kind, and will work in the region where stationary non¢eandY phases do not exist. With
nonzero while very small; ,, we can assumg(r) = B, cogQ¢t + ¢,), Y(t) = B,codQr + ¢,). Inserting them into
Eq. (12) we can immediately arrive at two coupled algebraic equations

Biaexpligin) = wioMi2expi62)[Brexplig)) — Baexpliga)] + AjaMiaexdi(012 + vi2)l, (13)
where the quantitied?; , and#, , are given in Eq. (6). Equations (13) have solutions
Biaexp(¢i2) = i, Qo = 1 — wiM;expi6)) + paM;expios,),

Qi = AipMiexdi(yin + 612)] = MiMyexdi(6) + 62)][Aipz1 €Xpliviz) — Ayiprp€Xpliyzi)] . (14)
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An obvious conclusion from the result (14) is that a
great enhancement may take place as the denomig@gtor
vanishes. The parameter values for its vanishing can be
determined by a set of two equations

1M, co801) = urM,cod6;) + 1,

wiMsin(0;) = uaM, sin(6,) . (15)

It is emphasized again that Egs. (14) and (15) are gen-

erally valid for arbitraryD, w, and Q, as well as for
arbitrary forms of the potentials.

sented in a forthcoming full paper. In the following
we will sgudy Egs. (14) and (15) in the IimitQ <« 1,

(W)

=) T =@ < Do <1, wip < 1. Then we

need to keep only the first term in (68} = g1, 0 = «ay,
and get
Mis = aiphi(1,2) ’
b12D12yA1(1,2)? + Q2
A(1,2)
cog6,,) = , 16
961,2) L2 T Q2 (16)
. -Q
sin(6;,) =

JA(1,2)2 + Q2

whereA(1,2) are theA; eigenvalues computed from the
two FPE’s of (12), which can be made explicit as

ﬁaﬂex;{— ais >
4b12D12 /)

7Tb1’2
Afterwards we simply denote\;(1,2) by A;,, respec-
tively. Inserting (16) into (15), we get the condition for
the divergence of the linear response

ajpi
b D,

A(LL,2) = a7

_ aypaA
b,D, ’

AL+ Ay = (18)

(A1 = ) (A + B2 0) — (D1AT + DyA3)

0% =
D, + D,
(19)
In the case
arpr _ M2 i, Di=D,=D (20)
b by

A direct analysis on
Egs. (12) and on the theoretical results (14) will be pre-
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FIG.1. a; =09,a,=b1=b,=1,A = A, = 0. (a) Mh

vs D according to Eq.(21). (b)) vs D according to (22).
(c) D =0.03, w=0.04 < u,, the system approaches the
steady stateX = Y = 0 asymptotically. (d)D = 0.03, . =
0.08 > u;,. Spontaneous oscillation exists in the asymptotic
state.

a; = 0.9 and present some results for the case of (20). In
Fig. 1(a) we plot the bifurcation curve, vs D. Below
this curve, the steady stale = Y = 0 is stable. At the
curve, a divergence of linear response for small periodic
perturbation occurs, the corresponding frequency of the
divergent perturbation is shown in Fig. 1(b). Increasing
u over the curveu,, a spontaneous oscillation with the
given frequency will take place. In Figs. 1(c) and 1(d) we
give some numerical results of time-dependent evolution
of the nonlinear system in the two-state approximation.
The asymptotic spontaneous oscillation with vanishing
external forcing [shown in (d)] is a noise-induced limit
cycle. In Fig. 2(a) we sefA\; = A, = A and fix y,
v» = 0, and ploty, = % vs Q at u = 0.08 for different

D. A sensitive dependence of the amplification rate
on the frequency is obvious, and divergence of the
amplitude is observed wheP approaches the critical
point. In Fig. 2(b) we do the same thing for differeat

we get rather simple and physically meaningful relationsat D = 0.05 and get similar results. In Figs. 2 the linear

for the divergence
_ DAL+ X))
A=Ay
Q%2 = A, (22)
The condition (18) [or (21)] indicates the critical ling,

(21)

for the possible divergence, while (19) [or (22)] specifies
the actual frequency of divergence. This feature reminds

us the behavior of Hopf bifurcation in deterministic

systems. However, in the present case there is no trace of

deterministic oscillation or deterministic Hopf bifurcation
at or nearw;,. What we find is a purely noise-induced
oscillation. In Figs. 1 and 2, we fix, = b;, = 1, and

500

400

FIG. 2. a,, and b;, are the same as in Fig. 14, = A,,
vi=1v=0. (@m % vs Q for u = 0.08 and variousD.
(b) D = 0.05, 1, vs Q for various w.
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response in the regiop > w, is computed with respect sis works well even for finite system under the condition
to the based spontaneous oscillation state, which is 9iven? /L < Dy, (or <« D, atthe second order bifur-

numerica!ly. _It is interesting to notice the double-peakcations), only the divergences should be replaced by high
structure in Fig. 2(a). The second peak corresponds to thgnile finite peaks.

resonance with high-frequency harmonics. The behavior This work is supported by the Foundation of National
of n; = 7 is similar to that in Figs. 2. Natural Science of China and the Project of Nonlinear
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