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The modified Newton-Sabatier method is extended to the inverse scattering problem of c
channels at fixed energy. The problem is solved for a system of coupled radial Schrödinger eq
with a potential matrix independent of the angular momentum of the relative motion. The new m
is applied to the example of two channels coupled by complex-valued square well potentials. [S
9007(96)01001-0]
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The inverse scattering problem in quantum mecha
plays an important role in the determination of effect
potentials from measured cross sections. The fixed
gular momentum problem for one channel can be sol
by the Gel’fand-Levitan method [1] or by the Marchen
method [2]. An extension of the Gel’fand-Levitan meth
to coupled channels was developed by Cox [3]. A
tional scheme was proposed by Kohlhoff and von Gera
[4] and applied to nucleon-alpha spin-orbit interactions
Becker [5].

The fixed energy inversion problem was solved for o
channel by Newton [6] and Sabatier [7]. Reviews a
given in Refs. [8] and [9]. Münchow and Scheid [1
modified the one channel Newton-Sabatier method un
the assumption that the spherical potentialV srd is known
from a certain finite distancer0 up to infinity, which
is usually the case in practice. With this modificati
the method is applicable to realistic heavy ion collisio
[11,12]. A spin-orbit inversion scheme at fixed ener
was given by Leebet al. [13] and applied by Alexande
et al. [14] to derive nucleon-alpha spin-orbit potentia
The results of these calculations compare well to the
tentials obtained by Becker [5]. In this Letter we exte
the modified Newton-Sabatier method to the case oN
coupled channels under the assumption that the pote
matrix does not depend on the angular momentum of
ative motion.

The coupled channel equations.—We assume that th
Hamiltonian of two colliding partners (nuclei or atom
can be written in the formH ­ T srd 1 hsjd 1 W sr , jd,
where T denotes the relative kinetic energy operatorh
the Hamiltonian of the internal states of the two scatter
partners with internal excitation energiesea se1 ­ 0 ,

e2 # · · · # eN d, andW the interaction energy dependin
on the set of internal coordinatesj and the relative radia
distance r. Then the wave function of the scatterin
problemHc ­ Ec can be expanded as

C,m ­
NX

a­1

NX
n­1

R,
ansrdxasjdY,msr̂d . (1)
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Here Y,m describes the orbital motion of the nuclei o
atoms with the angular momentum quantum number,
andm, a denotes the channel number, andn enumerates
the N degenerate solutions belonging to the same giv
energyE.

Projecting sH 2 EdC,m ­ 0 with the channel states
one obtains the following coupled equations for the rad
functions:∑

2
h̄2

2m

1
r

d2

dr2
r 1

h̄2

2m

,s, 1 1d
r2

1 ea 2 E

∏
R,

ansrd

1

NX
b­1

VabsrdR,
bnsrd ­ 0 , (2)

whereVabsrd ­ kxajW jxbl is the potential matrix. Us-
ing dimensionless coordinates we rewrite Eq. (2) in t
form

NX
b­1

DU
absrdw,

bnsrd ­ ,s, 1 1dw,
ansrd (3)

with

DU
absrd ­ r2

Ω∑
d2

dr2 1
Ea

E

∏
dab 2 Uabsrd

æ
, (4)

where the following abbreviations have been introduce
r ­ kr, k ­ s2mEd1y2yh̄, Ea ­ E 2 ea , w,

ansrd ­
rR,

ansrd, andUabsrd ­ VabsrdyE.
We next choose an arbitrary symmetric matr

U0
absrd ­ U0

basrd for the reference potential whos
regular solutionsw0,

an of the Schrödinger equation ar
known:

NX
b­1

D
U0
absrdw0,

bnsrd ­ ,s, 1 1dw0,
ansrd (5)

with

D
U0
absrd ­ r2

Ω∑
d2

dr2 1
Ea

E

∏
dab 2 U0

absrd
æ

. (6)

The potential matrixUab is the unknown quantity which
we determine from givenS-matrix elementsS,

ab of the
radial wave functionsw,

an.
© 1996 The American Physical Society 1921



VOLUME 77, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 2 SEPTEMBER1996

en
nta
f

r-

ua
is

ns
ial
ion

n

en
le

ls

th

on
1)
of

ng

ing
e

ial
s

re
ove

a-
ng

f
-
ue

ro
The inverse problem for coupled channels at fixed
ergy.—Let us generalize the Povzner-Levitan represe
tion of the scattering solution functions for the case oN
coupled channels as

w,
ansrd ­ w0,

ansrd 2

NX
b­1

Z r

0

dr0

r0 2
K

UU0
ab sr, r0dw0,

bnsr0d ,

(7)

where the matrix elementsK
UU0
ab of the transformation

kernel will be specified later. It is a straightforward exe
cise to show that the solution functionsw,

an, as expressed
in Eq. (7), satisfy the coupled radial Schrödinger eq
tions (3), if use of Eq. (5) and of the following relations
made:

NX
b­1

DU
absrdKUU0

bg sr, r0d ­
NX

b­1

D
U0
gbsr0dKUU0

ab sr, r0d ,

(8)

Uabsrd ­ U0
absrd 2

2
r

d
dr

K
UU0
ab sr, rd

r
. (9)

The latter equation yields the wanted potential. The tra
formation kernel is the solution of the partial different
equation (8), which is equivalent to the integral equat
of Gel’fand-Levitan type as given in Ref. [9].

It is easy to prove that the following transformatio
kernel matrix fulfills Eq. (8):

K
UU0
ab sr, r0d ­

X̀
,­0

NX
n­1

NX
n0­1

c,
nn0 w

,
ansrdw0,

bn0sr0d . (10)

Inserting this equation into Eq. (7), we get the fundam
tal equations for the inverse calculation of the coup
channel problem:

w,
ansrd ­ w0,

ansrd 2
X̀

,0­0

NX
n0­1

NX
n00­1

w,0

an0srdc,0

n0n00 L,0,
n00nsrd ,

(11)

where the matrixL is given as

L,,0

nn0srd ­
NX

a­1

Z r

0

dr0

r0 2
w0,

ansr0dw0,0

an0sr0d . (12)

Solving Eq. (11) for the spectral coefficientsc,
nn0 and the

radial functionsw,
ansrd, we obtain the coupling potentia

by use of Eqs. (9) and (10).
The usual Newton-Sabatier method.—The spectral co-

efficientsc,
nn0 can be obtained as a function of theSmatrix

by analyzing Eq. (11) in the limitr ! `. Let us assume
that the asymptotic wave functions are connected with
Smatrices as followsfr ! `, ka ­ sEayEd1y2g:

w,
ansrd ­

NX
n0­1

rT,
an0srdA,

n0n (13)

with

T ,
ansrd ­ se2iska r2,py2ddan 2 S,

aneiskar2,py2ddyskard ,

(14)
1922
-
-

-

-

-
d

e

w0,
ansrd ­ se2iskar2,py2ddan 2 S0,

aneiskar2,py2ddyka .

(15)

The S-matrix elementsS,
an are the input data for the

calculation; the elementsS0,
an are known and belong to the

reference potentialU0
ab. The coefficientsA,

nn0 serve as
normalization and expansion coefficients of the soluti
functions. Inserting Eqs. (13) and (15) into Eq. (1
we get incoming and outgoing waves on both sides
Eq. (11). Thus we can write (11) in terms of expsikard
and exps2ikard. To fulfill this equation, the coefficients
of the exponential functions must vanish. By setti
them to zero, we get a set of equations forc,

nn0 and
A,

nn0 , which are linear inA,
nn0 andb,

nn0 ­
PN

n00­1 A,
nn00c,

n00n0 .
After eliminating the coefficientsA,

nn0 , we can calculate
the coefficientsb,

nn0 :

bm ­
X
n

M21
mnNn fm ­ s,, a, nd, n ­ s,0, n0, n00dg ,

(16)

where Mmn ­ sS,
an0 eis,02,dy2 2 S,0

an0eis,2,0dpy2dL,0,
n00ns`d

andNm ­ S,
an 2 S0,

an. We then find

c,
nn0 ­

NX
n00­1

sA,d21
nn00b,

n00n0 , (17)

A,
nn0 ­ dnn0 2

X̀
,0­0

NX
n00­1

eis,02,dpy2b,0

nn00L,0,
n00n0s`d . (18)

Since the number of channelsN is finite for each angular
momentum, the proof of the uniqueness of the result
coupling matrix Uab can be carried out in the sam
manner as in the case ofN ­ 1 [7]. If we consider the
special caseU0

ab ­ 0 with S0,
an ­ dan, we can generalize

the proof of Sabatier [7] that one (and only one) potent
of the form (9) with (10) exists if the matrix element
S,

an 2 dan drop faster than,232e for , ! `. Then the
potential matrixUab goes to zero faster thanr221e as
r ! `, whereas all the equivalent coupling potentials a
damped out [7]. Therefore we assume that the ab
inversion method yields a unique result forUab if Uab

vanishes faster thanr221e asr ! `.
The modified Newton-Sabatier method.—In many ap-

plications the coupling potential is known from some r
diusr0 on. As an example, let us assume in the followi
that the interaction is zero beyond a particular radiusr0 in
all channels:

Uabsrd ­ 0, r $ r0 ­ kr0 . (19)

Then the information, inherent in theS matrix, is used to
construct the coupling matrix only in the finite interval o
0 , r , r0. This is the purpose of the modified Newton
Sabatier method, which has been shown to yield uniq
potentials of the form (9) with (10) [10].

Because of (19), it is suitable to choose a ze
reference potential:U0

ab ; 0. Then the regular ref-
erence solutions are taken asw0,

ansrd ­ rT 0,
ansrd
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with T 0,
ansrd ; danj,skard. Inserting these function

and w,
ansrd of Eq. (13) into Eq. (11) and limiting th

number of, values to,max, we get the following finite se
of coupled equations:

NX
n0­1

0@T,
an0srdA,

n0n 1

,maxX
,0­0

T ,0

an0srdb,0

n0nL,0,
n srd

1A ­ T0,
ansrd

(20)

with L,,0

n srd ­
Rr

0 j,sknr0dj,0sknr0d dr0. The coeffi-
cients A,

nn0 and b,
nn0 are obtained by solving Eq. (20

at outer radiiri . r0, whereT,
ansrd is determined by

the given S matrix: T ,
ansr . r0d ­ danh2

, skard 2

S,
anh1

, skard with h6
, sxd ­ j,sxd 6 in,sxd. Choos-

ing two radii r1, r2 . r0 we get a set of 2 3

s,max 1 1d 3 N 3 N equations for the unknown coeffi
cientsA,

nn0 andb,
nn0 . Then the use of Eq. (11) at variou

values ofr , r0 together with Eqs. (9) and (10) give
the inverted potential matrix. As the coefficients depe
weakly on r1 and r2, one can apply a least-squar
method in order to find an optimum solution of Eq. (2
at M least-squares pointsr1, r2, . . . , rMsri . r0d [10].
Equation (20) yields a unique solution forA,

nn0 and b,
nn0

and then also for the potential matrixUab for ,max ! `,
independent ofri . r0. This can be proven by th
same methods as used forN ­ 1 [10]. In practice, the
values of,max are restricted by the numerical precision
solving Eq. (20) and, therefore, a minor dependence
Uab on ,max andri . r0 results.

Application.—We applied our method to the case
two coupled square well potentials. For this proble
analytic solutions for theSmatrix were derived by Lova
[15], which we used in our calculation. As an examp
we set the potential matrix (in MeV) as

Vsrd ­

8<:
µ

26 2 4i 25
25 24 2 2i

∂
for r # 6 fm ,

0 for r . 6 fm .

(21)

Here the real part describes the attraction of the scatte
partners and the imaginary part models the absorp
from the considered channels. The excitation ener
were set e1 ­ 0 MeV and e2 ­ 5 MeV. The mass
parameter was chosen as the reduced mass for
scattering of two alpha particles.

In Fig. 1 the results of the inversion calculations at d
ferent scattering energies are shown. With increasing
ergy, the number of usableS–matrix elements raises wit
angular momentum, containing more information ab
the potential matrix. The higher the energy, the hig
,max can be chosen in Eq. (20). The energy was setE ­
7 MeV s,max ­ 8d, 10 MeV s,max ­ 9d, and 50 MeV
s,max ­ 17d for the dotted, dashed, and full curves,
spectively. In order to have a quantitative comparison
these calculations, ax2 test has been performed. Thex2

error function was defined as
d

)
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FIG. 1. The potential matrix elementsVab inverted atE ­ 7,
10, and 50 MeV (cm energy) are shown as a function of
radial distance by dotted, dashed, and full curves, respectiv
The chosen radii arer1 ­ 6.18 fm andr2 ­ 6.22 fm.

x2 ­
1
N

NX
i­1

2X
a­1

2X
b­1

Ç
V cal

ab 2 V exact
ab

1 MeV

Ç2
. (22)

The x2 values for the potentials arex2 ­ 3.2224,
1.3458, and 0.5074 forE ­ 7, 10, and 50 MeV, respec
tively.

The potentials in Fig. 1 show small oscillations arou
the exact potential values with an approximate wavelen
l ø 0.25hys2mEd1y2 and amplitudes which get smaller a
more angular momenta are taken into account in Eq. (
The wavelength arises from the variations of the pro
uct termsw,

anw
0,
bn0 in the kernel (10). We note that th

inverted potential matrix has a pole forr ­ 0 as can be
seen from Eq. (9).

In conclusion, for the first time the Newton-Sabat
method is extended to a special coupled channel prob
The coupling potential is restricted to monopole tran
tions induced by the radial motion. The extension of
method to charged scattering partners is straightforw
by applying the procedure of Mayet al. [11]. A com-
parison with experimental data is presently difficult sin
in practice nuclei or atoms are scattered with initial grou
state configurations and, therefore, only a row of theSma-
trix is experimentally known. An extended paper with d
tails of the method will be presented in the near future.
1923
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