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Solution of a Coupled Channel Inverse Scattering Problem at Fixed Energy
by a Modified Newton-Sabatier Method
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The modified Newton-Sabatier method is extended to the inverse scattering problem of coupled
channels at fixed energy. The problem is solved for a system of coupled radial Schrédinger equations
with a potential matrix independent of the angular momentum of the relative motion. The new method
is applied to the example of two channels coupled by complex-valued square well potentials. [S0031-
9007(96)01001-0]
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The inverse scattering problem in quantum mechanicklere Y,,, describes the orbital motion of the nuclei or
plays an important role in the determination of effectiveatoms with the angular momentum quantum numkters
potentials from measured cross sections. The fixed arendm, o denotes the channel number, aménumerates
gular momentum problem for one channel can be solvethe N degenerate solutions belonging to the same given
by the Gel'fand-Levitan method [1] or by the Marchenko energyE.
method [2]. An extension of the Gel'fand-Levitan method Projecting(H — E)Wy,, = 0 with the channel states,
to coupled channels was developed by Cox [3]. A ra-one obtains the following coupled equations for the radial
tional scheme was proposed by Kohlhoff and von Geramlifunctions:

[4] and applied to nucleon-alpha spin-orbit interactions by 21 42 R0+ 1)

Becker [S]. [‘2— oAty T T E}Rﬁn(r)
The fixed energy inversion problem was solved for one Meoroar # r

channel by Newton [6] and Sabatier [7]. Reviews are n R _ 2

given in Refs. [8] and [9]. Miinchow and Scheid [10] BZ::I Vap(r)Rg,(r) =0, (2)

modified the one channel Newton-Sabatier method underh Vo a(r) = Wl is th tential matrix. U

the assumption that the spherical potentét) is known WhereVapr) = Ka X/.3> IS the potential matrix. ~s-
from a certain finite distance, up to infinity, which ing dimensionless coordinates we rewrite Eq. (2) in the
is usually the case in practice. With this modificationform N

the method is applicable to realistic heavy ion collisions U ¢ _ ¢

[11,12]. A spin-orbit inversion scheme at fixed energy BZI Dap(P)epn(p) = L€ + Deg,(p) (3)
was given by Leelet al. [13] and applied by Alexander ith
et al.[14] to derive nucleon-alpha spin-orbit potentials.WI ,

The results of these calculations compare well to the po- v _ 2{[ d> | Es } B }

tentials obtained by Becker [5]. In this Letter we extend Daplp) = p dp? T [Pes = Uas(p), (4)
the modified Newton-Sabatier method to the caseNof \yhere the following abbreviations have been introduced:
coupled channels under the assumption that the potentigl — x»  x = QuE)/2/h, E, = E — ea, ol (p) =
matrix does not depend on the angular momentum of rel, p¢ (;-), andUap(p) = Vap(r)/E.

an

ative motion. _ We next choose an arbitrary symmetric matrix
The coupled channel equations\We assume that the Ugﬁ(p) — U,%a(p) for the reference potential whose

Hamiltonian of two colliding partners (nuclei or atoms) regular solutionse®’, of the Schrédinger equation are
can be written in the forntl = T(r) + h(¢) + W(r. €),  known: o

where T denotes the relative kinetic energy operator, N

the Hamiltonian of the internal states of the two scattering Z Dg;}(p)go%(p) =0t + D% (p) (5)
partners with internal excitation energies (e; = 0 < B=1

€ = --- = ey), andW the interaction energy depending \ith

on the set of internal coordinat&sand the relative radial 5

distancer. Then the wave function of the scattering Dﬁ{‘;;(p) — pZ{[ 4 + Ea }%B - Ugﬁ(p)}. (6)

problemH s = Ey can be expanded as dp? E
NN The potential matrix, gz is the unknown quantity which
v, = R Yo (F). 1 we determine from givers-matrix elementsS,z of the
¢ azz:l = #(1)Xa(E)Yen(7) @ radial wave functiong?,,.
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The inverse problem for coupled channels at fixed en- ¢% (p) = (¢ /(P =t7/2 5 — §0C pilkap=Cm/2)y /)
ergy.—Let us generalize the Povzner-Levitan representa- (15)
tion of the scattering solution functions for the caseNof
coupled channels as The Smatrix elementsS’, are the input data for the

Norrdp' calculation; the element®’ are known and belong to the
el (p) = o%(p) = > f — 5 Kap'(p.p"e(p'),  reference potential/ls. The coefficientsA’, serve as

p=17/0 P @) normalization and expansion coefficients of the solution

. v _ functions. Inserting Egs. (13) and (15) into Eg. (11)

where the matrix elementﬂ’aﬁ(’ of the transformation e get incoming and outgoing waves on both sides of
kernel will be specified later. It is a straightforward exer-Eq. (11). Thus we can write (11) in terms of éxp, p)
cise to show that the solution functions,,, as expressed and exg—ik.p). To fulfill this equation, the coefficients
in Eq. (7), satisfy the coupled radial Schrodinger equaof the exponential functions must vanish. By setting
tions (3), if use of Eq (5) and of the fO”OWing relations is them to zero, we get a set of equations ﬁﬁ;’, and

maléje: y A%, which are linear iM%, andbﬁné =N _ ALk,
U uv, N Uy, o, Ul / After eliminating the coefficients\,,,, we can calculate
BZI Dag(p)Kpy (. p') BZI Dyp(p)Kap (p.p") the coefficients! ,:
(8)
> 4 K p) by =Y MIN, [p=(an),v=nn"],
b 14
Uap(p) = Udgl(p) — = — —F—2= 0 (9) (16)
p dp P € i'—0)/2 e i—)mw/2yg €'
The latter equation yields the wanted potential. The transhere M, = (Sgue =92 = 84,/ O L5 ()

formation kernel is the solution of the partial differential @0dN, = S5, — SJ,. We then find

equation (8), which is equivalent to the integral equation P N 1
of Gel'fand-Levitan type as given in Ref. [9]. Cont = NZ (A" b » 17)
It is easy to prove that the following transformation ;:1
kernel matrix fulfills Eq. (8): - o L
jy ALy = S — 3 Y SHOOTGE 108 () (18)
i 0=0n"=1
UUp n— ¢ ¢ 06 (1
Kap'(p,p’) = Z Z Z Cun Pan(P)pn(PY) . (10)  since the number of channeisis finite for each angular
(=0n=tn'=1 momentum, the proof of the uniqueness of the resulting
Inserting this equation into Eq. (7), we get the fundamen<coupling matrix U, can be carried out in the same
tal equations for the inverse calculation of the couplednanner as in the case of = 1 [7]. If we consider the

channel problem: special casélgﬁ = 0 with %, = 8,,, we can generalize
© N N ) ) ) the proof of Sabatier [7] that one (and only one) potential
0l(p) = %0 = DD > lu(p)ehLif(p),  of the form (9) with (10) exists if the matrix elements
=0n'=1n"=1 (11) St — 6., drop faster tharf =3¢ for ¢ — . Then the
H H —2+€
o potential matrixU,z goes to zero faster than as
where the matrixt is given as p — o, whereas all the equivalent coupling potentials are
Norrodp! damped out [7]. Therefore we assume that the above
o — P oc o¢'
Luw(p) = leo ﬁ Pan(P)@an(p"). (12)  inversion method yields a unique result Oz if Uag
P

vanishes faster tham2"€ asp — .
Solving Eq. (11) for the spectral coefficient§, and the The modified Newton-Sabatier methodn—-many ap-
radial functionsp’,, (p), we obtain the coupling potentials plications the coupling potential is known from some ra-
by use of Egs. (9) and (10). diusrg on. As an example, let us assume in the following
The usual Newton-Sabatier methodThe spectral co- that the interaction is zero beyond a particular radiuis
efficientScﬁn, can be obtained as a function of tBenatrix  all channels:
by analyzing Eq. (11) in the limjp — «. Let us assume

that the asymptotic wave functions are connected with the Uup(p) = 0, p = po=kro. (19)
Smatrices as follow§p — ®, ko, = (Eo/E)Y/?]: Then the information, inherent in tr&@matrix, is used to
N construct the coupling matrix only in the finite interval of
ela(p) = D pTl(p)AL, (13) 0 < r < ry. Thisis the purpose of the modified Newton-
n'=1 Sabatier method, which has been shown to yield unique
with potentials of the form (9) with (10) [10].
TL (p) = (e itkap=tm/Dg gL gilkap=Cm/2)) (1 0 Because of (19), it is suitable to choose a zero

reference potentiaI:Ugﬁ = (0. Then the regular ref-
(14)  erence solutions are taken ag% (p) = pT%(p)
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with T% (p) = Sanje(kap). Inserting these functions Real Part Imaginary Part
and ¢¢,(p) of Eq. (13) into Eq. (11) and limiting the
number off values tofnax, We get the following finite set
of coupled equations:

N

{max
5 (Tfn«pmﬁ,,, .S T:;'n,<p>bs:nz~£’€<p>> 19
=1 =0 20)

with L (p) = [ je(knp")je(kup')dp'. The coeffi-
cients AL, and b}, are obtained by solving Eq. (20)
at outer radiip; > po, whereT¢ (p) is determined by
the given S matrix: T¢ (p > po) = Sanh¢ (Kup) —
S¢ i (kep) With Ay (x) = je(x) = ing(x). Choos-
ing two radii p;,p2 > po we get a set of2 X
(fmax T 1) X N X N equations for the unknown coeffi-
cientsA’,, andb’,. Then the use of Eq. (11) at various
values ofp < py together with Egs. (9) and (10) gives
the inverted potential matrix. As the coefficients depend
weakly on p; and p,, one can apply a least-squares
method in order to find an optimum solution of Eq. (20)
at M least-squares pointg;, pa, ..., pu(pi > po) [10].
Equation (20) yields a unique solution faf,, and b’
and then also for the potential matrix,z for €max — , j
independent ofp; > po. This can be proven by the N Y M
same methods as used fr= 1 [10]. In practice, the 1234556 o
values off .« are restricted by the numerical precision in ) ) )

IG. 1. The potential matrix elements, s inverted atE = 7,

solving Eq. (20) and, therefore, a minor dependence OTO, and 50 MeV (cm energy) are shown as a function of the

Uap on emgx andp; > po _results. radial distance by dotted, dashed, and full curves, respectively.
Application.—We applied our method to the case of The chosen radii are; = 6.18 fm andr, = 6.22 fm.

two coupled square well potentials. For this problem,

V11 (MeV)
& A O o

V12 (MeV)
& b O o

V21 MeV)
a AL o

V22 MeV)
& b L o

[
5 6

w -
B

!
2

analytic solutions for th& matrix were derived by Lovas N2 2 peal L pexact
[15], which we used in our calculation. As an example, i = 1 Z Z Z Zap  Tap (22)
we set the potential matrix (in MeV) as N S o= 1 MeV
—6 — 4i -5 The x? values for the potentials arg? = 3.2224,
V(r) = {( 5 —4-2 ) for r = 6 fm, 1.3458, and 0.5074 faE = 7, 10, and 50 MeV, respec-
0 for r > 6 fm. tively.
1) The potentials in Fig. 1 show small oscillations around

the exact potential values with an approximate wavelength
Here the real part describes the attraction of the scattering =~ 0.25k/(2uE)"/? and amplitudes which get smaller as
partners and the imaginary part models the absorptiomore angular momenta are taken into account in Eq. (20).
from the considered channels. The excitation energiefhe wavelength arises from the variations of the prod-
were sete; = 0MeV and €, =5 MeV. The mass uct termSngngD%,/ in the kernel (10). We note that the
parameter was chosen as the reduced mass for tleverted potential matrix has a pole fer= 0 as can be
scattering of two alpha particles. seen from Eq. (9).

In Fig. 1 the results of the inversion calculations at dif- In conclusion, for the first time the Newton-Sabatier
ferent scattering energies are shown. With increasing emmethod is extended to a special coupled channel problem.
ergy, the number of usab®-matrix elements raises with The coupling potential is restricted to monopole transi-
angular momentum, containing more information aboutions induced by the radial motion. The extension of the
the potential matrix. The higher the energy, the highemethod to charged scattering partners is straightforward
fmax Can be chosen in Eq. (20). The energy wasiset by applying the procedure of Magt al.[11]. A com-

7 MeV (€max = 8), 10 MeV (max = 9), and 50 MeV  parison with experimental data is presently difficult since
(fmax = 17) for the dotted, dashed, and full curves, re-in practice nuclei or atoms are scattered with initial ground
spectively. In order to have a quantitative comparison otate configurations and, therefore, only a row of$mea-
these calculations, g test has been performed. Thé  trix is experimentally known. An extended paper with de-
error function was defined as tails of the method will be presented in the near future.
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