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Monte Carlo Study of Correlations in Quantum Spin Ladders
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Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02

(Received 6 May 1996)

We study antiferromagnetic spin-1y2 Heisenberg ladders, comprised ofnc chains (2 # nc # 6) with
ratio J'yJk of inter-chain to intra-chain couplings. The correlation lengthjsT d is deduced from
measurements of the correlation function. For evennc, the static structure factor exhibits a peak at
temperature below the corresponding spin gap. Results for isotropically coupled ladders (J'yJk ­ 1)
are compared to those for the single chain and the square lattice. ForJ'yJk # 0.5, the correlation
function of the two-chain ladder is in excellent agreement with analytic results from conformal
theory, andjsT d exhibits simple scaling behavior. [S0031-9007(96)01017-4]

PACS numbers: 75.10.Jm, 75.40.Mg
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Low-dimensional quantum Heisenberg antiferroma
nets (QHA) exhibit many fascinating properties. In 193
Bethe demonstrated for the one-dimensional (1D) s
S ­ 1y2 nearest-neighbor Heisenberg chain that quan
fluctuations prevent the existence of an ordered gro
state [1]. Instead, this system exhibits power-law c
relations with gapless excitations. Haldane suggeste
1983 that all non-integer-spin chains are gapless, but
integer-spin chains should have a spin gap [2]. By n
there is much evidence for the correctness of this fam
conjecture [3]. For the two-dimensional (2D) analog
the spin chains, the square-lattice nearest-neighbor Q
it has been established over the past decade that a
dered ground state exists even in the extreme quan
limit of S ­ 1y2 [4].

Spin ladders are arrays of coupled chains and t
present interpolating structures between 1D and 2D
These systems are thought to be realized, withS ­
1y2, in the materialssVOd2P2O7 [6] and Srn21Cun11O2n

[7]. They allow the study of the dimensional crossov
from the power-law correlations of theS ­ 1y2 chain to
the long-range order of the square lattice. Interesting
ladders with an odd numbernc of chains have power-law
spin correlations in their ground state, while those w
evennc exhibit exponentially decaying correlations due
the presence of a spin gap [5]. In analogy to the gen
S chain [2], the fundamental difference between even
odd ladders is thought to be of a topological nature [8,

In this Letter, isotropically coupled ladders as w
as the two-chain ladder in the regime of weak int
chain coupling are investigated. The former syste
are directly relevant to the known experimental syste
which are approximately isotropic [5]. Moreover, th
crossover from 1D to 2D is most naturally studied
this case. Numerical simulations to determine both
correlation length and the static structure factor down
very low temperatures are performed. Our results prov
a basis for comparison with future neutron scattering a
NMR experiments. The two-chain ladder at weak int
chain coupling allows us to investigate the formation
a spin gap away from the unstableT ­ 0 fixed point
0031-9007y96y77(9)y1865(4)$10.00
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of the gaplessS ­ 1y2 chain [10], and indeed serves t
demonstrate the extreme fragility of theS ­ 1y2 chain
power-law correlations. Our data for the low-temperatu
correlation function are in excellent agreement with
recent theoretical prediction [11]. Moreover, we discov
that in this regime the correlation length exhibits univers
scaling behavior with respect to the inter-chain couplin

The Hamilton operator for a Heisenberg system ofnc

S ­ 1y2 chains forming a ladder is

H ­ Jk

X
kijlk

Si ? Sj 1 J'

X
kijl'

Si ? Sj . (1)

Here, Si ­
1
2 si is the quantum spin operator at sitei,

while kijlk and kijl' denote nearest neighbors along a
between chains, respectively. The couplings conside
are antiferromagnetic, that isJk, J' . 0, and periodic
boundary conditions are employed along the chains.
use units in which the lattice constanta ­ 1, h̄ ­ kB ­ 1
and, unless noted otherwise,Jk ­ 1.

The ladder systems are investigated with a very e
cient loop cluster algorithm [12,13] which allows acce
to very low temperatures and the implementation of i
proved estimators in order to reduce statistical errors
observables. The simulated lattices are large enough,
along the chains and in Euclidean time, so that finite-s
and finite Trotter number effects are comparable to
statistical errors. In particular, the length of the ladders
kept ,15 times larger than the correlation length. Typ
cally, 4 3 104 loop updates are performed for equilibra
tion, followed by4 3 105 measurements.

In order to obtain information about the gapDsnc, J'd
for evennc, we measure the uniform susceptibility

xsnc, J'; T d , T21

*√X
i

Sz
i

!2+
. (2)

Gap values extracted from fits to the low-temperatu
form [14]

xsnc, J'; T d , T 21y2e2Dsnc ,J'dyT (3)

are shown in Fig. 1. ForJ' $ 2, we find very good
agreement with strong-coupling expansion results
© 1996 The American Physical Society 1865
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FIG. 1. Inter-chain coupling dependence of the spin gap.
solid lines are from Ref. [15], and the dashed line indicates
weak-coupling behaviorDs2, J' ! 0d ­ 0.41s1dJ'.

nc ­ 2 and 4 [15], shown as solid lines. Our suscep
bility data for the isotropically coupled ladders (J' ­ 1)
agree well with recent Monte Carlo work [16], and we o
tain Dsnc, 1d ­ 0.502s5d, 0.160s5d, and0.051s6d for nc ­
2, 4, and6, respectively. In an earlier study [8],Ds2, 1d ­
0.504 and Ds4, 1d ­ 0.190 were found. Fornc ­ 2, we
are able to access the weak-coupling regime chara
ized byDs2, J'd , J' [11,17]. We findDs2, J'dyJ' ­
0.41s1d, which agrees with the value0.42 found recently
[18], but is somewhat smaller thanDs2, J'dyJ' ­ 0.47
obtained previously [17]. It should be noted that our d
do not allow us to discern any predicted logarithmic c
rections [11,19] to the behaviorDs2, J'd , J'.

Next we compute the staggered correlation function
Csi, jd ­ sgnsi, jd kSi ? Sjl , (4)

where sgnsi, jd is 1 s21d if the spins at i and j are
separated by an even (odd) number of couplings. For
weakly coupled chains atT ­ 0, conformal field theory
predicts [11]
Csrd ­ G1srdG2srd fG2srdG2s3rd 6 G1srdG1s3rdg ,

(5)
and this form is claimed to be exact in the continuu
limit. The sign of the last term is plus for intra-cha
and minus for inter-chain correlations, andr measures the
distance of two spins along the ladder. The functions

G6srd ­ r21y4F6sryjd f1 6 223y2j21g 1 O sr25y4d

(6)
are correlation functions of the 2D Ising model, wi
scaling functionsF6 [20]. In Eq. (6),j denotes the spin
spin correlation length of the ladder system. The int
chain and inter-chain correlation functions differ only
short distances. At large distancesryj ¿ 1, Csrd decays
as

Csrd , r2le2ryj (7)
with l ­ 1y2, which is equivalent to the 2D Ornstein
Zernike (OZ) form. Figure 2 shows the low-temperatu
1866
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correlation function fornc ­ 2 at a weak coupling of
J' ­ 0.2. The lines are the result of a fit to Eq. (5) wit
only two fitting parameters:j and an overall amplitude
The fit is excellent over the entire range and yie
j ­ 19.4s2d. As is evident from Fig. 2, Eq. (5) correctl
captures the crossover from the short- to the long-dista
behavior with a concomitant change in length scales b
factor of,3.

In order to deducejsnc, J'; T d for generalnc, J', and
T , Csi, jd is fit at large distancesr $ 3j to the asymptotic
form Eq. (7). Fornc ­ 4 and 6, Eq. (7) withl ­ 0.5
describes the low-temperature data very well. Howev
we find that the asymptotic behavior for evennc crosses
over betweenT ø 0.2Dsnc, J'd andT ø 0.4Dsnc, J'd to
the 1D OZ form, that is,l ­ 0. For oddnc, on the other
hand, the 1D form works very well at all temperatures.

In Figure 3, the result of this analysis forJ' ­ 1
is shown together withjsTd for the square lattice a
obtained by both Monte Carlo [21] and neutron scatter
in Sr2CuO2Cl2 [4]. Because of the presence of a g
for evennc, jsT d remains finite asT ! 0. We estimate
that jsnc, 1; 0d ­ 3.24s5d and 10.3(1) fornc ­ 2 and
4, respectively. The result fornc ­ 2 agrees with the
valuej ­ 3.19s1d obtained previously [8]. However, in
Ref. [8] j ­ 5 to 6 was obtained fornc ­ 4, which
is significantly smaller than our result. Fornc ­ 2
and 4 we obtain the respective velocitiescsnc, 1d ­
Dsnc, 1djsnc, 1; 0d ­ 1.63s2d and 1.65(3), which lie in
between the 1D and 2D valuesc1D ­ py2 . 1.57 and
c2D . 1.68.

The correlation length of the singleS ­ 1y2 chain has
been determined in a thermal Bethe-ansatz study [22]:

j21
1D sT d . T

h
2 2 b21

≥
1 2 0.486b21 lnsbd

¥i
, (8)

with b ­ 2 lns0.3733T d. For T # 0.3 our data for the
chain agree with this low-temperature form, indicated
-
t

e

FIG. 2. Correlation functions atT ­ 0.01 for a S ­ 1y2
two-chain Heisenberg ladder of length 300 withJ' ­ 0.2.
Periodic boundary conditions were employed along the cha
and for clarity Csrd is shown only for evenr. The lines
are the result of a fit to Eq. (5) in the symmetrized fo
fCsrd 1 Cs300 2 rdg.
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FIG. 3. Correlation length ofnc isotropically coupled antifer
romagneticS ­ 1y2 chains. The result for the single cha
(nc ­ 1) is compared with the theoretical prediction Eq.
(dashed line). Also shown are the results for the square la
obtained from both Monte Carlo simulations [21] as well
neutron scattering experiments in Sr2CuO2Cl2 [4].

the dashed line in Fig. 3. We find that with decreas
temperaturej for nc ­ 3 and 5 gradually approach
j1D.

In Figure 4 the static structure factor atsp , pd, Cp ,p ­P
i,j Csi, jd, is shown for the isotropically coupled sy

tems. The overall trend withnc is similar to that for
j. However,Cp ,p snc, J'; Td for evennc exhibits a peak
at a temperatureTmax well below the corresponding sp
gap. Not surprisingly,Tmax appears to coincide with th
temperature at which the asymptotic correlation func
Eq. (7) begins to cross over from the 1D OZ form
higher temperatures to the low-temperature 2D form.

Figure 5 shows the correlation length for the tw
chain ladder at several inter-chain couplingsJ' # 1. For
T ø Ds2, J'd, js2, J'; T d is larger thanj1DsT d since
the ladder system has a higher effective coordina
number than the chain. Well belowT ­ Ds2, J'd, the
presence of the nonzero spin gap becomes apparen
js2, J'; T ! 0d remains finite. With decreasingJ', the
gap decreases as shown in Fig. 1, and correspondi
js2, J'; 0d increases from 3.24(5) atJ' ­ 1 to 25.6(2)
at J' ­ 0.15. In the weak-coupling regimeJ' # 0.5,
the velocitycs2, J'd ­ Ds2, J'djs2, J'; 0d equals that o
the single chainc1D ­ py2 to within the error of our
analysis. In this regime the heuristic form

j21s2, J'; T d ­ c21
1D Ds2, J'd 1 j21

1D sT de2Ds2,J'dyT (9)

describes our correlation length data very well, as sh
by the solid lines in Fig. 5. Note that since the spin g
has been determined from measurements ofxsTd, this
comparison contains no free parameters.
)
ce
s

g

FIG. 4. Static structure factor atsp , pd for isotropically
coupled antiferromagneticS ­ 1y2 ladders, as well as for the
single chain (nc ­ 1) and the square lattice [21]. For eve
nc, Cp ,p exhibits a peak (indicated by arrows) at a temperat
below that corresponding to the relevant spin gap.

The temperature dependence ofjs2, J'; T d in the
weak-coupling regime primarily results from that of th
single chain, Eq. (8). Apart from logarithmic correction
the latter is simplyj1DsTd , T21. Equation (9) thus be-
comessDjd21 ­ 2yp 1 AsTyDde2DyT , which suggests
plotting Dj versusTyD to test for the anticipated scalin
for J' # 0.5. As shown in the inset of Fig. 5, our corre
lation length data indeed collapse onto a universal cur
n

nd

ly,

nFIG. 5. Correlation length of two antiferromagneticall
coupled S ­ 1y2 chains for J' # 1. The dashed line is
Eq. (8), and the solid lines are Eq. (9) withDs2, J'd as
obtained from measurements ofxsTd. Inset: Scaling plot of
Ds2, J'djs2, J'; T d versusTyDs2, J'd for J' # 0.5.
1867
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Over the indicated range the effective value forA is ,1.7,
compared to the low-temperature value of 2.

For the two-chain ladder, we have established
Ds2, J' ! 0d ­ 0.41s1dJ'. We can furthermore est
mate the weak-coupling behavior fornc ­ 4. From
Fig. 1, it can be inferred thatDs4, J'd . Ds2, J'd 2

0.35J', which leads toDs4, J' ! 0d ­ 0.06J' as a
lower bound. From the lowestJ' for nc ­ 4, we
have Ds4, 0.6d ­ 0.12s1dJ', which constitutes an uppe
bound. We thus arrive at the estimateDs4, J' ! 0d ­
0.09s3dJ'.

The trend with increasingnc of the ladder gap re
sembles that of the integer-spin single chain as a func
of increasingS: For S ­ 1, DS­1 ­ 0.4105Jk is known
very accurately [23], while estimates forS ­ 2 range
between DS­2 ­ 0.049s18dJk and 0.085s5dJk [24]. It
has recently been argued that the two-chain ladder
antiferromagnetic inter-chain coupling lies in the sa
phase as theS ­ 1 single chain [25], and that th
weak-coupling physics is independent of the sign ofJ'

[11]. Clearly, further numerical and analytical work
establish the correspondence between ladders and c
is necessary.

In summary, our Monte Carlo calculations on sp
ladders have provided a number of new results. F
our measured low-temperature correlation function
the weakly coupled two-chain system agrees very w
with the predicted theoretical form [11], Eq. (5), which
claimed to be exact. In particular, Eq. (5) captures
crossover in behavior between short and long distan
With increasing temperature the even ladder correlat
cross over from the 2D Ornstein-Zernike form to the
form of pure exponential decay. Second, forJ' # 0.5
we have discovered thatDs2, J'djs2, J'; T d exhibits a
rather simple scaling behavior in the variableTyDs2, J'd.
Third, the structure factor for evennc exhibits a peak at a
temperature well below the corresponding spin gap.
results for the correlation length and the static struc
factor of the isotropically coupled ladders pertain to
experimental systems. For the prototypeS ­ 1y2 square-
lattice Heisenberg antiferromagnet Sr2CuO2Cl2, neutron
scattering measurements of the correlation length ar
excellent agreement with Monte Carlo simulations a
theory [4] as well as high-temperature series expan
[26]. Once sizable single crystals of the ladder syste
become available, we intend to extend our neutron s
tering work to these interesting systems. We also h
that our Monte Carlo results will motivate future theore
cal efforts to predictCsi, jd for generalnc, J', andT .
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