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Monte Carlo Study of Correlations in Quantum Spin Ladders
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We study antiferromagnetic spin-d Heisenberg ladders, comprisedmgfchains 2 = n. = 6) with
ratio J, /J of inter-chain to intra-chain couplings. The correlation lengifT) is deduced from
measurements of the correlation function. For exgnthe static structure factor exhibits a peak at a
temperature below the corresponding spin gap. Results for isotropically coupled lafidéfs € 1)
are compared to those for the single chain and the square lattice.J,Fdj = 0.5, the correlation
function of the two-chain ladder is in excellent agreement with analytic results from conformal field
theory, andé(T') exhibits simple scaling behavior. [S0031-9007(96)01017-4]

PACS numbers: 75.10.Jm, 75.40.Mg

Low-dimensional quantum Heisenberg antiferromag-of the gaplesss = 1/2 chain [10], and indeed serves to
nets (QHA) exhibit many fascinating properties. In 1931,demonstrate the extreme fragility of ttfe= 1/2 chain
Bethe demonstrated for the one-dimensional (1D) spimpower-law correlations. Our data for the low-temperature
S = 1/2 nearest-neighbor Heisenberg chain that quanturgorrelation function are in excellent agreement with a
fluctuations prevent the existence of an ordered groundecent theoretical prediction [11]. Moreover, we discover
state [1]. Instead, this system exhibits power-law corthat in this regime the correlation length exhibits universal
relations with gapless excitations. Haldane suggested iscaling behavior with respect to the inter-chain coupling.
1983 that all non-integer-spin chains are gapless, but that The Hamilton operator for a Heisenberg systemof
integer-spin chains should have a spin gap [2]. By nows = 1/2 chains forming a ladder is
there is much evidence for the correctness of this famous
conjecture [3]. For the two-dimensional (2D) analog of H=J1> 8 S +J.>8i8. 1)
the spin chains, the square-lattice nearest-neighbor QHA, G Gijh
it has been established over the past decade that an YPere, S; = %m is the quantum spin operator at site

Qer_ed ground state exists even in the extreme quantufpie (ij) and(ij), denote nearest neighbors along and
limit of § = 1/2[4]. _ between chains, respectively. The couplings considered
Spin ladders are arrays of coupled chains and thug,q antiferromagnetic, that ig,J, > 0, and periodic

present interpolating structures between 1D and 2D [S}yq,ndary conditions are employed along the chains. We
These systems are thought to be realized, with= ;50 \nits in which the lattice constant= 1, i = kz = 1

1/2, in the materialgVVO),P,0; [6] a_nd S;;_,ICunHOzn and, unless noted otherwisk, — 1.

[7]. They allow the study of the dimensional crossover ' Thg |adder systems are investigated with a very effi-
from the power-law correlations of the = 1/2 chain to  ¢jent |oop cluster algorithm [12,13] which allows access
the Iong-range order of the square lattice. Interestingly; very low temperatures and the implementation of im-
ladders with an odd number. of chains have power-law rqyed estimators in order to reduce statistical errors of
spin correlations in their ground state, while those withghseryaples. The simulated lattices are large enough, both
evenn. exhibit exponentially decaying correlations due 0 51qng the chains and in Euclidean time, so that finite-size

the presence of a spin gap [5]. In analogy to the generaln finite Trotter number effects are comparable to the
§ chain [2], the fundamental difference between even andaiisiical errors. In particular, the length of the ladders is

odd ladders is thought to be of a topological nature [8,9]. yent ~ 15 times larger than the correlation length. Typi-
In this Letter_, |sotrop|c§1IIy couple_d ladders as _WeII cally, 4 X 10* loop updates are performed for equilibra-

as the two-chain ladder in the regime of weak inter-ion followed by4 X 105 measurements.

chain coupling are investigated. The former systems |, order to obtain information about the g&in., J )

are directly reIevant to the' knowrj experimental systemg,, evenn,, we measure the uniform susceptibility
which are approximately isotropic [5]. Moreover, the

2
crossover from 1D to 2D is most naturally studied in . -1 z
) X ) . . JsT)~T S? ) 2
this case. Numerical simulations to determine both the X(ne, J13T) <<Zl: ’) > @)

correlation length and the static structure factor down.t({Bap values extracted from fits to the low-temperature

very low temperatures are performed. Our results prowd?orm [14]

a basis for comparison with future neutron scattering and o
. . . (ne,J ;T) ~T 1/2 ;= AneJ)/T (3)

NMR experiments. The two-chain ladder at weak inter- X\, JLs

chain coupling allows us to investigate the formation ofare shown in Fig. 1. Fov, = 2, we find very good

a spin gap away from the unstabfe= 0 fixed point agreement with strong-coupling expansion results for
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1.0 ——— . — correlation function forn, = 2 at a weak coupling of
A n, =2 g J. = 0.2. The lines are the result of a fit to Eq. (5) with
ogk ° N = 4 i only two fitting parameters¢ and an overall amplitude.
. v n =6 . . .
¢ The fit is excellent over the entire range and vyields
_ & = 19.4(2). As is evident from Fig. 2, Eq. (5) correctly
,\:' ) captures the crossover from the short- to the long-distance
= behavior with a concomitant change in length scales by a
S04p---oer----B
= factor of ~3.
In order to deduc& (n.,J,;T) for generaln.,J,, and
0.2r T, C(i, j) isfit at large distances = 3¢ to the asymptotic
form Eq. (7). Forn. = 4 and 6, Eq. (7) withA = 0.5
0 : L ! describes the low-temperature data very well. However,
0 0.2 0.4 0.6 0.8 1.0 we find that the asymptotic behavior for even crosses

3 /(1+)) over betweer = 0.2A(n.,J,) andT =~ 0.4A(n.,J,)to
FIG. 1. Inter-chain coupling dependence of the spin gap. Th he 1D OZ form, thatisg = 0. For oddn,, on the other
solid lines are from Ref. [15], and the dashed line indicates thd'and, the 1D form works very well at all temperatures.
weak-coupling behavioA(2,J, — 0) = 0.41(1)J,. In Figure 3, the result of this analysis fof, =1

o _is shown together with¢(T) for the square lattice as

n. =2 and 4 [15], shown as solid lines. Our suscepti-ghtained by both Monte Carlo [21] and neutron scattering
bility data for the isotropically coupled ladder$, (= 1) in SL,CuQ,Cl, [4]. Because of the presence of a gap
agree well with recent Monte Carlo work [16], and we ob-for evenn,, &(T) remains finite a§’ — 0. We estimate
tain A(n., 1) = 0.5(_)2(5),0.160(5), a_nd0.051(6) fornc = that £(n.,1;0) = 3.24(5) and 10.3(1) forn. = 2 and
2,4, and6, respectively. Inan earlier study [84(2,1) = 4, respectively. The result for, = 2 agrees with the
0.504 and A(4,1) = 0.190 were found. Fom. =2, we  value& = 3.19(1) obtained previously [8]. However, in
are able to access the weak-coupling regime charactegef. [8] £ =5 to 6 was obtained fom. = 4, which
ized byA(2,7,) ~ Jy [11,17]. We findA(2,7,)/71 = is significantly smaller than our result. For. =2
0.41(1), vv_hlch agrees with the valu@42 found recently and 4 we obtain the respective velocitiegn,, 1) =
[18], but is somewhat smaller thak(2,7,)/J1 =047  A(n., 1)é(n., 1;0) = 1.63(2) and 1.65(3), which lie in

obtained previously [17]. It should be noted that our datayetween the 1D and 2D valuesp = 7/2 =~ 1.57 and
do not allow us to discern any predicted logarithmic cor-¢, ~ 168,

rections [11,19] to the behavidr(2, /) ~ J.. _ The correlation length of the singe = 1/2 chain has
Next we compute the staggered correlation function  peen determined in a thermal Bethe-ansatz study [22]:
C(i, j) = sgn(i, j){Si - S;), (4) AT = T[Z — Zfl(l — 0.486b! In(b)>], (8)

where sgfy,j) is 1 (—1) if the spins ati and j are
separated by an even (odd) number of couplings. For tw
weakly coupled chains & = 0, conformal field theory
predicts [11]

ith » = —In(0.37337T). For T = 0.3 our data for the
Chain agree with this low-temperature form, indicated by

5 AL AL BN AL B RN R B R LR
C(r) = G+(r)G-(r)[G=(r)G=(Br) = G+(r)G+(3r)], 2 B
(5) 1071 B o Intra—chain
and this form is claimed to be exact in the continuum Z : @ Inter=chain
limit. The sign of the last term is plus for intra-chain 1072 |
and minus for inter-chain correlations, andneasures the =5 f
distance of two spins along the ladder. The functions © 2,
Gulr) = r VFu(r/E)[1 £ 27767 T+ O N
. . . ®) oL
are correlation functions of the 2D Ising model, with 5
scaling functiongF+ [20]. In Eg. (6),¢ denotes the spin- O N A
spin correlation length of the ladder system. The intra- 0 25 50 75 100 125 150
chain and inter-chain correlation functions differ only at r
short distances. At large distanog&’ > 1, C(r) decays  gig. 2. Correlation functions af” = 0.01 for a § = 1/2
as two-chain Heisenberg ladder of length 300 with = 0.2.
C(r) ~ F e € 7) Periodic boundary conditions were employed along the chains,

. L . . and for clarity C(r) is shown only for evenr. The lines
with A = 1/2, which is equivalent to the 2D Ornstein- are the result of a fit to Eq. (5) in the symmetrized form
Zernike (0Z) form. Figure 2 shows the low-temperature[C(r) + C(300 — r)].
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FIG. 3. Correlation length of. isotropically coupled antifer- FIG. 4. Static structure factor atw,7) for isotropically
romagneticS = 1/2 chains. The result for the single chain coupled antiferromagneti§ = 1/2 ladders, as well as for the
(n. = 1) is compared with the theoretical prediction Eq. (8) single chain ¢. = 1) and the square lattice [21]. For even
(dashed line). Also shown are the results for the square latticg,., C,. . exhibits a peak (indicated by arrows) at a temperature
obtained from both Monte Carlo simulations [21] as well asbelow that corresponding to the relevant spin gap.

neutron scattering experiments in,SuG,Cl, [4].

The temperature dependence 6f2,J,;7T) in the
the dashed line in Fig. 3. We find that with decreasingweak-coupling regime primarily results from that of the
temperatureé for n, = 3 and 5 gradually approaches single chain, Eq. (8). Apart from logarithmic corrections,
¢ip. the latter is simply¢p(7) ~ T~!. Equation (9) thus be-

In Figure 4 the static structure factor(@t, 7), C,» = comes(A&¢)™' =2/x + A(T/A)e */T, which suggests
2. C(, ), is shown for the isotropically coupled sys- plotting A¢ versusT'/A to test for the anticipated scaling
tems. The overall trend witl,. is similar to that for forJ, = 0.5. As shown in the inset of Fig. 5, our corre-
¢. However,C, (n.,J,;T) for evenn,. exhibits a peak lation length data indeed collapse onto a universal curve.
at a temperaturd@,ax well below the corresponding spin
gap. Not surprisinglyTmax appears to coincide with the
temperature at which the asymptotic correlation function ?

Eq. (7) begins to cross over from the 1D OZ form at ! ¢pp = /2
higher temperatures to the low-temperature 2D form. 25 % 15 ﬁ'*\% ------------------ ]

Figure 5 shows the correlation length for the two-
chain ladder at several inter-chain couplifgs= 1. For
T = AQ,J1), £€2,J.;T) is larger thanép(T) since 20
the ladder system has a higher effective coordination —~
number than the chain. Well below = A(2,J,), the 315
presence of the nonzero spin gap becomes apparent, ancg:
£(2,J ;T — 0) remains finite. With decreasing, , the
gap decreases as shown in Fig. 1, and correspondingly, 10
£(2,J.;0) increases from 3.24(5) at, = 1 to 25.6(2)
at J, = 0.15. In the weak-coupling regimg; = 0.5,

B2 (27

the velocityc(2,J,) = A(2,J,)£(2, 7, : 0) equals that of >
the single chainc;p = 7 /2 to within the error of our
analysis. In this regime the heuristic form 0 : L : L : L :
0 0.1 0.2 0.3 0.4
ETNQTLT) = cip AR JL) + Ep(T)e 2@II/T () T

describes our correlation length data very well, as showfj!G: 9.~ Correlation length of two antiferromagnetically

- A . . coupled S = 1/2 chains forJ, = 1. The dashed line is
by the solid lines in Fig. 5. Note that since the spin gaqu_rES)’ and t/he solid _lines Lare Eq. (9) with(2,J,) as

has be?n determ_ined from measurementsy6f), this  obtained from measurements gi7). Inset: Scaling plot of
comparison contains no free parameters. A2,J)E(2,J,;T) versusT/A(2,J ) for J, =< 0.5.
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compared to the low-temperature value of 2. T.M. Rice, and D.J. Scalapino for valuable discussions.

For the two-chain ladder, we have established thaThis work was supported by the NSF under Grant
AQ2,J, — 0) = 041(1)J,.. We can furthermore esti- No. DMR 93-15715, by the MRSEC Program of the
mate the weak-coupling behavior for. = 4. From  NSF under Award No. DMR 94-00334, and by the DOE
Fig. 1, it can be inferred that\(4,J,) = A(2,J,) — under cooperative research Agreement No. DE-FC02-
0.35J,, which leads toA(4,/, — 0) = 0.06J, as a 94ER40818. U.-J.W. was also supported by an A.P.
lower bound. From the lowesf; for n. =4, we Sloan Fellowship.
have A(4,0.6) = 0.12(1)J., which constitutes an upper
bound. We thus arrive at the estimaké4,/, — 0) =
0.093)J .
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