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Giant Optical Anisotropy of Semiconductor Heterostructures with
No Common Atom and the Quantum-Confined Pockels Effect

Olivier Krebs and Paul Voisin
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(Received 30 January 1996)

We examine the optical anisotropy associated with the absence of fourfold rotoinversion axis in
heterostructures of zinc-blend materials sharing no common atom or submitted to an external potential
having no inversion symmetry. We discuss a simple original method allowing the introduction of
the local symmetry considerations into the classical envelope function theory, which permits flexible
calculations of quantum well structures. In particular, we consider the “quantum confined Pockels
effect” resulting from the application of an external electric field, and we discuss its relation to the
“quantum confined Stark effect.” [S0031-9007(96)00812-5]

PACS numbers: 73.20.Dx, 78.20.Jq, 78.66.–w
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Semiconductor heterostructures in which the host m
terials M1, M2 do not share a common atom have th
remarkable peculiarity that chemical bonds across the
terfaces do not exist in either of the hosts. The gene
composition isM1—M2——C1A1—C2A2, where A and
C stand for the anion and cation species. Interfaces
formed withA1C2 andA2C1 bonds, respectively. For in-
stance, an InP-InGaAs-InP quantum well involves a v
tual half monolayer of GaInP (InAs) at the first (secon
interface. A now accepted consequence is that interf
dipole contributions to the band offset differ at theM1-M2
andM2-M1 interfaces. Such band offset noncommutati
ity has been evidenced in the (InGa)As-InP [1] and In
(AlIn)As [2] systems grown along the (0, 0, 1) axis, an
shows fair agreement with theory [3]. A more subtle co
sequence, illustrated in Fig. 1, is the anisotropy associa
with the fact that, at theM1-M2 interface theC1A1 bonds
all lie in the s21, 1, 0d plane while theA1C2 bonds lie
in the perpendiculars11, 1, 0d plane. This anisotropy is
not compensated at the other interface because the ch
ical bonds themselves are different. Hence, the grow
axis z is not a fourfold rotoinversion axis anymore, whic
allows some polarization anisotropy for light propagatin
alongz. In the language of group theory, heterostructur
with one common atom belong to theD2d point group,
while those with no common atom belong to the low
symmetryC2y group [4]. However, this obvious struc
tural anisotropy does not lead to in-plane anisotropy
the electronic structure and optical properties within t
standard envelope function theory [5] which, as a rule, n
glects any effect occurring at the scale of a host latti
constant. Conversely, these polarization dependence
fects should naturally appear in tight-binding calculatio
of the optical properties, since such calculations take in
account the full symmetry properties [4,6]. Yet, to the be
of our knowledge, optical anisotropy for zinc-blend he
erostructures grown along (0,0,1) have not been thoroug
discussed in the literature, except for the small effec
observed in the rather peculiar situation of GaAs-AlAs typ
II interfaces [7]. In contrast with the negative predictio
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of the envelope function theory, it was recently observ
that InP-AlInAs type II superlattices show a large line
dichroism and associated birefringence in the near-gap
gion [8], for light propagating along the growth direction
More generally, there should be a strong motivation
finding some way of including the local symmetry pro
erties into thek?p theory, which is known as an excellen
first order approximation and allows flexible and conv
nient calculations of various quantum well configuratio
and their perturbation by external fields. The purpose
this Letter is to introduce an original method incorporati
these effects in the envelope function theory. This heu
tic model, generalized to the situation where an asymm
ric external potential is added to the heterostructure pot
tial, leads to the prediction of a novel “mesoscopic” op
cal nonlinearity with theX

s2d
xyz symmetry, the longitudinal

“quantum confined Pockels effect.”
In the zinc-blend structure, each anion is surround

by four cations, the corresponding chemical bonds
ing along the four (1,1,1)-type directions (see Fig. 1
Clearly, the classical crystal axis of the (0,0,1) ty
are not representative of the local arrangement
chemical bonds. For systems grown along the (0,0
axis, the M1-M2 interface is the lastA1 plane of the
M1 layer, and theM2-M1 interface the lastA2 plane
of the M2 layer. We define a monolayerC-A-C0 as
the anion plane and surrounding bonds on each s
-
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o
t
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FIG. 1. Scheme of the chemical bond geometry in the z
blend crystals.
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Choosing anion planes rather than cation planes a
reference is of course arbitrary, but physically con
tent with the fact that epitaxy usually proceeds w
anion-saturated surfaces. The general idea of our m
is to attach to each monolayer operatorsPj s j ­ 1, 4d
projecting the X, Y, and Z orbitals onto the actua
bond directions. We definejjl ­

1
2 j 6 sX 1 Y d 1 Zl,

1
2 j 6 sX 2 Yd 2 Zl, and Pj ­ jjl k jj. Pairing these
four operators gives two operatorsB and F projecting
on the “backward” and “forward” bonds.B and F ma-
trix elements in theX, Y, Z basis arekijB or Fjil ­

1
2 ,

kX or Y jBjZl ­ kX or Y jFjZl ­ 0, kXjBjY l ­ 2
1
2 ,

and kXjFjY l ­
1
2 . As B 1 F ­ identity, the usua

envelope-function valence band potential in an arbitr
system may be written asVQW szd 1 Vextszd ­ V szd ­
S,sB 1 FdV sz,dhsz 2 z,d, where hszd is equal to 1
in the f2ay4, 1ay4g segment and zero outside, and
summation runs over the anion plane positionsz,. This
manipulation does not carry any physical meaning un
we consider a potential having no inversion symme
(for instance electrostatical) or a valence band disc
tinuity corresponding to an interface. Indeed, in th
cases, the Backward and Forward chemical bonds d
or experience different polarizations, which breaks
fourfold rotoinversion invariance around thez axis. In
other words, the (1,1,0) ands21, 1, 0d directions are no
longer equivalent.

The induced anisotropy can be introduced in the the
by writing V szd ­ S,hV sz,d 2 say4ddVydzjhsz 2 z,dB
1 hV sz,d 1 say4ddVydzjhsz 2 z,dF. This amounts
to associate to eachhalf monolayer the correspondin
average potential. Similarly, in the case of a compo
tional discontinuity involving aC1-A1-C2 monolayer, the
valence band energy of theC1A1 material sV1d will be
affected to theB operator and that of theC2A1 material
sV 02d to the F operator. These rules form a minimu
model including the local symmetry effects and th
necessary proportionality to the potential asymme
The sequence ofC-A-C0 monolayers in the presence
the external potentialVextszd is fully described by the
succession ofB and F operators with their associate
potentials, as sketched in Fig. 2. It is clear that
classical envelope function description is recovered if
replaces the operatorsB and F by sB 1 Fdy2 ­

1
2 , and

ignores the peculiarities of the interface chemical bon
The differences between the present HamiltonianHBF

and the envelope function HamiltonianH0 are actually
small and rapidly varying at the scale of the envelo
functions. These are converging reasons for treating t
differences in a perturbation scheme. More precis
the perturbation dH ­ HBF 2 H0 can conveniently
be diagonalized in a truncated set of solutions ofH0.
Reminding that the total wave functionC is the product
of a slowly varying envelope functionfszd by a rapidly
varying atomic-like Bloch functionusrd (more precisely
spinors built with such products) [4,5], it is clear that t
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FIG. 2. The succession of cation and anion planes fo
heterostructure grown along (0,0,1) (a), the associated enve
function potential (b), and the corresponding representatio
terms of B and F operators (c). Bulk layer submitted to a
electrostatical potential: envelope function potential (d) and
B andF operators representation (e).

rapidly varying perturbation will affect only the atom
part of the wave function, which contrasts with the tra
tional situation of slowly varying perturbation potentia
affecting only the envelopes. In the following, for th
sake of simplicity we restrict the algebra to theG8 basis,
i.e., to the heavy- and light-hole statesH6 ­ j3y2,63y2l
and L6 ­ j3y2, 61y2l [9]. Generalization to the
full 8 3 8 k ? p Hamiltonian is straightforward. On
easily checks thatB and F have diagonal matrix ele
ments all equal to1

2 and in addition off-diagonal matrix
elements kH1jFjL2l ­ kH2jBjL1l ­ iy2

p
3 and

kH2jFjL1l ­ kH1jBjL2l ­ 2iy2
p

3 which introduce
a coupling between the heavy- and light-hole states.
discussed below, this results in a polarization anisotr
of the optical properties. The perturbation matrix elem
is M

i,j
m,y ­ kfi

mmjdHjf
j
yyl, where i s jd is a subband

index andmsyd ­ H6, L6. In the spirit of the envelope
function formalism, the envelope are slowly varying at t
scale ofay2, which allows a factorization of the integral
In the cases of a slowly varying potentialVextszd or a
C1-A1-C2 interface, respectively, we straightforward
get

Mi,j
my ­

Ω
say4d

Z
fi

mszdfj
yszd≠Vexty≠z dz

æ
3 kmjF 2 Bjyl , (1)

Mi,j
m,y ­ say2dfi

msz12dfj
ysz12d

3 hfV 0
2 2 sV1 1 V2dy2g kmjFjyl

1 fV1 2 sV1 1 V2dy2g kmjBjylj . (2)
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The perturbation matrix has diagonal elements prod
ing small shifts of the valence band energy levels, wh
we shall ignore in the following. To illustrate the e
fects of the off-diagonal terms, i.e., the “mechanics”
the model, we restrict the basis to theH16 andL16 lev-
els, and we describe the in-plane motion within the “
agonal” approximation where the in-plane dispersions
parabolic with masses [10]mt

H and mt
L. Although it is

a crude approximation of the valence band structure
has been proved that the diagonal model is quite suffic
to calculate accurately the band to band absorption s
trum [6,11]. In addition, valence subband mixing by t
Luttinger matrix does not produce the optical anisotro
effects which we are looking for. The4 3 4 Hamiltonian
matrix separates in two nearly identical2 3 2 matrices
corresponding to theH11, L12 andH12, L11 subsets
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respectively. The first one is√
H1 1 h2k2

t y2mt
H MH1L2

Mp
H1Lp2 L1 1 h2k2

t y2mt
L

!
(3)

and the second one differs by the sign of the off-diago
term, MH2L1 ­ 2MH1L. We have chosen the “hol
energy” notation with positive confinement energies a
in-plane masses. The corresponding eigenfunctions
C1,2 ­ a1,2fHjH1l 1 b1,2fLjL2l. Optical transitions to
the first conduction subband induced by a photon pro
gating parallel to thez axis and polarized at an angleu
with respect to the (1,0,0) axis can easily be calcula
As expected, the absorption spectrumAshy, ud is polar-
ization dependent. AsMHL (henceb1 and a2) are pure
imaginary, we have, using the notationsai ­ aik fEjfH l,
bi ­ bik fEjfLl:
AyA0 ­ ha2
1 1

1
3 jb1j

2 2 s2y
p

3da1jb1j sin2ujYssshy 2 sEg 1 E1 1 H 01dddd

1 hja2j
2 1

1
3 b2

2 1 s2y
p

3db2ja2j sin2uj smt
Lymt

H dYssshy 2 sEg 1 E1 1 L01dddd , (4)
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where Ysxd is the step function,A0 ø 6 3 1023Nw is
the absorption by theH1-E1 transition calculated in
the diagonal approximation, andNw the number of
quantum wells. m

t
HsLd is the in-plane reduced mas

for the corresponding electron-hole pair, andH 01 and
L0

1 are the eigenenergies of Eq. (3). When deriv
Eq. (4), we have assumed thatjMHLj remains small
compared to theL01-H 01 energy separation in the energ
range of interest. In these conditions, the polarizat
rate at the absorption edge is immediately obtained
the perturbation formula asP ­ sAmax 2 AmindysAmax 1

Amind ­ s2y
p

3d sk fEjfLlykfEjfHldjMHLjysL1-H1d.
In practice, solutions of Eq. (3) forL1 2 H1 ­

32 meV and jMHLj ­ 0.74 meV give the polarization
spectra shown in Fig. 3. It is seen that a signific
absorption anisotropy appears in the spectral range
tween theH1-E1 and L1-E1 transitions. In this energy
range, the absorption is larger (or smaller, depend
on the sign ofMHL) for a photon polarization alon
(1,1,0) than for a polarization alongs21, 1, 0d. This
linear dichroism also implies, via the Kramers-Kron
relations, a birefringence in the near band-gap reg
Detailed comparison with experimental data is out of
scope of this Letter, but we note that these predicti
are in close qualitative agreement with the observati
reported recently by Seidelet al. for InP-(AlIn)As type
II multiquantum wells [8], and may also explain th
surprising result that blue-light vertical-cavity surfa
emitting lasers based on no common atom II-VI quant
wells are always strongly polarized along thes21, 1, 0d
direction [12]. More recently, these effects have be
studied in InGaAs-InP type I quantum wells [13], and t
results also show complete agreement with the pre
considerations. In particular, the width of the observ
y

t
e-

polarization spectrum is clearly equal to theH1-L1
splitting. As for the value of the polarization rate, t
observedP ­ 11% in a 108 Å InGaAs-InP quantum we
agrees with the present prediction if offset asymme
and residual strain in the sample are taken into acco
and an interface potential value ofø1 eV is retained.
This is an enormous effect, comparable with the opt
anisotropy of quartz.

This model does not contain any fitting parameter a
its quantitative comparison with experiments is a cruc
test. In practice, however, the band offsets between
“virtual” interface materialsC1A2 andC2A1 and the het-
erostructure hostsC1A1 and C2A2 are not known with
sufficient accuracy, and the effect of an external elec
static field would be an even better test. Evaluation
Eq. (1) with V szd ­ eFz and the parameters of a GaA
g

.

s
s

nt

FIG. 3. Absorption spectra for various polarization anglesu
(a) and associated polarization spectrum (b). Calculations
for a supposedly symmetrical 100 Å GaInAs-InP quantum w
with MHL ­ 0.74 meV, which corresponds tosV 0

2 1 V 0
1d 2

sV1 1 V2d ­ 1 eV.
1831
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AlGaAs 100 Å quantum well gives a polarization ra
P ­ 4% for F ­ 50 kVycm. Yet, the effect associate
with Eq. (1) is only the polarization of chemical bonds
“bulk” of the host layers. The electric field has anot
effect which is the deformation of the classical envel
functions, known as the “quantum confined Stark effe
This deformation affects moderately the overlap of
heavy- and light-hole envelopes appearing in Eq. (1),
changes drastically the respective weights of theM1-M2
and M2-M1 interface terms [Eq. (2)] which are direct
sensitive to the values of the envelopes at the interfa
In the regime where the energy shifts associated with
quantum confined Stark effect are quadratic, the latte
fect is linear inF. In the case of common-atom qua
tum wells, the two interface contributions obviously c
cel each other atF ­ 0, and should be revealed atF fi 0.
For instance, adding the two contributions gives a po
ization rateP ­ 1.4% for a 100 Å GaAs-Al0.3Ga0.7As
quantum well under a 50 kVycm electric field. Alto-
gether, these effects and their consequences on the o
index in the transparency region form the quantum c
fined Pockels effect [14]. This is a large second or
optical nonlinearity, specific to quantum well structur
and having theX

s2d
xyz symmetry. This effect contradicts th

classical envelope function results [15] where such te
are forbidden.

In conclusion, we have introduced a simple theor
cal model leading to a parameter-free prediction of
tical anisotropies and optical nonlinearities in semic
ductor heterostructures. Hole “spin” relaxation mec
nisms [16,17] should also be considerably affected by
heavy- and light-hole mixing atkt ­ 0 in no common
atom heterostructures. These are promising and st
lating results, supported by recent observations [8,12
Yet, the present approach is essentially heuristic and
be confirmed by a comparison with a more complete
ory. Tight-binding calculations should allow thisa poste-
riori justification, as they can naturally take into acco
the local symmetry properties [4,18] on which our mo
is based. On a more technical ground, the influenc
the actual valence subband dispersion, the contribu
of upper-lying subbands, the role of Coulomb inter
tion, etc. must be evaluated. These complications ca
change the qualitative features, but may affect the q
titative results. Finally, detailed comparison with exp
imental results in various systems (for instance InGa
InP and InGaAs-AlInAs) must be undertaken in orde
check the correctness and precision of the parame
dependences on the quantum well thickness, band
sets, and applied electric field. Detailed observation
the quantum confined Pockels effect is an open challe
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