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We study the conductance fluctuations of a dirty quantum wire in which both mesoscopic and ballis
transport features play a role. The existence of a ballistic transport channel destroys the unive
conductance fluctuations, so that the “mixed” transport regime is marked by nonuniversal fluctuatio
which we compute both analytically, using a diagrammatic technique, and with a numerical evaluati
of the Landauer formula. The crossover behavior of the fluctuation amplitude from the usual qua
1D situation to that of the mixed regime is clearly revealed, and the role of various length scales a
identified. [S0031-9007(96)01038-1]

PACS numbers: 73.20.Dx, 72.10.–d, 73.50.Bk
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Over the last decade an extensive research e
has been devoted to the understanding of the quan
transport properties of various submicron scale electr
structures [1]. A main motivation of this effort has been
develop potentially useful electronic devices whose op
tion is based on quantum phenomena. There are thre
portant length scales associated with a quantum condu
the system linear sizeL, the elastic mean free pathl, and
the electron phase coherence lengthj. Herel is essentially
determined by the impurity concentration, andj is fixed by
various phase breaking events. WhenL is much larger
than the other two scales we have the usual clas
Drude conduction. On the other hand, ifl , L , j,
the diffusive motion of the conduction electrons ma
tains their phase coherence, leading to the so ca
mesoscopic regime of quantum transport, where the m
interesting phenomenon is the universal conducta
fluctuations (UCF) [2]. The mesoscopic transport reg
is the subject of extensive studies. Finally, when
system size is even smaller,L , l , j, we enter the
ballistic regime where electrons traverse the condu
ballistically without, on average, suffering impuri
scattering. In this situation, the factor which limits t
current is the scattering at the boundaries of the condu
and the conductance can be computed by the Land
theory of one-dimensional transport. The ballistic regi
has also been studied in detail both experimentally
theoretically [1].

Many situations of potential interest for device applic
tions have both mesoscopic and ballistic ingredients.
instance, it is known that the electron mobility in a met
oxide-semiconductor field-effect transistor is substanti
influenced by the quality of the Si-SiO2 interface, and pa
rameters characterizing scattering at the rough inter
can be extracted from experimental data [3]. Simila
for a quantum MESFET [4] the roughness at the me
semiconductor interface provides the “impurity scatt
ing.” Equally, as freestanding quantum wires becom
reality, one must deal with the impurity scattering pro
lem near the boundaries, as impurities tend to diffuse
0031-9007y96y77(9)y1825(4)$10.00
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the wire in this region. It is also known that scatt
ing at irregular interfaces of a short-period superlat
and impurity scattering in a double-barrier quantum w
have an important influence on quantum tunnelingI-V
characteristics [5].

In all these situations the devices possess regions w
impurity scattering is important, and regions where v
little impurity scattering is present. From a theoreti
point of view these are difficult problems because
has to deal with a spatially nonuniform system. F
thermore, many conceptual difficulties arise concern
this “mixed” regime of quantum transport, such as
destruction of UCF by the ballistic channels, the comp
tion of localization effects and ballistic effects, the con
butions of transverse subbands which are smeared b
impurity scattering, and more importantly the role play
by various length scales. So far, theoretical studie
this mixed transport regime have focused on the im
tant problem of a narrow quantum wire [6] with rou
boundaries [7–9], and investigations of conductance
tuations in these systems have been limited to nume
calculations. While useful intuition has been obtained
is nevertheless difficult to draw general conclusions fr
purely numerical investigations since accurate value
the conductance fluctuations as a function of system
rameters are difficult to obtain.

It is the purpose of this work to provide both d
grammatic and numerical analyses of this mixed reg
with a focus on the important conceptual questions m
tioned above. In particular, we consider a two-dimensio
“dirty” quantum wire with lengthL and widthW , as shown
in the inset of Fig. 1. Along the two walls of the wire,
layer of thicknesst is distributed randomly with impuritie
of scattering potential [2]Vi ­ udsr 2 rid, whereu is the
strength of the scattering,ri is the location of theith im-
purity, andr is the electron coordinates. The Hamilton
has the form

H ­
X
p

epay
p ap 1

X
q

ufru
q 1 rl

qg ?
X
p

a
y
p1qap , (1)
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FIG. 1. Conductance fluctuationfrmssgdg2 [units in se2yhd2]
as a function of wire lengthL (units in W), for the approximate
theory neglecting thep' dependence in the self-energy. Curv
from top down correspond tot ­ Wy2, Wy3, Wy4, Wy5, and
Wy6. Inset is a schematic drawing of the dirty wire.

whereay
p and ap are creation and annihilation operato

for momentump, ep is kinetic energy of electrons wit
effective massmp, and ru

q ­
Pupper

i e2iq?ri and rl
q ­Plower

i e2iq?ri are the impurity densities in the upper a
lower impurity layers.

Clearly, if W ­ 2t we recover a quasi-1D mesoscop
conductor whose transport properties are well und
stood. On the other hand, whenW . 2t the system
may possess both mesoscopicand ballistic behavior. To
our knowledge there are as yet no analytical studie
transport in this important general regime, or of the fr
standing dirty quantum wire in particular. Furthermo
whereas the impurity scattering is somewhat differ
from rough wall scattering, the physics should be si
lar and our work thus provides additional theoretical
derstanding of the numerical results reported so far
roughness scattering [7–9].

The diagrammatic analysis proceeds along sim
lines to that for a mesoscopic conductor withuniformly
distributed impurities [2]. However, since in our case
impurity distribution is nonuniform, the algebra becom
extremely tedious [10]. In particular one has to p
special attention to the transverse direction (they di-
rection) in all calculations. The nonuniformity leads
important differences, as compared to the usual quas
mesoscopic conductor, in various quantities such as
self-energy of the one-particle Green’s function,
vertices and the diffusion operator, and indeed in
general behavior of the predicted conductance fluc
tions. To save space in the following we outline on
the most important modifications and present the de
elsewhere [10].

Retaining up to the second order perturbation terms
obtain the imaginary part of the self-energy in the o
particle Green’s function as a function of the transve
momentump' in the following form:
1826
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Gsp'd ­
2u2NimpWL

h̄3

3

∑
1 1

1
2jp'jL

hNif1 1 j fp'
stdj2g

1 1 1 fr
p'

stdj
∏

, (2)

where Ni is number of impurities in each impurity
layer (assumed to be the same in both layers). T
function fp' gives the impurity distribution away from
the wall which is assumed to be Gaussian:fp'

std ­Rt
0 e2gz2

e2ip'z dzy
Rt

0 e2gz2
dz. fr

p'
std is the real part of

fp'
std. The parameterg controls the width of the distri-

bution: a very smallg gives essentially a uniform distri-
bution in the layert, while a largerg gives a diffusive
distribution with higher concentration of impurities nea
the quantum wire boundary. To compute the conducta
fluctuations via a diagrammatic technique, we follow th
self-consistent conductance fluctuation theory [2] by co
sidering the Feymann diagrams with all possible doub
triple, and quadruple bubble-bubble connections [10].

Before presenting the complete result, we can get a fi
hint of the effects of our nonuniform impurity distribution
by simply neglecting thep' dependence of the self
energy. This gross approximation makes the algebra v
similar to the usual UCF calculations, and the diffusio
propagator becomes isotropic:,1yq2. In Fig. 1 we plot
the conductance fluctuationsfrmss gdg2 as a function of
the wire lengthL for various impurity layer thickness
t. To obtain the numerical values we have fixed t
system parameters as electron energykW ­ 55 with k
the Fermi wave vector,W ­ 3250 Å, u ­ 0.01 meV,
Ni ­ 40, and effective massm ­ 0.067me with me the
bare mass of the electron. It is clearly seen that
t ­ Wy2, i.e., without a ballistic region, the conductanc
fluctuations frmssgdg2 approach the quasi-1D universa
value 0.531se2yhd2 as L is increased. However, when
there is a ballistic region in the dirty wire, i.e., fort ­
Wy3, Wy4, Wy5, andWy6 (see Fig. 1), the conductanc
fluctuations vanish smoothly when the length of the w
is increased. This is understandable from the point
localization [7]. For our wire, the ballistic channel in th
center is always conducting for electron energies abo
the propagation threshold, and therefore essentially d
not contribute to the fluctuations. Indeed, the fluctuatio
are mostly contributed by the impurity layers, and th
diminish when the system lengthL is close or beyond
the localization length of the layers. It is well know
that a very thin layer of impurities will have a smalle
localization length than that of a thicker layer for
given impurity density [7], since the small lateral siz
limits the conduction channel. Thus for smaller valu
of t we expect a smaller localization length, and th
fluctuations should fall faster asL is increased, a physica
picture which is consistent with Fig. 1. We note th
the general behavior discussed here is quite similar
that found in various numerical simulations on the rou
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FIG. 2. The solid squares givefrmssgdg2 as a function ofL for
t ­ Wy6 from the full theory including all thep' dependence
The smooth solid curve is the result from the approxim
theory. The star point is the result from the finite-elem
numerical simulation. Inset: the results fort ­ Wy3.

wall scattering [7–9]. In addition, for systems where tw
separate disordered reservoirs are connected by a
ballistic region, the conductance fluctuations can also
suppressed under certain conditions as shown in Ref.

When we include the explicitp' dependence in th
analysis, a major difference is the change of the diffus
[12] operator, which becomes [10]

1 2 u2Ni

∑
3
4

Ps1d 1 iPs2dDE

∏
2

1
2

u2Niy
2
FPs3d ≠2

≠x2
1 iu2NiyFPs4d ≠2

≠x≠y

2 u2Ni

∑
1
2

y2
FPs3d 2 iyFPs4d 1

1
4

Ps5d
∏

≠2

≠y2 , (3)

where Ps1d ­ h̄21
R

dp'Ne2e'
tsp'd, Ps2d ­ h̄22 3R

dp'Ne2e'
t2sp'd, Ps3d ­ h̄21

R
dp'Ne2e'

t3sp'd,
Ps4d ­ h̄21

R
dp'Ne2e'

tsp'dasp'd, Ps5d ­ h̄21 3R
dp'Ne2e'

fasp'dg2ytsp'd, tsp'd ­ h̄yGsp'd,
asp'd ­

≠ts p'd
≠p'

. yF is the Fermi velocity, andNe2e'

is the 1D density of states.DE is the correlation energy

DE ­ ty2
Ftsp'dh̄yL2W 1 s1 2 2tyW dh̄yFy

p
LW ,

which is a combination of both a ballistic part and a d
fusive part, withtsp'd an average value oftsp'd over
momentump'. Although the diffusion operator is now
much more complicated, it is fortunate that its eige
functions can still be obtained in closed form, and
found to be the zeroth order Bessel functions of comp
argument [10]. By contrast, the eigenfunctions for
isotropic case are the simple box-normalized sinuso
functions. Given the eigenfunctions, we follow the us
procedure [2] to compute the conductance fluctuation

The general behavior of the conductance fluctuation
a function of the wire lengthL is similar to the approx-
imate result presented in Fig. 1. In Fig. 2 and its ins
we plot the results (the data points) for impurity lay
thicknesst ­ Wy6 and t ­ Wy3. For comparison, the
re
e
].

l

s

,

smooth curves show the approximate result where
anisotropy (i.e.,p' dependence) is neglected. Seve
observations are in order. First, the conductance flu
ation frmssgdg2 drops rapidly asL increases and become
very small for large values ofL. This behavior is con-
sistent with all previous numerical simulations of boun
ary roughness scattering where it was attributed to
role of localization effect [7–9]. For example, the n
merical simulation data of a wire with rough boundar
[9] shows that the conductance fluctuations decrease
proximately exponentially withL. Second, there are clea
oscillations offrmssgdg2 as L is increased (see the da
points in Fig. 2). These are not present in the “isotro
theory,” which is understandable since it does not resp
the lateral anisotropy and quantization. We have chec
that whenfrmssgdg2 is plotted against other paramete
such as the electron Fermi energy or the impurity la
thicknesst, similar oscillations are also observed. Th
indicates that the oscillations result from resonance
havior since wave functions and their derivatives m
match across the different layers in the wire. It is
teresting to note that when the impurity layer thickne
is large, e.g.,t ­ Wy3, the full theory and the grossl
simplified isotropic theory give quantitatively similar r
sults, as shown in the inset of Fig. 2. Obviously the di
wire with a largert is closer to that of a quasi-1D mes
scopic conductor and hence more “isotropic” as far as
impurity scattering self-energy is concerned. Finally,
data for t ­ Wy6 has a rapid drop atL , 3W (Fig. 2).
This behavior is likely to be related to the localizati
effect discussed above: the fluctuations diminish wheL
approaches the localization length of the impurity laye
Indeed, for a rough-boundary wire the numerically fitt
localization length [9] was,5W for a roughness ampli
tude of ,Wy10. If our impurity layer thicknesst plays
the role corresponding to the roughness amplitude, ou
sult is of the same order of magnitude as in the numer
simulations.

An alternative study of the same problem is provided
direct numerical simulations employing the Landauer f
mula to compute the conductance in terms of transmis
coefficients. This not only provides a quantitative che
of our analytical results, but also shows how the contri
tions of successive propagating subbands contribute to
conductance fluctuations. The quantum scattering in
same dirty quantum wire system is solved using the
gle electron effective mass Schrödinger equation by a
nite element numerical scheme detailed in Ref. [13]. T
method allows us to obtain quantitatively accurate resu
For incoming electron energykW ­ 55 there are 17 sub
bands to be computed individually and their contributio
are shown in Fig. 3. Typically we have used550 to 1000
(the largest5000) independent impurity configurations fo
impurity averaging of each subband [14].

Using this numerical simulation technique, we first v
ified that with kW ­ 55 and t ­ Wy2, i.e., for a quasi-
1D mesoscopic wire, we were indeed in the usual U
1827
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FIG. 3. Results from the finite-element numerical simulatio
(a) The average conductance for each of the17 subbands. (b)
The fluctuationsfrmssgdg2 for all the subbands. The syste
parameters aret ­ Wy6, L ­ W ­ 3250 Å, Ni ­ 40, kW ­
55.

regime. We also found that at aroundkW ­ 55 the con-
ductance fluctuations are almost independent of the Fe
energy: this is why we have fixed the energy at this va
[7]. From Fig. 3, it is clear that fort ­ Wy6 (L ­ W )
the impurity-averaged conductance of each successi
higher subband is progressively smaller. This is beca
the higher the subband, the smaller its longitudinal (x di-
rection) momentum, and with smaller longitudinal m
mentum it is more difficult for an electron to travers
the dirty wire. This is also consistent with the nume
ical simulations of rough boundary scattering [7]. O
the other hand, the conductance fluctuations [Fig. 3
for the lowest and highest subbands are smaller t
those of the middle subbands. This peculiar behavio
due to the upper and lower bounds of the conducta
which each transport subband can contribute:e2yh or
zero. Since the lowest and highest subbands contrib
values close to these bounds [see Fig. 3(a)], their fluc
tions are limited by them. When adding up all the co
tributions according to the Landauer formula, we obt
the conductance fluctuations for this set of parameter
s0.13 6 0.01d se2yhd2, in almost perfect agreement wit
1828
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our analytical prediction of0.129se2yhd2. The numerical
data point is shown as a star in Fig. 2.

In summary, we have investigated for the first time
conductance fluctuations of a dirty quantum wire w
impurities concentrated near the wire boundaries, us
both a diagrammatic technique and a numerical meth
The crossover from an anisotropic diffusive propaga
to that of an isotropic one is clearly revealed. Beca
of the presence of a ballistic region, the conducta
fluctuations are not universal and depend on sys
parameters such as the impurity layer thicknesst. The
fluctuations decay with the wire lengthL for a given
t, and such a decay is faster for wires with smallert.
This is due to electron localization in the impurity laye
The general behavior predicted by our analytical appro
is consistent with previous numerical simulations
roughness scattering, and is quantitatively confirmed
our numerical simulations of the model.
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