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Destruction of Conductance Fluctuations in a Dirty Wire
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We study the conductance fluctuations of a dirty quantum wire in which both mesoscopic and ballistic
transport features play a role. The existence of a ballistic transport channel destroys the universal
conductance fluctuations, so that the “mixed” transport regime is marked by nonuniversal fluctuations
which we compute both analytically, using a diagrammatic technique, and with a numerical evaluation
of the Landauer formula. The crossover behavior of the fluctuation amplitude from the usual quasi-
1D situation to that of the mixed regime is clearly revealed, and the role of various length scales are
identified. [S0031-9007(96)01038-1]

PACS numbers: 73.20.Dx, 72.10.—d, 73.50.Bk

Over the last decade an extensive research effothe wire in this region. It is also known that scatter-
has been devoted to the understanding of the quantuing at irregular interfaces of a short-period superlattice
transport properties of various submicron scale electroniand impurity scattering in a double-barrier quantum well
structures [1]. A main motivation of this effort has been tohave an important influence on quantum tunnelingy
develop potentially useful electronic devices whose operacharacteristics [5].
tion is based on quantum phenomena. There are three im- In all these situations the devices possess regions where
portant length scales associated with a quantum conductdmpurity scattering is important, and regions where very
the system linear sizE, the elastic mean free pathand little impurity scattering is present. From a theoretical
the electron phase coherence lengjtiHerel is essentially  point of view these are difficult problems because one
determined by the impurity concentration, ahi fixed by  has to deal with a spatially nonuniform system. Fur-
various phase breaking events. Wheris much larger thermore, many conceptual difficulties arise concerning
than the other two scales we have the usual classicdhis “mixed” regime of quantum transport, such as the
Drude conduction. On the other hand,lif< L < ¢,  destruction of UCF by the ballistic channels, the competi-
the diffusive motion of the conduction electrons main-tion of localization effects and ballistic effects, the contri-
tains their phase coherence, leading to the so calledutions of transverse subbands which are smeared by the
mesoscopic regime of quantum transport, where the moétpurity scattering, and more importantly the role played
interesting phenomenon is the universal conductancby various length scales. So far, theoretical studies of
fluctuations (UCF) [2]. The mesoscopic transport regimehis mixed transport regime have focused on the impor-
is the subject of extensive studies. Finally, when thetant problem of a narrow quantum wire [6] with rough
system size is even smallef, < [ < £, we enter the boundaries [7—-9], and investigations of conductance fluc-
ballistic regime where electrons traverse the conductotuations in these systems have been limited to numerical
ballistically without, on average, suffering impurity calculations. While useful intuition has been obtained, it
scattering. In this situation, the factor which limits the is nevertheless difficult to draw general conclusions from
current is the scattering at the boundaries of the conductopurely numerical investigations since accurate values of
and the conductance can be computed by the Landaudre conductance fluctuations as a function of system pa-
theory of one-dimensional transport. The ballistic regimerameters are difficult to obtain.
has also been studied in detail both experimentally and It is the purpose of this work to provide both dia-
theoretically [1]. grammatic and numerical analyses of this mixed regime,

Many situations of potential interest for device applica-with a focus on the important conceptual questions men-
tions have both mesoscopic and ballistic ingredients. Fationed above. In particular, we consider a two-dimensional
instance, it is known that the electron mobility in a metal-“dirty” quantum wire with lengthl. and widthWw, as shown
oxide-semiconductor field-effect transistor is substantiallyin the inset of Fig. 1. Along the two walls of the wire, a
influenced by the quality of the Si-SjOnterface, and pa- layer of thickness is distributed randomly with impurities
rameters characterizing scattering at the rough interfacef scattering potential [2}; = u6(r — r;), whereu is the
can be extracted from experimental data [3]. Similarly,strength of the scattering; is the location of theéth im-
for a quantum MESFET [4] the roughness at the metalpurity, andr is the electron coordinates. The Hamiltonian
semiconductor interface provides the “impurity scatter-has the form
ing.” Equally, as freestanding quantum wires become a
reality, one must deal with the impurity scattering prob- - 1 u . t
lem near the boundaries, as impurities tend to diffuse into A gépapap " %‘u[pq * ral %apmap’ @)
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Lok where N; is number of impurities in each impurity
0.2 LM‘ layer (assumed to be the same in both layers). The
0.1 L function f,, gives the impurity distribution away from
0 the wall which is assumed to be Gaussigfy: (1) =
2 3 Joe vEetrdz/ [e 7 dz. f7 (1) is the real part of
L (units of width) fp, (t). The parametey controls the width of the distri-

. _ bution: a very smally gives essentially a uniform distri-
FIG. 1. Conductance fluctuatigmms(g)]* [units in (e?/h)?] T . . oo
as a function of wire lengtli, (units in W), for the approximate bution in the layer, while a largery gives a diffusive

theory neglecting the , dependence in the self-energy. Curves distribution With higher concentration of impurities near
from top down correspond to = W/2,W/3,W/4,W/5, and the quantum wire boundary. To compute the conductance

W/6. Insetis a schematic drawing of the dirty wire. fluctuations via a diagrammatic technique, we follow the
self-consistent conductance fluctuation theory [2] by con-
sidering the Feymann diagrams with all possible double,

+ ) R triple, and quadruple bubble-bubble connections [10].
wherea, anda, are creation and annihilation operators  gefore presenting the complete result, we can get a first
for momentump, €, is kinetic energy of electrons with pint of the effects of our nonuniform impurity distribution

. " upper ~ _ja.r, . .

effchveAmaSSm ,and pg =2, e "9 and Pfl = by simply neglecting thep, dependence of the self-
Ylower ,~iari gre the impurity densities in the upper andenergy. This gross approximation makes the algebra very
lower impurity layers. similar to the usual UCF calculations, and the diffusion

Clearly, if W = 2t we recover a quasi-1D mesoscopic propagator becomes isotropie:l /¢>. In Fig. 1 we plot
conductor whose transport properties are well underthe conductance fluctuatiodsms(g)]*> as a function of
stood. On the other hand, wheilv > 2¢ the system the wire lengthL for various impurity layer thickness
may possess both mesoscopitd ballistic behavior. To ¢. To obtain the numerical values we have fixed the
our knowledge there are as yet no analytical studies ofystem parameters as electron enekdly = 55 with &
transport in this important general regime, or of the freethe Fermi wave vectorW = 3250 A, u = 0.01 meV,
standing dirty quantum wire in particular. Furthermore,N; = 40, and effective mass = 0.067m, with m, the
whereas the impurity scattering is somewhat differenbare mass of the electron. It is clearly seen that for
from rough wall scattering, the physics should be simi-+ = W/2, i.e., without a ballistic region, the conductance
lar and our work thus provides additional theoretical un-fluctuations[rms(g)]> approach the quasi-1D universal
derstanding of the numerical results reported so far owalue 0.531(e%/h)? as L is increased. However, when
roughness scattering [7-9]. there is a ballistic region in the dirty wire, i.e., for=

The diagrammatic analysis proceeds along similaWw /3, W/4, W /5, andW /6 (see Fig. 1), the conductance
lines to that for a mesoscopic conductor withiformly  fluctuations vanish smoothly when the length of the wire
distributed impurities [2]. However, since in our case theis increased. This is understandable from the point of
impurity distribution is nonuniform, the algebra becomeslocalization [7]. For our wire, the ballistic channel in the
extremely tedious [10]. In particular one has to paycenter is always conducting for electron energies above
special attention to the transverse direction (theli- the propagation threshold, and therefore essentially does
rection) in all calculations. The nonuniformity leads to not contribute to the fluctuations. Indeed, the fluctuations
important differences, as compared to the usual quasi-1Bre mostly contributed by the impurity layers, and they
mesoscopic conductor, in various quantities such as théiminish when the system length is close or beyond
self-energy of the one-particle Green's function, thethe localization length of the layers. It is well known
vertices and the diffusion operator, and indeed in thehat a very thin layer of impurities will have a smaller
general behavior of the predicted conductance fluctuaeocalization length than that of a thicker layer for a
tions. To save space in the following we outline only given impurity density [7], since the small lateral size
the most important modifications and present the detailimits the conduction channel. Thus for smaller values
elsewhere [10]. of + we expect a smaller localization length, and the

Retaining up to the second order perturbation terms wéuctuations should fall faster dsis increased, a physical
obtain the imaginary part of the self-energy in the one-picture which is consistent with Fig. 1. We note that
particle Green’s function as a function of the transverseéhe general behavior discussed here is quite similar to
momentump, in the following form: that found in various numerical simulations on the rough
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0.25 — smooth curves show the approximate result where the
0z anisotropy (i.e.,p, dependence) is neglected. Several
0.2 EMS‘\ observations are in order. First, the conductance fluctu-
§ 01 ation[rms(g)]?> drops rapidly ad. increases and becomes
§ous N very small for large values of. This behavior is con-
§ sistent with all previous numerical simulations of bound-
S

S
~

ary roughness scattering where it was attributed to the
role of localization effect [7—9]. For example, the nu-
merical simulation data of a wire with rough boundaries
[9] shows that the conductance fluctuations decrease ap-
proximately exponentially witlil.. Second, there are clear
oscillations of[rms(g)])* asL is increased (see the data

) ) . points in Fig. 2). These are not present in the “isotropic
FIG. 2. The solid squares giVems(g)] as a function of. for  theory ” which is understandable since it does not respect

t = W/6 from the full theory including all thep, dependence. P o
The smooth solid curve is the result from the approximatethe lateral anisotropy and quantization. We have checked

theory. The star point is the result from the finite-elementthat when[rms(g)* is plotted against other parameters
numerical simulation. Inset: the results for= W /3. such as the electron Fermi energy or the impurity layer
thicknesst, similar oscillations are also observed. This

wall scattering [7=9]. In addition, for systems where twoindicates that the oscillations result from resonance be-
separate disordered reservoirs are connected by a puf@Vior since wave functions and their derivatives must
ballistic region, the conductance fluctuations can also b@atch across the different layers in the wire. It is in-
suppressed under certain conditions as shown in Ref. [11jéresting to note that when the impurity layer thickness
When we include the explicip, dependence in the 'S 1arge, e.g.; = W/3, the full theory and the grossly

analysis, a major difference is the change of the diffusiorsimplified isotropic theory give quantitatively similar re-
[12] operator, which becomes [10] sults, as shown in the inset of Fig. 2. Obviously the dirty

wire with a largerr is closer to that of a quasi-1D meso-
| — uzN,-[i oo + iH(z)AE} scopic conductor and hence more “isotropic” as far as the
4 impurity scattering self-energy is concerned. Finally, the
data forr = W /6 has a rapid drop at ~ 3W (Fig. 2).
9xdy This behavior is likely to be related to the localization
1 1 92 effect discussed above: the fluctuations diminish when
- uzN,-[— v2I®) — jypI® + — H(S)}—z, (3) approaches the localization length of the impurity layers.
2 4 dy Indeed, for a rough-boundary wire the numerically fitted
localization length [9] was~5W for a roughness ampli-
tude of ~W/10. If our impurity layer thickness plays
the role corresponding to the roughness amplitude, our re-
sult is of the same order of magnitude as in the numerical

L (units of width)

1 2
- 5u2Niv%H(3)@ + tuzNiva(4)

where IV = 7i~! fdp N 7(py), TP =52 X
fdpLNe—eLTz(pL): H(3):ﬁil fdpLNe—eLT3(pL):
MW= nr"! fdp Ne—e, 7(p)a(p.), e =1 x

fdPLN57g;!:Z()PJ_)]2/.T(PL)a ' T(PJ_.) = E/F(PJ_)’ Simulations.

a(pi) = =5, vr is the Fermi velocity, andVe—, An alternative study of the same problem is provided by

is the 1D density of statesAE is the correlation energy, girect numerical simulations employing the Landauer for-
AE = tvir(p )R/L2W + (1 — 2t/W)hvp/NLW , mula to compute the conductance in terms of transmission

coefficients. This not only provides a quantitative check

which is a combination of both a ballistic part and a dif- of our analytical results, but also shows how the contribu-
fusive part, with7(p,) an average value of(p,) over tions of successive propagating subbands contribute to the
momentump . Although the diffusion operator is how conductance fluctuations. The quantum scattering in the
much more complicated, it is fortunate that its eigen-same dirty quantum wire system is solved using the sin-
functions can still be obtained in closed form, and aregle electron effective mass Schrédinger equation by a fi-
found to be the zeroth order Bessel functions of complexite element numerical scheme detailed in Ref. [13]. This
argument [10]. By contrast, the eigenfunctions for themethod allows us to obtain quantitatively accurate results.
isotropic case are the simple box-normalized sinusoidaFor incoming electron energyv = 55 there are 17 sub-
functions. Given the eigenfunctions, we follow the usualbands to be computed individually and their contributions
procedure [2] to compute the conductance fluctuations. are shown in Fig. 3. Typically we have us&sD to 1000

The general behavior of the conductance fluctuation aghe largest000) independent impurity configurations for
a function of the wire lengttL is similar to the approx- impurity averaging of each subband [14].
imate result presented in Fig. 1. In Fig. 2 and its inset, Using this numerical simulation technique, we first ver-
we plot the results (the data points) for impurity layerified that withkW = 55 andr = W /2, i.e., for a quasi-
thicknessr = W/6 andr = W /3. For comparison, the 1D mesoscopic wire, we were indeed in the usual UCF
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(a) our analytical prediction 0.129(e?/h)>. The numerical
1 data point is shown as a star in Fig. 2.
In summary, we have investigated for the first time the
g 08{@® conductance fluctuations of a dirty quantum wire with
s impurities concentrated near the wire boundaries, using
‘§ 0.6 ® both a diagrammatic technique and a numerical method.
S 4 *., The crossover from an anisotropic diffusive propagator
§°0.4 6o o9 A to that of an isotropic one is clearly revealed. Because
) ? .O of the presence of a ballistic region, the conductance
< 02 fluctuations are not universal and depend on system
0 ? parameters such as the impurity layer thicknessThe
1234567 891011121314151617 fluctuations decay with the wire length for a given
Band t, and such a decay is faster for wires with smaler
This is due to electron localization in the impurity layers.
(b) The general behavior predicted by our analytical approach
0.012 is consistent with previous numerical simulations on
001 l l roughness_ scat_tering,. and is quantitatively confirmed by
L ? 000, e® ‘ ? our numerical simulations of the model.
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