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Network Approach to Void Percolation in a Pack of Unequal Spheres
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A procedure is developed to map the void space in a packing of unequal spheres onto a network.
This enables one to use random networks to study problems with no underlying network defined
a priori. The procedure is used to calculate the continuum percolation threshold for void space
percolation in sets of randomly located, overlapping spheres with unequal radii. Within the statistical
uncertainty, this threshold appears to be univefsai9 + 0.002 in two dimensions an€.030 = 0.002
in three dimensions. As a possible application, the permeability of a bead pack is discussed.
[S0031-9007(96)01040-X]
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The idea of percolation processes was introduced idiffer. Monte Carlo studies have been performed to
1957 to describe a fluid which spreads randomly through aonfirm this work [19-21]. Although the results in three
porous medium [1]. Since then, percolation problems havdimensions are not conclusive, in two dimensions they
been studied extensively, and a variety of applications hado confirm the theoretical expectation that the percolation
been reported (see, e.g., Ref. [2]). Most of the attentionthreshold depends on the distribution of the sphere radii.
has been given to percolation on regular lattices, eveAs yet little is known about the percolation properties of
for the study of the properties of disordered continuumthe void space in packings of unequal spheres.
systems. However, for such cases it is more appropriate In this Letter | report a network mapping for packings
to address the issue of continuum percolation. This is, foof spheres with arbitrary radii. This mapping can be made
instance, of particular interest for subjects like the structuréor the spheres themselves, as well as for the void space
of liquids [3] or the structure of irregular particle packings in between the spheres. The technique greatly simplifies
[4]. Here, one considers the percolation of the materiathe study of percolation properties of unequal sphere
itself (i.e., material percolation). On the other hand, inpackings. In particular, one may use it to determine
cases where one is primarily concerned with the propertie® what extent void percolation thresholds and critical
of the void space, the complementary form of percolatiorexponents are universal, i.e., independent of, for instance,
is useful. This so-called void percolation is relevant forthe distribution of sphere radii. More generally, the
the study of, e.g., transport in disordered media [5,6].  technique may be employed in areas where the Voronoi

As a model for disordered materials one can use a segssellation restricted much of the research to equal size
of randomly located, overlapping spheres. For the case aphere packs. Examples are the structure of liquids,
equal size spheres, the sphere percolation problem has beglasses, and colloidal suspensions [3], the structure of
studied with various techniques, including Monte Carloparticle packings (powders, filtration beds [4,22]), and
simulation, network mapping, and renormalization. Thetransport in porous media (conductivity, elasticity, fluid
void percolation space problem has received less attentioflow [5,6,15]).

Kertész estimated the percolation threshold using Monte | first discuss network mapping and the properties
Carlo techniques [7], and Elarmat al.used a network which make it so useful. Subsequently | apply this
mapping to calculate the percolation threshold and criticainethod to calculate the percolation threshold of the void
exponents [8]. The latter work was made possible byspace in-between spheres with unequal radii. Finally,
Kerstein [9], who proved that the network obtained via theas an example, | show that inclusion of the percolation
Voronoi tessellation is a good representation of the voidhreshold into the Kozeny-Carman equation for the per-
space. meability of a bead pack leads to a better description of

Percolation and transport properties of networks obthe flow behavior at low porosities.
tained by the Voronoi tessellation have since been studied The mapping—As mentioned above, for the mapping
as properties of the network itself [L0—12]. Others haveof the void space between spheres of equal radius one can
used the same methods to study percolation properties ofe the Voronoi tessellation. This tessellation is defined
the void space in a realistic sphere packing [6,13—15]. with respect to a given set of points in space, for example,

If one wishes to extend this work to packings of the centers of spheres in a random pack. If the set of
spheres of unequal size, results are harder to come bpoints is denoted by;, i = 1,..., N, the Voronoi region
From theoretical considerations it is known that thecontaining centex; consists of all the points for which
sphere percolation threshold depends on the distribution
of sphere sizes [16—18]. The critical exponents can also d(x,x;) < d(x,x;) Vj#i,
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whered|x,y| denotes the distance between poistand d(x,x;)* = r} < d(x,x;)* = r} Vj+i.
y. The boundary between the region aroudand the
adjacent one around; is found by settingd(x, x;) = From the first line it follows thatd(x, x;)?> — r,-2 > 0.

d(x,x;), which defines the plane of points at equalUsing the second line | conclude thax, x;)> — r} >0
distance tox; andx;. This plane is perpendicular to and henced(x,x;) > r; for all j. In other words, the
the line connecting; with x;. If one takes into account point x lies outside all spheres and hence in the void
all pointsx; other thanx; itself, the region arouna; is  space.
bounded by a number of plane segments. Such a region This tessellation also has a new property: polyhedron
is called a polyhedron. need no longer contain the center of spheren fact, a

The edges of the Voronoi polyhedra constitute aregion can be entirely empty, which is not possible with
network of bonds. The points where the edges comé¢he Voronoi tessellation. This does not pose a problem,
together, the “vertices” of the polyhedra, are the sites ohowever, because a region will be empty only if its
the network. Kerstein [9] proved that the void percolationassociated sphere is located entirely within one or more
problem is equivalent to the bond percolation problemother spheres: in those cases one could of course have
for those edges of the Voronoi tessellation which aré‘thrown away” that sphere in the first place.
contained within the void. However, his proof is valid The void percolation threshold-As an application of
only for equal radius spheres. The proof is based on ththe new mapping technique, | calculated the percolation
assumption that a point inside a polyhedron, but outsidéhreshold for the void space in sphere packings with a
its associated sphere, lies in the void space. This need nbimodal sphere radius distribution. For monodisperse,
be true in the case of unequal radii. overlapping, randomly located spheres, this threshold was

In Ref. [22] an alternative tessellation was proposectalculated by Kertész [7] and by Elaet al.[8], who
for packings of unequal spheres, in order to be able tdound 0.034 = 0.007 and 0.032 = 0.004, respectively.
construct high density packings. The proposed definitiorso far, no values have been reported for unequal, over-
for regioni is lapping, randomly located spheres.

dx,x;) — r; < d(x,x;) — rj Yjo# i, To calculate the percolation threshold, | have used a

: : ontinuum version of the method discussed in Ref. [2].

wherer; is the radius of sphere This criterion is based ¢ £ th h domlv located i
on the distance to the surfaces of the spheres, rathdf!® centers of the spheres were randomly located in a

than to their center. Although this is a valid definition uglt VOIUETE." tg fusg5of Tef ran_domfnlrj]mber generator,
of a tessellation, it is a very cumbersome one to workd vocated in Ref. [25]. raction of the centers were

with, because the regions that are defined in this Wa§135|gned a_radlusl; the others were assigned a radius
are bounded by curved surfaces. It becomes difficult td2: . The ratior;/r, was set at a fixed value, s&25,
calculate properties for the resulting networks. Wh'le_ t_hp absolute values of andr, were chosen sugh
| therefore propose an alternative which is defined by that initially the sum of all sphere volumes was unity.
) ) ) ) ., . Because of overlap between the spheres, there is still a
dix,x;)" = ri <dx,x)” —rj YV j#i. significant void space in between the spheres. This void
Such a definition has been used in the past to characterizpace is mapped onto a network, making use of the new
structures in molecular compounds and in packings ofessellation technique. The implementation was done by
multicomponent amorphous material [23,24]. Here Imodifying the Voronoi tessellation algorithm of Moore
provide evidence that this tessellation is ideally suitedand Angell [26]. In the runs presented here, periodic
for studying the void space in-between spheres, becausyundary conditions were used. With the help of a cluster
of its following properties. (1) The boundaries betweeng|gorithm [27], it is easy to check whether the resulting
regions are planar. The boundary between regibns network percolates. If it percolates, the sphere radii
and j is perpendicular to the line connecting andx;.  increase for the next run; if not, they decrease in length.
(2) For equal spheres this is the Voronoi tessellationThe increase or decrease is calculated by multiplying both
(3) For overlapping spheres the boundary between regiong and r, by the same factor, thus keeping the ratjgr,
coincides with the plane of intersection of the spheresfixed. In a binary search the multiplication factarfor
(4) For nonoverlapping spheres the boundary betweefhich the system is at the threshold of percolation is
regions always lies between the spheres (which is nQjetermined. The void space fraction or porositys then
valid for the Voronoi tessellation applied to unequalcalculated as exp-a?), where D is the dimensionality
spheres). (5) The proof by Kerstein holds for arbitraryof the system [21]. These steps are performed for many
radii. different sets of sphere centers. The results of these runs
The latter point can be explained as follows. Considefyere averaged.
a pointx inside polyhedron, but outside its associated  As a test of the dependence of the percolation threshold,
sphere. | show thak lies in the void space. For the | have used several systems, both in two and in three
proposed tessellation has the properties dimensions. The ratio of sphere radii was varied from
dix,x;) —r;, >0, 1 to 1/10 in two dimensions and froml to 1/4 in
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TABLE I. The void percolation threshold for various systems. dimensions. The values for the critical exponentvere
D is the dimension;, and r, are the radii of the two types obtained by fits with the scaling relation (2) fare.
of spheres that were used, is the fractional number of, The results for the critical exponent are consistent,

spheresg is the void space fraction for which the systemisat_ . . .. .
the percolation threshold, and is a critical exponent. ¢, is  Within one or two standard deviations, with the values

obtained by extrapolation using Eq. (3), apd by a fit to the ~ 4/3 and 0.88 for lattice percolation [2], and with the
scaling relation (1). Error estimates concerning the last digitsresult 0.94 *+ 0.2 reported by Elamet al.[8] for void

are given between brackets. percolation between equal size spheres. This can be seen
either as a check on the present calculation, or as further
evidence that this exponent is universal.
2 1/ 0.160 (1) ~ 0.159(1)  1.33(10)  Concerning the percolation threshold, it appears that

1/2 0.4164  0.158(2) 0.157(2) 1.47(13) in two dimensions it i90.159 + 0.002, and in three di-

1/4 02863 0159(2) 0159(2) 1.36 (8) mensions).030 + 0.002, independent of the ratis,/r;.

1/10 0.1888  0.160(2)  0.158(2) 1.44 (10) Compared to the sphere percolation threshold, the void
3 1/1 0031 (2) 0.029(2) 084 (3 Percolation threshold is less sensitive to the distribution

1/4 02070 0030 (4) 0027 (3) 084 (8) of sphere radii. This follows from the work Qf Lorenz
et al. [21], who calculated the sphere percolation thresh-
old, and found.6764 *+ 0.0009 and0.6860 = 0.0012 for
three dimensions. For each of the systems a numbéivo different two-dimensional models. One of their mod-
N, of spheres with radius; was chosen that would €ls is ther; = r, system considered here. For the other
yield good statistics. The fractiofi = N,/(N; + N») model | have calculated that the percolation threshold is
for each system is shown in Table I, together with the0.159 £ 0.002 as well. The latter model uses a sphere
results of the runs. For the two-dimensional systemsradius distributionp(r) = const forr between0 and a
runs were performed foN = 100, 316, 1000, 3162 and ~ MaxXIMUM7y;,x.
10000. For each system siz&)0 independent realizations It is interesting to note that Roberts and Schwartz [6]
were computed, with the exception &f = 10000, for calculated the percolation threshold for a realistic bead
which 300 realizations were computed. For the three-pack. Their result wa$).030 = 0.004. Although this
dimensional systems, the number of realizations 9@fs  number is based on a single bead pack, and should not
for N = 100, 316, 1000 and3162, whereas it was00 for therefore be interpreted strictly, it does indicate that the
theN = 10000 system. For the three-dimensional systemvoid percolation threshold is rather insensitive to the

D ra/r f Pe Pf v

with r,/r; = 1/4, the largest system waé = 3162. structure of the material. ' '
The percolation threshold (N) for a system ofN Let us suppose for a moment that the void percolation
spheres depends o [21]: threshold is indeed universal, and let us return to the

1/(wD problem of fluid flow through a porous medium. Bryant
lo(N) — @(0)] ~ N~V0P), @ and Blunt [15] calculated the permeability of a random

where v is a critical exponent. Therefore one has topead pack, using the Voronoi tessellation to map the void
extrapolate in order to obtain a value fgr(»). This  space onto a network. They found a good agreement
can be done either by using a value fotthat is known  with experimental data for Fontainebleau sandstone [28],
for other systems, or by treating as an extra fitting whereas a simple Kozeny-Carman equation [29]

parameter. In the latter case one finds a value ifor ©3D2

as well, at the expense of a larger uncertaintypifw). k= 1800 — o2

Another possibility is to use the scaling relation for the , (1 - 90)__

standard deviation ap: did not give good results for porosities below 10%. Here,

_ k is the permeability (in unitsz?) and D is the average
Ap(N) ~ N~V (2)  diameter of the sand grains (in uniis). However,
The advantage in using this relation is that one deals wittsince the pore space does not percolate below 3%, we
only one unknown, but the drawback is that one needsan heuristically modify the Kozeny-Carman equation as
more statistics for a reliable result. follows:
Based on the above two scaling relations, one can also (¢ — @.)3D?
construct an extrapolation formula that is independent of k=~ (4)

the exponeny: 18001 — ¢)?
' wherep,. = 0.03. From Fig. 1 it follows that this equa-
() = ¢(NDAP(N;) — GD(NZ)AGD(NI)' 3) tion is a considerable improvement for low porosities.
Ap(N2) — Ap(N1) A similar improvement can be obtained for the electri-

The results that are obtained with this extrapolation arecal conductivity in porous media, which is most easily
listed in the table undep.. The values listed undep; checked for the simple models introduced in Ref. [6].
are the results of fits to the scaling relation (1) for  (For a discussion on experimental evidence for a nonzero
assumingy to be4/3 in two dimensions and.88 in three ¢, see also Ref. [30].)
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