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Kinetics and Jamming Coverage in a Random Sequential Adsorption of Polymer Chains

Jian-Sheng Wang and Ras B. Pandey*

Department of Computational Science, National University of Singapore, Singapore 119260, Republic of Singapore
(Received 7 May 1996

Using a highly efficient Monte Carlo algorithm, we are able to study the growth of coverage
in a random sequential adsorption of self-avoiding walk chains for up-16'?> time steps on a
square lattice. For the first time, the true jamming coverdgds found to decay with the chain
length N with a power lawd, « N~%!. The growth of the coverage to its jamming limit can be
described by a power law(r) = 6; — ¢/t with an effective exponent which depends on the chain
length, i.e.,y = 0.50 for N = 4 to y = 0.07 for N = 30 with y — 0 in the asymptotic limitN — .
[S0031-9007(96)00961-1]

PACS numbers: 61.41.+e, 61.20.Ja

Studying the kinetics of random sequential adsorptiorral extension, one would like to consider objects not only
(RSA) has attracted a considerable interest in recent yeavgith polydisperse sizes but also with polydisperse shapes,
[1-18] because of its enormous number of applicationg more complex problem in the studies of RSA. There-
[19-24] in the adsorption processes involving a variety offore we perform a large-scale Monte Carlo simulation to
species from a point-like particle to a protein-like complexstudy the adsorption of polymer chains which have poly-
structure in physical, chemical, and biological systemsdispersity in both shapes and sizes. A model chain is one
Some of the examples include binding of ligands on poly-of the simplest ramified objects with its well-known shape
mer chains, coating, designing composites, chemisorptiognd size distributions in a variety of systems [28,29]. The
physisorption, and reaction of molecular species includindRSA of polymer chains is nevertheless relevant in applica-
globular protein on surfaces and interfaces, etc. Thesgons such as coating and paint. In contrast to theoretical
adsorption processes may be divided into two categoriepredictions for the RSA of polydisperse objects of regular
(1) Annealed adsorption where the species are mobile (shapes, we find that an effective expongrdepends on
thermal equilibration for the interacting adsorbants) beforéhe chain length. Furthermore, we are able to reach the
they settle onto the surface—a cooperative sequential adrue jamming coveraged() with an efficient algorithm
sorption. (2) Quenched adsorption where the adsorptiowhich enables us to predict a power-law dependence on
occurs without subsequent diffusion or desorption. Wehe chain lengthX), 6, « N1,
consider the latter category known as random sequential We consider arn, X L square lattice with a periodic
adsorption. boundary condition. A polymer chain is modeled by a

The problem of RSA in one dimension [19,25-27] is self-avoiding random walk (SAW) which is generated on
well understood with exact results for some adsorption prothe trail of a nonreversal random walk (NRRW) with
cesses. Understanding the growth of coverage in two diself-avoiding constraints. The chains are dropped onto
mensions with the RSA lacks rigorous results by analyticathe square lattice, one at a time sequentially. If a chain
methods due to their intractabilities, especially for objectoverlaps with previously deposited chains, the attempt is
with polydisperse shapes. Therefore computer simulationsjected. Once the chain is deposited on the lattice, it
remain one of the primary tools for investigating thesesticks on the surface permanently. The deposition rate
problems. Numerical results [2] and theoretical analysesr equivalently the time scale is fixed with the following
[3,4] for the deposition of disks on continuum suggest thaslgorithm. In unit timeAs = 1, L? attempts are made
the coverage follows the Feder’s law [2] at large time  to generate and deposit SAW chains each of length

0(r) ~ 6, — < @ starting from a randomly selected site. As soon as a walk

tl/d> overlaps with the previously deposited site (from other
where 6(¢) is the coverage at time 6, is the jamming chains or itself), the walk is abandoned, and a new attempt
coveraged is the dimensionality of the host space, and is made to deposit a chain starting from a randomly
is a constant. chosen new site. This is equivalent to generating SAW

The temporal dependence, Eq. (1), seems to describe free space and dropping onto the lattice at random.
the deposition of hyperspheres. For squares [7], rectan- Because of the large number of conformational states of
gles [6], and ellipses [14], on the other hand, the abov@olymer chains, the deposition becomes very slow in the
law is still valid butd is replaced byi,, the number of de- late stage. An event-driven method [10,30,31] is, there-
grees of freedom of the corresponding objects. For diskfore, used to speed up the simulation. This is accom-
with polydisperse sizes the computer simulation studieplished by identifying the early part of growing chains,
[13] seem consistent with the theoretical prediction [12]i.e., the partial chains, and then classifying them periodi-
0(t) =0, — ct™, wherey = 1/(d + 1). As a natu- cally as “available” or “not available” for the deposition in
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an iterative fashion. The subsequent depositions are thearobability that a given hole is being filled (in unit time).
made starting from the available partial chains chosen &tor the deposition of chains, the slowest mode is filling
random. The list of the partial chains is limited by the the void in exactly two ways (out dfy ™" possibilities).
available computer memory and governs the speed of thEhus
program. It appears that there is an optimal list size for a P
given value ofN. = 2N
Now in order to maintain the same dynamics, each 2

depositionj\ttempt does not simply advance the timeyg oynonential decays and the prediction fomgree
by 61 = L™~ as before, but by an amouris, where very well with simulation data; see Fig. 2.

Jj is a random integer with an exponential distribution |0 o intermediate time regime (2, </ < 7, a

p(1 = p)~1. pis the ratio of the number of potentially power-law dependence is observed even on discrete
available partial chains in the list to the total number of j4ice i e

chains of partial lengths, L2Z", where Z""™ is the
number of NRRW chains of length The random integer 0() ~0; —ct?, (4)
can be generated by

=2-3V2 N>1. (3)

with an effective exponent. Since the jamming limit,

N In¢ ’ is not known accurately for long chains, it is instructive to
J= In(1 — p)’ (@) consider the derivative of with respect ta,
where ¢ is a uniformly distributed random number ao 1 (5)
between 0 and 1. dt 1y’

The simulation is performed on IBM SP2 and fast hi itv is plotted in Fi f . hain | h
workstation clusters. The total amount of CPU time forT Is quantity is plotted in Fig. 3 for various chain lengths.

the computation is about six months equivalent of asinglé’ve see a crossover from a power-law variation of the

DEC AlphaStation 250. Variation of the coveragavith rate of coverage in. the interme_diate time 'regime to an
time ¢ is presented in Fig. 1 for various chain lengths. Weexppnentlal decay |n'th(_e long time, esp_eually for short
hains. Note that this intermediate regime expands on

immediately notice that a rapid increase in the coverage iff . .
the short time regime is followed by a very slow growth in Increasing the ch_aln length. We obse_rve.a remarkable
the long time. We can divide the characteristic behavio ower-law lbehawor over 12 degades In time W'th the
into three time regimes: (1) the short time regime, (2) th argest chain Ie_ngtIN =30 fqr which the true jamming
intermediate regime, and (3) the very late-stage regime. Imitis reacheql In our S|mu|gt|ons. Least-square fits in Fhe
The short and very long time regimes (1) and (3) areoower-law regime give a reliable estimate of the effective
easily understood. The coverage at the very short time igxponenty, particularly forN = 30. Note that the s_mall
proportional tor, since the depositions of nearly all SAWs value ofy = 0.07 for N = 30 is stable over a relatively
are accepted. In the very late stage [32], the dynamics
is controlled by filling independently the last pores. The
holes disappear according ® /7, where 1/7 is the
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FIG. 2. Semilogarithmic plot for the difference between jam-

- s ming coverage and coverage at timédor chain lengthsv = 2,

i 10 10 5, 10, and 15. For a better view of all the curves on the same
plot, we plotted again the normalized timgr. The straight

FIG. 1. Coverage as a function of time, for chain length line is the pure exponential decay’ for N = 1. The inset

indicated by the number. See Table | for the statistics on thshows+ as a function ofV, the straight line is the theoretical

sample size and the number of independent runs. prediction, Eq. (3).
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' linear sizel, the probability distribution for the raté
is p(k)dk « 1 dl o« k'/?~1dk. Total contribution to the
approach to jamming is then

6, — 6(1) f ki te R gk oc 414, (6)
0

Viot and Tarjus [7] generalized the above result to
anisotropic objects and concluded that the approach to
jamming is:~'/4s for monodisperse objects, whetle is
the degrees of freedom of the objects. For the objects with
1 regular shape but polydisperse sizes [12],— 6(¢)
t_l/(df+1).
Polymer chains have much more internal degrees of
freedom. For sufficiently long chains, the lattice structure
i . 2 becomes less important. The chains can be specified by
10 10 i 10 the orientation of their segments on a coarse-grain level.
_ . The number of degrees of freedom is proportional to the
FIG. 3. Derivative of coverage vs time on a log-log scale.

The number indicates chain lengtN. Inset shows the number of such segments. Thus we may identjfy< N
variation of exponent with time evaluated at a regular interval @nd consequently o 1/N. In fact the data foy can be
for N = 30. The statistics is presented in Table I. roughly characterized by = 2/N.
Alternatively, one may identify the degree of freedom
as the number of SAW configuratios; ™ of length N,
, - - , i.e.dr o ZWY o« NY~178: wherey is a critical exponent
large time scale within the statistical fluctuations [see >’ “f N eff T L
Fig. 3 (inset) and Fig. 4]. A logarithmic fith(s) ~ and zeer =< z — 1, where z is the coordination number

— saw
0; — c/In(zr) appears less satisfactory. We see that thé33]: Then, the exponenp ~ 1/(Zy™ + 1) becomes
magnitude of the exponent depends systematically much smaller than our estimates. Thus the application of

on the chain lengthy = 0.50 for N = 4 to y = 0.07 Tarjus and Talbot's results [12] is not validdf; = Zy™
for N = 30. To our knowledge, none of the previous is assumed. However, in asymptotic limit for large

studies has shown a size-dependent exponer crude 2.~ 0 as N — = s consistent with the prediction of

; : Tarjus and Talbot.
extrapolation (see Fig. 4) leads to a small valuey dbr ; .
larger chain length with a possibility for — 0 asN — o With the event-driven method we are able to reach

within the statistical error jamming much faster, which gives us accurate estimates
Let us recall the well-known Swendsen’s argument [4]for the jamming coveragé,; see Table |. The jamming

for Feder's law [Eq. (1)] for the adsorption of disks on coverage decr.ease§ with the chain length. It is not eear

continuum. At late stage, the pore vanishes accordin riori that th‘?lf?‘mm'”g coveragty (V) goes to zero ay/

to e ¥, wherek = 1, [ is the linear size of the pore, aPProaches infinity. However, assuming

and d is the spatial dimension. Assuming a uniform 6,(N) = N, 7

do/dt

14

10

a 6;(N) versusN plot on a log-log scale leads to a very

0.6 T T
small exponentr = 0.11. Note that the magnitude of
TABLE I. Jamming coveraged, = 0(r — «) for various
chain lengths. Statistical errors on the last digits are indicated
04 ] by the numbers in the parentheses.
N 6; (erron L Number of runs
= 1 1
2 0.906820 (2) 1000 26200
02| 3 0.858296 (4) 500 34000
4 0.837055 (13) 500 14000
5 0.81235 (1) 500 7501
7 0.78558 (2) 500 2320
10 0.75895 (1) 500 4701
00 : : 15 0.72473 (8) 500 700
00 Y VR o2 20 0.70178 (10) 500 33
. ) . 30 0.6683 (4) 500 28
FIG. 4. Exponenty obtained by least-squares fits of Fig. 3, 49 0.654 (9) 200 7

plotted against inverse chain length.
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