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Long Internal Waves of Finite Amplitude
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(Received 17 April 1996)

We derive new nonlinear evolution equations for long internal waves in a two-fluid system, when the
thickness of the lower layer is effectively infinite, by making the only assumption that the thickness of
the upper layer is small compared with the characteristic wavelength. The resulting equations have the
full nonlinearity of the original problem and retain the leading-order dispersive effects. For large ampli-
tude internal solitary waves, we show that our model captures the scaling relation between the amplitude
and the characteristic wavelength observed experimentally by Koop and Butler. [S0031-9007(96)
01019-8]

PACS numbers: 47.35.+i, 03.40.Kf, 47.20.Ky, 47.55.Hd
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Solitary waves are perhaps the most remarka
manifestation of the balance between two fundame
mechanisms of gravity wave propagation: dispersion
nonlinearity. The relative strength of these two mec
nisms can be measured by two independent nondim
sional parameters, the nonlinearity ratioa ­ ayh1 of
wave amplitudea and fluid layer thicknessh1 and the
aspect ratiob ­ h1yL of h1 and typical wavelengthL.
In the case of waves at the free surface of a homogen
fluid layer, when viscosity is negligible, the balan
between nonlinearity and dispersion often occurs
regimes for which these parameters are small and
expressed by a scaling relation betweena and b. Thus
a ­ Osb2d for small b results in weakly nonlinea
long solitary waves. It turns out that this relation do
extremely well in describing most observable solita
waves in homogenous layers, and so a “universal" m
based on this scaling, like the Korteweg–de Vries (Kd
equation, captures most of the relevant features of sol
wave propagation in a homogenous fluid.

The case of internal waves at the interface between
fluids of different densities can be expected to offe
richer class of phenomena. This is reflected by the nee
introducing at least another independent nondimensi
parameter, the thickness ratiog ­ h2yh1 for an upper
lighter fluid layer of thicknessh1 (and densityr1) and
a lower heavier fluid of thicknessh2 (and densityr2),
when the density ratior2yr1 ­ rr . 1 is considered a
fixed. Various regimes are now possible, even wit
the long wave limitb ­ h1yL ø 1, ranging between th
two extremes of lower fluid thickness that is also sm
compared to wavelength to the case of a lower fluid la
that can be considered effectively infinite.

The relative magnitude ofa and b representing the
balance between nonlinearity and dispersion can now
expected to vary according to the depth ratiog. For shal-
low water ofg ­ Os1d, the scalinga ­ Osb2d, b ø 1,
leads again to the KdV equation for unidirectional wa
propagation [1]. When the depth of the lower layer
much greater than that of the upper layer (g ¿ 1), the
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scaling a ­ Osbd leads to the intermediate long wav
(ILW) equation for unidirectional waves. It reduces
the Benjamin-Ono (BO) equation in the limit ofg °! `

[2–6].
The common feature of all these models is that,

taking advantage of the small parameters introduced
looking at certain regimes, the dependence on the ver
coordinate is eliminated, thereby simplifying the proble
considerably. However, there is noa priori guarantee tha
these asymptotic models address a sufficiently broad c
of physical situations. As already mentioned, this see
to be the case for the KdV equation, but the situat
is much different for the ILW or BO models. Indee
the experimental study by Koop and Butler [7] show
that the domain of applicability of the ILW equatio
and its limiting form, the BO equation, is rather narro
[8]. In particular, the weak nonlinearity (small amplitud
assumption seems inappropriate for a large set of t
experimental data.

In this paper, we show that the assumption of we
nonlinearity can be removed while still being able to der
a simple model for long waves at the interface with a de
lower layer. The model retains the leading order dispers
effects and has no vertical coordinate dependence.
flows we consider are characterized bya ­ ayh1 ­ Os1d,
b ­ h1yL ø 1, g ­ h2yh1 °! `. In these regimes, ou
(bidirectional) model can be written as

zt 2 fsh1 2 z du1gx ­ 0,

u1t 1 u1u1x 1 s1 2 rrdgzx ­ rrH fzttg , (1)

where h1 is the undisturbed upper fluid thickness,z

is the displacement of the interface away from t
vertical coordinate originz ­ 0, and u1 is the upper
layer mean velocity. Here the operatorH ffg act-
ing on a functionfsxd denotes the Hilbert transform
H ffg ; s1ypdP

R`

2` fsx0dysx0 2 xd dx0, with P stand-
ing for Cauchy principal value of integration. We ha
not been able to find closed form traveling wave solutio
for this model and had to resort to numerical solutio
found via a Newton-Raphson technique. As sho
© 1996 The American Physical Society 1759
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below, these are in good agreement with the solitary w
scaling law between amplitude and effective wavelen
exhibited by the data [7] over a wide range oflarge
amplitude waves where the BO model can be off by up
a factor of two. System (1) reduces to the BO equation
small amplitude unidirectional wave propagation. Thu
can be expected to share the same limitations as the
model in the weakly nonlinear, very long wave regim
(see the discussion in [7]).

Derivation of the model equations.—For inviscid and
incompressible fluids, the velocity components in Ca
sian coordinatessui , wid and the pressurepi satisfy the
continuity equation and the Euler equations

uix 1 wiz ­ 0 , (2)

uit 1 uiuix 1 wiuiz ­ 2pix yri , (3)

wit 1 uiwix 1 wiwiz ­ 2piz
yri 2 g , (4)

where, in a two-fluid system,i ­ 1 for the upper fluid
and i ­ 2 for the lower fluid. The constant acceleratio
of gravity g is directed along the negativez axis. The
boundary conditions at the interface are

zt 1 u1zx ­ w1, zt 1 u2zx ­ w2,
p1 ­ p2

æ
at z ­ z sx, td .

(5)

Since we want to focus on the interface wave mot
only, we assume that there exists a (flat) rigid lid at
of the upper fluid layer, so that the kinematic bound
condition atz ­ h1 is simplyw1 ­ 0. With an infinitely
deep lower fluid layer the other boundary condition
su2, w2d °! 0 asz °! 2`.

We will now implement an asymptotic expansion of t
equations of motion (3) and (4) in the small parameterb.
Throughout the derivation we assume that the flow in e
layer is irrotational, as it is the case for motion starti
from rest. The assumptionb ø 1 signifies that the uppe
layer thickness is much smaller than the character
wavelength of the motion we are interested in. We w
first derive evolution equations correct up to orderOsb2d
for the upper layer based on this assumption. This
of the derivation mirrors closely the derivation of th
classical Airy’s shallow water model [9]. We will the
derive a model equation for the lower fluid based on
asymptotic expansion where the relative ordering of te
is dictated by that of the upper fluid through the interfa
boundary conditions (5).

We first nondimensionalize the physical variables of
upper fluid via

x ­ Lxp, z ­ h1zp, t ­ sLyU0dtp,

z ­ h1z p, p1 ­ sr1U2
0 dpp

1,

su1, w1d ­ U0sup
1, bwp

1 d , (6)

where all variables with asterisks and their derivatives
assumed to beOs1d. Here we have chosen the typical v
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locity scaleU0 asU0 ­ sgh1d1y2. The scalingw1yu1 ­
Osh1yLd ­ Osbd in (6) is imposed by the continuity equa
tion (2). After dropping the asterisks for dimensionle
variables, the vertical momentum equation for the upp
fluid (4) can be written as

p1z ­ 21 2 b2fw1t 1 u1w1x 1 w1w1zg . (7)

As to the horizontal momentum equation, it is convenie
to look at two of the layer-mean equations [10] that c
be obtained from (2) and (3) by vertically integratin
across the layerz # z # 1 and taking into account the
kinematic boundary condition in (5),

ht 1 shu1dx ­ 0, shu1dt 1 shu1u1dx ­ 2hp1x
.

(8)

Hereh ­ 1 2 z is the thickness of the upper fluid laye
and the layer mean quantitȳf is defined asf̄sx, td ­
h21

R1
z fsx, z, td dz. From (7) we see that the pressur

is hydrostatic at leading order. Thus by taking in
account the interface boundary conditions (5), we ha
p1sx, z, td ­ 2z 1 z sx, td 1 Psx, td 1 Osb2d, where
Psx, td ; p2sx, z , td. Hence p1x ­ zx 1 Px 1 Osb2d,
that is, the horizontal gradient of the pressure
independent of z at leading order. Accordingly,
Eq. (3) for i ­ 1 shows that at leading order th
horizontal velocity can be taken to bez independent
u1sx, z, td ­ u

s0d
1 sx, td 1 Osb2d, if the initial conditions

are so chosen, in agreement with the irrotational
assumption. Substituting the expressions forp1 and u1

in (8) and noticing thatu1u1 ­ u1u1 1 Osb4d yields the
equations for the upper fluid in the form

ht 1 shu1dx ­ 0,

u1t 1 u1u1x 1 zx ­ 2Px 1 Osb2d . (9)

The correction terms at orderOsb2d, which add dis-
persion to this system, can easily be found (see [11
However, we shall see presently that the leading order d
persion, coming throughP from the presence of the lowe
fluid, enters at orderb, so that we can neglectOsb2d
terms in this analysis.

We now look at the lower fluid. First, we nondimen
sionalize the independent variables by

x ­ Lxp, z ­ Lzp, t ­ sLyU0dtp , (10)

as is natural due to the assumption that the depth of
lower fluid be much larger thanh1. The domain occupied
by the lower fluid in the rescaled variables is therefo
(dropping asterisks)2` # z # bz sx, td, for 2` # x #

`. We have already seen that the continuity equat
for the upper fluid, once it is scaled through (6), requir
w1yu1 ­ Osbd. Under the scaling ofz in (10), however,
the continuity equation for the lower fluid sugges
w2yu2 ­ Os1d. The continuity of normal velocity at
z ­ z given by (5) andzx ­ Osh1yLd ­ Osbd points
to w2yw1 ­ Os1d. This in turn impliesu2yu1 ­ Osbd.
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Hence we nondimensionalize the dependent variable
the lower fluid as

p2 ­ sr1U2
0 dpp

2 , u2 ­ bU0up
2, w2 ­ bU0wp

2 .

The irrotationality assumption allows us to introduce
velocity potentialfsx, z, td for the lower fluidsfx , fzd ­
su2, w2d. The potentialf is determined by solving Laplac
equation (again, dropping asterisks)fxx 1 fzz ­ 0 in
2` # z # bz sx, td with the kinematic boundary con
ditions fz ­ zt 1 bzxfx at z ­ bz sx, td and fz ­ 0
at z ­ 2`. The equations of motion (3) and (4) r
duce to the Bernoulli equation, which atz ­ bz sx, td
is bft 1 b2sf2

x 1 f2
z dy2 1 z 1 Pyrr ­ 0. This pro-

vides the pressure derivativePxsx, td, the term needed t
couple the upper fluid evolution to that of the lower flu
in (9). We have, up to orderOsb2d,

Pxsx, td ­ 2rrfzx 1 bfxtsx, 0, tdg 1 Osb2d . (11)

Solving the Laplace equation using Fourier tra
forms and taking into account the boundary condit
at z ­ 2` yields fxsx, 0, td ­ H ffzsx, 0, tdg. The
other boundary conditionfz ­ zt 1 Osbd then gives
Pxsx, td ­ 2rrhzx 1 bH fzttgj 1 Osb2d. When used
in (9), this expression produces the nondimensio
version of our model (1). We remark that the notationztt

in the dynamic equation (1) is just shorthand notation
shu1dxt, since only first order derivatives with respect
time should enter the equations of motion.

System (1) has two obvious conserved qua
ties

R`
2` z dx, and

R`
2` u1 dx, which represent mas

and vorticity (or irrotationality) conservation, respe
tively. In addition, the horizontal momentumM ­R`

2` dxhr1sh1 2 z du1 1 r2zH fztgj and the total energ
E ­ s1y2d

R
`

2` dxhsr2 2 r1dgz 2 1 r1sh1 2 z du1u1 2

r2sh1 2 z du1H fztgj are also conserved. In fact, it ca
be shown thatE becomes the Hamiltonian for syste
(1) with the appropriate Hamiltonian operator. W
can also see that, by use ofH feikxg ­ i sgnskd eikx ,
the linear dispersion relation of (1) is given b
v2 ­ gh1k2 srr 2 1dys1 1 rr jkjh1d, which is the
correct limit for smallkh1 of the full linear dispersion
relation ([12], Sec. 231). For weakly nonlinear unidire
tional waves, our model (1) reduces to the BO equa
[2]

zt 1 c0zx 2
3c0

2h1
z zx 1

rrc0h1

2
H fzxxg ­ 0 , (12)

wherec2
0 ­ gh1srr 2 1d. This equation admits the fam

ily of solitary wave solutions [13] parametrized by t
amplitude a, zssXd ­ ayf1 1 sXyld2g, with X ­ x 2

c0s1 1 ddt, d ­ 23ays8h1d, andjlj ­ 2s4rry3dsh2
1yad.

Traveling wave solution.—For waves of finite am
plitude traveling with constant speedU, we substitute
z ­ z sXd andu1 ­ u1sXd with X ­ x 2 Ut into (1) and
integrate once. After taking the integration constants
be zero, thereby fixing the mean level, the first (ki
or

-

l

r

-

matic) equation givesu1 ­ 2Uz ys1 2 z d. Substituting
this into the second (dynamic) equation yields

Gfz g ; 2
1

U2 z 1
1
2

1
s1 2 z d2 2 rrH fzXg 2

1
2

­ 0 ,

(13)

where we have takenh1 ­ srr 2 1dg ­ 1 for normaliza-
tion. We look for a solution of (13) by using the Newton
Raphson method. We substitutez sXd ­ z 0sXd 1 DsXd
into (13) and derive the linearized equation forD,

Mfz 0; UgD ;
∑

1
U2 2

1
s1 2 z 0d3 1 rr≠XH

∏
D

­ Gfz 0g . (14)

Thusz 0 is the initial guess (or the result from the previou
iteration) andD is the correction to be found. By usin
a finite difference method forN points with trapezoidal
rule for the Hilbert transform, (14) evaluated atX ­ Xi ­
ilyN si ­ 1, . . . , Nd can be written asMij Dj ­ Gi ,
whereMij is an element ofN 3 N matrix resulting from
the discretization of the operatorMfz 0; Ug in (14) and
Dj ­ DsXjd. By taking the wave speedU as a parameter
for given wavelengthl and choosing the periodic wav
solution [13] of the BO equation as the initial guess f
small U 2 1, we solve the linear algebraic equation f
Dj iteratively until maxsDjd is smaller than the error
bound e. Then we proceed to find the solution fo
larger U 2 1 by taking the previous results for smalle
U 2 1 as the initial guess. In the computations, w
choose a large wavelengthl (typically l ­ 400) for
traveling waves close to solitary waves,N ­ 800, and
an error bounde ­ 1026. We also takerr ­ r2yr1 ­
1.58 for comparison with the experimental data of Koo
and Butler [7]. In Fig. 1, the solutions obtained b
the Newton-Raphson method are compared with perio
waves of the BO equation [13] of the same speed a
wavelength for four different values ofU 2 1. The finite
amplitude traveling waves in our model are wider a
taller asU 2 1 increases when compared with the B
weakly nonlinear waves [14].
n

FIG. 1. Solitary wave solutions (——) of (1) forU 2 1 ­
0.05, 0.1, 0.2, 0.3 compared with those (– – –) of the Benjami
Ono equation forU 2 1 ­ 0.05, 0.3.
1761
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FIG. 2. lI yh1 vs jajyh1 curves compared with the exper
mental data (symbols, reproduced with permission from C
bridge University Press) [7]: ——, model (1); – – –, BO mod
— - —, ILW model; — - - —-, KdV model.

An extensive experimental investigation of solita
waves at the interface of two immiscible fluids w
carried out by Koop and Butler [7]. They summariz
their findings by plotting the effective wavelengthlI ;
s1yad

R`
0 z sXd dX versus the wave amplitudea. For the

data corresponding to the experiment when the thickn
of the upper fluid layer is35.05 times that of the lower
one (g ­ 35.05), the data intersect the theoretical curv
provided by the ILW equation and its limiting form
the BO equation, around the amplitudejajyh1 ­ a ­
0.1 (see Fig. 2). For both smaller0.02 , a , 0.1 and
larger 0.15 , a , 0.65 amplitudes the ILW curves fai
to represent the data, and clearly have the wrong s
throughout. However, the regimes for small amplitu
data should fulfill the assumptions for the asympto
derivation of the ILW model based on weak nonlinear
with the scaling a ­ Osbd. Hence the discrepanc
between model and data cannot be immediately attrib
to limitations of the ILW model. However, the larg
amplitudes waves0.15 , a , 0.65 could be outside the
domain of asymptotic validity of the ILW (and BO
equations. As the wave amplitude increases, the effec
wavelength becomes much shorter than the lower fl
thicknessh2, so thath2 can be considered infinite, and o
model (1) applies. In Fig. 2 we compare the data from
1762
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with the curve (solid) for the solitary waves of (1), as we
as those for ILW and BO. The agreement for0.2 , a ,

0.65 is good, with the data being slightly overpredicte
but clearly with the right trend for increasinga, thereby
showing that the weak nonlinearity assumptiona ­
Osbd is the principal cause of discrepancy in the
regimes. Asa decreases, the solid curve of model (
limits onto the BO curve, as anticipated. Hence in t
limit our model can be expected to suffer from the sa
limitations of the BO model, which are mainly due to th
wavelength becoming comparable to the total fluid dep
thereby making the infinite depth assumption inval
By replacing the operatorH in (1) with its equivalent
for finite lower layer depth, we can introduce a mod
which is the finite amplitude bidirectional counterpart
the ILW model. Agreement with the data by using th
finite depth model could be further improved, especia
for amplitudesa , 0.2, with the curvelIyh1 vs jajyh1
approaching that of the ILW model for lower amplitude
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