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Long Internal Waves of Finite Amplitude
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We derive new nonlinear evolution equations for long internal waves in a two-fluid system, when the
thickness of the lower layer is effectively infinite, by making the only assumption that the thickness of
the upper layer is small compared with the characteristic wavelength. The resulting equations have the
full nonlinearity of the original problem and retain the leading-order dispersive effects. For large ampli-
tude internal solitary waves, we show that our model captures the scaling relation between the amplitude
and the characteristic wavelength observed experimentally by Koop and Butler. [S0031-9007(96)
01019-8]

PACS numbers: 47.35.+i, 03.40.Kf, 47.20.Ky, 47.55.Hd

Solitary waves are perhaps the most remarkablscaling o« = O(B) leads to the intermediate long wave
manifestation of the balance between two fundamentallLW) equation for unidirectional waves. It reduces to
mechanisms of gravity wave propagation: dispersion anthe Benjamin-Ono (BO) equation in the limit gf — «
nonlinearity. The relative strength of these two mecha{2-6].
nisms can be measured by two independent nondimen- The common feature of all these models is that, by
sional parameters, the nonlinearity ratio= a/h; of taking advantage of the small parameters introduced for
wave amplitudea and fluid layer thicknes#; and the looking at certain regimes, the dependence on the vertical
aspect ratioB = h;/L of h; and typical wavelengti..  coordinate is eliminated, thereby simplifying the problem
In the case of waves at the free surface of a homogeneousnsiderably. However, there is agriori guarantee that
fluid layer, when viscosity is negligible, the balancethese asymptotic models address a sufficiently broad class
between nonlinearity and dispersion often occurs irof physical situations. As already mentioned, this seems
regimes for which these parameters are small and it ifo be the case for the KdV equation, but the situation
expressed by a scaling relation betweerand 8. Thus is much different for the ILW or BO models. Indeed,
a = 0(B?* for small 8 results in weakly nonlinear the experimental study by Koop and Butler [7] shows
long solitary waves. It turns out that this relation doesthat the domain of applicability of the ILW equation
extremely well in describing most observable solitaryand its limiting form, the BO equation, is rather narrow
waves in homogenous layers, and so a “universal* modgB]. In particular, the weak nonlinearity (small amplitude)
based on this scaling, like the Korteweg—de Vries (KdV)assumption seems inappropriate for a large set of their
equation, captures most of the relevant features of solitargxperimental data.
wave propagation in a homogenous fluid. In this paper, we show that the assumption of weak

The case of internal waves at the interface between twaonlinearity can be removed while still being able to derive
fluids of different densities can be expected to offer aa simple model for long waves at the interface with a deep
richer class of phenomena. This is reflected by the need dbwer layer. The model retains the leading order dispersive
introducing at least another independent nondimensionaffects and has no vertical coordinate dependence. The
parameter, the thickness ratip = h,/h; for an upper flows we consider are characterizeddby= a/h; = 0(1),
lighter fluid layer of thickness:; (and densityp;) and 8 = h/L < 1,y = hy/h; — . Inthese regimes, our
a lower heavier fluid of thickness, (and densityp,), (bidirectional) model can be written as

when the density ratip,/p; = p, > 1 is considered as —[(h — Ouyle =0

. ; : : . & 1~ Qule )

fixed. Various regimes are now possible, even within _ o

the long wave limit3 = h,/L < 1, ranging between the wy + i + (1= pgle = pr Hldl, (1)

two extremes of lower fluid thickness that is also smallwhere #; is the undisturbed upper fluid thickness,
compared to wavelength to the case of a lower fluid layeis the displacement of the interface away from the
that can be considered effectively infinite. vertical coordinate originz = 0, and u; is the upper
The relative magnitude ofr and 8 representing the layer mean velocity. Here the operatdk [ f] act-
balance between nonlinearity and dispersion can now bimg on a function f(x) denotes the Hilbert transform
expected to vary according to the depth ratio For shal-  H[f]= (1/m)P [~ f(x")/(x' — x)dx', with P stand-
low water ofy = O(1), the scalingy = 0(8?%), 8 < 1, ing for Cauchy principal value of integration. We have
leads again to the KdV equation for unidirectional wavenot been able to find closed form traveling wave solutions
propagation [1]. When the depth of the lower layer isfor this model and had to resort to numerical solutions,
much greater than that of the upper layer % 1), the found via a Newton-Raphson technique. As shown
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below, these are in good agreement with the solitary wavéocity scaleU, as Uy = (gh;)"/2. The scalingw,/u; =

scaling law between amplitude and effective wavelengttO(h;/L) = O(B) in (6) is imposed by the continuity equa-

exhibited by the data [7] over a wide range lafrge tion (2). After dropping the asterisks for dimensionless

amplitude waves where the BO model can be off by up tovariables, the vertical momentum equation for the upper

a factor of two. System (1) reduces to the BO equation fofluid (4) can be written as

small amplitude unidirectional wave propagation. Thus it .,

can be expected to share the same limitations as the BO 7= — L= Bl +wwie +wiwic]. (7)

model in the weakly nonlinear, very long wave regimesAs to the horizontal momentum equation, it is convenient

(see the discussion in [7]). to look at two of the layer-mean equations [10] that can
Derivation of the model equations:For inviscid and be obtained from (2) and (3) by vertically integrating

incompressible fluids, the velocity components in Carteacross the layef = z = 1 and taking into account the

sian coordinatesu;, w;) and the pressure, satisfy the kinematic boundary condition in (5),

continuity equation and the Euler equations

Uiy + Wiz = 0, (2)

e+ (nu)e =0, (nuy); + (nurur), = —np1, .
(8)
wip + uiny + wii; = —pi/pi, (3)  Heren =1 — (s the thickness of the upper fluid layer
N N o B 4 and the layer mean quantity is defined asf(x,7) =
Wit T uiwie * Wiwiz = —pi/pi ~ 8. (4) n~' [} f(x,z,1)dz. From (7) we see that the pressure
where, in a two-fluid system;, = 1 for the upper fluid is hydrostatic at leading order. Thus by taking into

andi = 2 for the lower fluid. The constant acceleration account the interface boundary conditions (5), we have
of gravity g is directed along the negativeaxis. The p(x,z,t) = —z + {(x,1) + P(x,1) + O(B?), where

boundary conditions at the interface are P(x,t) = pa(x,Z,t). Hence pi, = 4 + P + 0(B?),
G+ wd =wi, 4+ wd = wa, B Fhat is, the horizontal grqdient of the pressure is
1= atz = {(x,1). independent of z at leading order. Accordingly,

(5) Eq. (3) for i =1 shows that at leading order the

horizontal velocity can be taken to he independent

Since we want to focus on the interface wave motlonul(x’z’t) _ u(IO)(X,l) + 0(B?), if the initial conditions

only, we assume that there exists a (flat) rigid lid at ©Pare so chosen, in agreement with the irrotationality

of the upper fluid layer, so that the kinematic boundary, ; - ;
condition atz = h, is simplyw; = 0. With an infinitely assumption. Substituting the expressions ferand u;

) > - P
deep lower fluid layer the other boundary condition isgqui)ti?)ﬂg Poortltﬂggu;)gaérlﬁ&id |r71tﬁle :;)rgq(ﬁ ) yields the
(uz, wr) — 0 asz — —oo,

We will now implement an asymptotic expansion of the n, + (nu1)x =0,
equations of motion (3) and (4) in the small parameger — — _ 2
Tﬂroughout the deriv;t?on We( a?ssume that th% rowﬁ each et i+ L= =P+ 0B, ©)
layer is irrotational, as it is the case for motion startingThe correction terms at orde®(3?), which add dis-
from rest. The assumptiof < 1 signifies that the upper persion to this system, can easily be found (see [11]).
layer thickness is much smaller than the characteristitlowever, we shall see presently that the leading order dis-
wavelength of the motion we are interested in. We willpersion, coming throughk from the presence of the lower
first derive evolution equations correct up to orde?)  fluid, enters at orde, so that we can neglead(53?)
for the upper layer based on this assumption. This paterms in this analysis.
of the derivation mirrors closely the derivation of the We now look at the lower fluid. First, we nondimen-
classical Airy’s shallow water model [9]. We will then sionalize the independent variables by
derive a _model eq_uation for the Iowgr fluid bgsed on an x=Lx", z=Lz, = (L/Ut", (10)
asymptotic expansion where the relative ordering of terms
is dictated by that of the upper fluid through the interfaceas is natural due to the assumption that the depth of the

boundary conditions (5). lower fluid be much larger thahy. The domain occupied
We first nondimensionalize the physical variables of thedy the lower fluid in the rescaled variables is therefore
upper fluid via (dropping asterisksy = 7z = B8{(x,1), for —»o = x =

. We have already seen that the continuity equation

x=Lx 2=z, = (L/U), for the upper fluid, once it is scaled through (6), requires

=M, p1L=(pUd)p], wi/uy = O(B). Under the scaling of in (10), however,
_ N N the continuity equation for the lower fluid suggests
(ur, w1) = Uolu, Bwi), (6) wy/u, = O(1). The continuity of normal velocity at

where all variables with asterisks and their derivatives are = ¢ given by (5) and, = O(h;/L) = O(B) points
assumed to b&(1). Here we have chosen the typical ve-to w,/w; = O(1). This in turn impliesuy/u; = O(B).
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Hence we nondimensionalize the dependent variables fanatic) equation giveg; = —U{/(1 — ). Substituting
the lower fluid as this into the second (dynamic) equation yields
P2 = (pUg)ps, o = BUys, w2 = BUows. GLal= s {4 5 =g~ P e~ 5 =0,
The irrotationality assumption allows us to introduce a ( 2 (13)

velocity potentialg (x, z, ¢) for the lower fluid(¢,, ¢,) =

(u2, w2). The potentiab) is determined by solving Laplace . :
eqzuat?on (again, dropping asteriské), + ¢.. = 0 in tion. We look for a solution of (13) by using the Newton-

—o =z = B¢(x,1) with the kinematic boundary con- R@phson method. We substituex) = (X)) + AX)
ditions ¢. = ¢, + Bl atz = BL(x,1) and ¢, = 0 into (13) and derive the linearized equation for

Z XX s zZ
at z = —». The equations of motion (3) and (4) re- 0. _ [L _ 1 }
duce to the Bernoulli equation, which at= B{(x, 1) ML UIA Uz (1 — 293 + proxH (A
is B, + BHp2 + ¢2)/2 + { + P/p, = 0. This pro- — G[] (14)
vides the pressure derivativg, (x, r), the term needed to ’

couple the upper fluid evolution to that of the lower fluid Thus¢? is the initial guess (or the result from the previous
in (9). We have, up to ordep(532), iteration) andA is the correction to be found. By using

5 a finite difference method foN points with trapezoidal
Pu(x,t) = =pi[ls + Bdu(x,0,0] + O(B7). (11)  rule for the Hilbert transform, (14) evaluatediat= X; —

Solving the Laplace equation using Fourier trans-iA/N (i =1,...,N) can be written asM;; A; = G,
forms and taking into account the boundary conditionVhereM; is an element oV X N matrix resulting from
at z = —» yields ¢.(x,0,7) = H[¢,(x,0,1)]. The the discretization 01_‘ the operatar[°; U] in (14) and
other boundary conditionp, = ¢, + O(8) then gives A; = A(X;). By taking the wave speeld as a parameter
P(x,t) = —p A& + BH[L] + O(B%). When used for given wavelengthh and chposmg the_p_e_nodlc wave
in (9), this expression produces the nondimensiona$olution [13] of the BO equation as the initial guess for
version of our model (1). We remark that the notatign ~ Small U — 1, we solve the linear algebraic equation for
in the dynamic equation (1) is just shorthand notation ford, iteratively until max(4;) is smaller than the error
(mi1)x, since only first order derivatives with respect tobound e. Then we proceed to find the solution for
time should enter the equations of motion. larger U — 1 by taking the previous results for smaller
System (1) has two obvious conserved quanti-U — 1 as the initial guess. In _the computations, we
ties [*. ¢ dx, and [”, % dx, which represent mass choose a large wavelength (typically A = 400) for
and vorticity (or irrotationality) conservation, respec- traveling waves close to solitary waves, = 800, and

where we have takely, = (p, — 1)g = 1 for normaliza-

tively. In addition, the horizontal momentur =  @n error bound: = 10~°. We also takep, = pa/p1 =
[7dxipi(hy — Oy + pa¢ H 4] and the total energy 158 for comparison with the experimental data of Koop
F = (1/2) [*.dxl(ps — pel® + pi( — Owu, —  and Butler [7]. In Fig. 1, the solutions obtained by

pa(hy — O H [T are also conserved. In fact, it can the Newton-Raphson method are compared with periodic
be shown thatE becomes the Hamiltonian for system Waves of the BO equation [13] of the same speed and

can also see that, by use O [e**] = isgr{k)ekx, amplitude traveling waves in our model are wider and

the linear dispersion relation of (1) is given by taller asU — 1 increases when compared with the BO
w? = ghik*(p, — 1)/(1 + p,lklh1), which is the Wweakly nonlinear waves [14].

correct limit for smallkh, of the full linear dispersion
relation ([12], Sec. 231). For weakly nonlinear unidirec-

1

tional waves, our model (1) reduces to the BO equation 0.8 U-1=0.05, 0.1, 0.2, 0.3
[2] '
3¢ rcoh £ 06
&+ cods — —Oggx + w:}[[{xx] =0, (12) 6
2h 2
0.4

wherec = gh(p, — 1). This equation admits the fam-
ily of solitary wave solutions [13] parametrized by the
amplitude a, &(X) = a/[1 + (X/1)?], with X = x —
co(l + 8)t, 6 = —3a/(8hy), and|l| = —(4p,/3)(h}/a).
Traveling wave solutior—For waves of finite am- 40
plitude traveling with constant speed, we substitute
{= {(X) andu; = u;(X) V_V'thX =x — Utinto (Mand g g Solitary wave solutions (——) of (1) fobl — 1 =
integrate once. After taking the integration constants t@ .05, 0.1, 0.2, 0.3 compared with those (- — —) of the Benjamin-
be zero, thereby fixing the mean level, the first (kine-Ono equation folU — 1 = 0.05, 0.3.

40

1761



VOLUME 77, NUMBER 9 PHYSICAL REVIEW LETTERS 26 AGUST 1996

100.—<— . - - : with the curve (solid) for the solitary waves of (1), as well
as those for ILW and BO. The agreement 2 < o <
50. R 0.65 is good, with the data being slightly overpredicted,
NSRS but clearly with the right trend for increasing, thereby
showing that the weak nonlinearity assumptian=
O(B) is the principal cause of discrepancy in these
regimes. Asa decreases, the solid curve of model (1)
limits onto the BO curve, as anticipated. Hence in this
limit our model can be expected to suffer from the same
limitations of the BO model, which are mainly due to the
wavelength becoming comparable to the total fluid depth,
thereby making the infinite depth assumption invalid.
By replacing the operatof{ in (1) with its equivalent
for finite lower layer depth, we can introduce a model
which is the finite amplitude bidirectional counterpart of
the ILW model. Agreement with the data by using this
finite depth model could be further improved, especially
FIG. 2. A;/hy vs lal/h; curves compared with the experi- for amplitudesa < 0.2, with the curveA;/h; vs |al/h;
mental data (symbols, reproduced with permission from Camapproaching that of the ILW model for lower amplitudes.
bridge University Press) [7]: —, model (1); - ——, BO model;  Discussions with A. R. Osborne are gratefully acknowl-
— - — ILW model; — - - —, KdV model. edged. This work is partially supported by the U.S. De-

partment of Energy CHAMMP program.

An extensive experimental investigation of solitary
waves at the interface of two immiscible fluids was
carried out by Koop and Butler [7]. They summarized
their findings by plotting the effective wavelengih =
(1/a) [§ £(X)dX versus the wave amplitude For the  [1] T.B. Benjamin, J. Fluid Mech25, 241 (1966).
data corresponding to the experiment when the thicknesd2] T-B. Benjamin, J. Fluid Mech29, 559 (1967).
of the upper fluid Iayer i$5.05 times that of the lower 3] R.E. Davis and A. Acrivos, J. Fluid MecR9, 593 (1967).
one (y = 35.05), the data intersect the theoretical curves [g'] g' IO?O’ J.hP?y;.hSocA\(])p3529,22081297(%975).
provided by the ILW equation and its limiting form, [5] R-1. Joseph, J. Phys. AQ, ( )

. . [6] T. Kubota, D.R.S. Ko, and L.D. Dobbs, AIAA J.
the BO equation, around the amplitudie|/h; = « = Hydrodyn. 12, 157 (1978).

0.1 (see Fig. 2). For both small€r02 < a < 0.1 and [7] C.G. Koop and G. Butler, J. Fluid Mech12, 225 (1981).
larger0.15 < @ < 0.65 amplitudes the ILW curves fail  [8] H. Segur and J.L. Hammack, J. Fluid Mechl8 285
to represent the data, and clearly have the wrong slope (1982).

throughout. However, the regimes for small amplitude [9] G.B. Whitham,Linear and Nonlinear Wave@Viley, New
data should fulfill the assumptions for the asymptotic ~ York, 1974).

derivation of the ILW model based on weak nonlinearity[10] T.Y. Wu, J. Eng. Mech. Div. ASCHOQ7, 501 (1981).

with the scalinga = O(B8). Hence the discrepancy [11] W. Choi and R. Cama_ssa, J. Fluid Me@1.3 83 (1996).
between model and data cannot be immediately attributeld2] H. Lamb, HydrodynamicgDover, New York, 1932).
to limitations of the ILW model. However, the large 13] This algebraic soliton solution is obtained as the lim-

. - iting form for large wavelength of the two-parameter
amplitudes wave$.15 < a < 0.65 could be outside the family (A,a) of periodic wave solutions [2]Z,(X) =

0.02 0.05 0.1 0.2 0.5 1
lal/hy

domain of asymptotic validity of the ILW (and BO) A/[1 — Bcog2mXA)], where A = (a2/2a), B2 =1 —
equations. As the wave amplitude increases, the effective  (, /)2, anda, = —(8mp,/3)(h3/ ). ‘

wavelength becomes much shorter than the lower fluigh4] This trend is in agreement with that observed experimen-
thicknessh,, so thath, can be considered infinite, and our tally by Davis and Acrivos [3] for continuously stratified

model (1) applies. In Fig. 2 we compare the data from [7] fluid.
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