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Experimental Determination of a Topological Invariant in a Pattern of Optical Singularities
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Topological invariants which control the organization and the evolution of ensembles of singularities
may be evidenced in optical caustics. Our physical model is the optical pattern produced by light
deflected through a nematic liquid crystal. We determine experimentally the Euler number of the
critical set associated with the caustic and we identify the umbilics. We develop a method that enables
us to determine the index of the umbilics and to distinguish between the two types of hyperbolic
umbilics. We are then able to check, for the first time, the value of the topological invariant predicted
by the recent Chekanov theory. [S0031-9007(96)00999-4]

PACS numbers: 42.15.Gs, 02.40.-k, 42.70.Df

Fundamental laws of physics are often expressed witkthe Fermat principle [8]. In a 3D spadeagrangiansin-
the help of invariant quantities: energy, linear momentumgularities have been classified into five types of decreasing
angular momentum, etc. An invariant is a mathematicatlimension: théolds A, (surfaces), theusps; (lines), the
constraint that controls the evolution of the relevant physiswallowtailsA,4, the elliptic umbilics D, , and thehyper-
cal quantities describing the state of a system. The corbolic umbilicsD; which are point singularities [9]. The
cepts of topology have been widely applied in condenseéxperiments on caustics have mostly concerned the local
matter or in quantum physics [1-4] and experimentallyaspect of the singularities (their universal unfolding).
tested, for example, in the optics of glass fibers [5]. The However, taking into account the eikonal equation re-
introduction of topology in physics has widened the no-sults in a restriction of the definition dfagrangiansin-
tion of invariant, and by topological invariant it is now gularity into that ofoptical singularity [10]. The caustic
understood some “object” which may be an integer, an alis associated with the singularities of a mappifgbe-
gebraic structure, or a mathematical property, and whicltween two 3D spaces [8]. More precisely, the set of all
is preserved under any continuous modification of the systhe deflected rays constitutes a 3D ray manifBlihside
tem. Topological invariants are related, for instance, tdhe phase space of greater dimension. The ray manifold
discrete numbers such as topological charges, “windings a regular surface without any singularity. By projecting
numbers” like the Burger's vector of a point defect in it into the physical spacR?® = (x,y, z), one recovers the
a periodic pattern, etc. Thus they control, for instancejnitial set of rays. The singular points are the pointRof
the spatial organization of singularities, and they alsovhere the rank of the projection is less than its maxi-
help give the rules that govern the transformations (omal possible value: 3. These points form the critical (or
bifurcationsor metamorphos@®f those ensembles of sin- singular) set, C R. This surface> may itself possess
gularities. The typical example is given by the Poincarésingularconical points that are precisely the umbilie .
Hopf equality between the Euler number of a compact 2DThe caustic is the image (2) C R? of the critical setS..
surface and the total index of any vector field defined orChekanov [10] has defined a topological invariant as
it [6]. There the Euler number is a topological invariant. _ +
It means that the global organization of the singularities I'=x +2D;(=1/2), (1)
of a vector field is constrained by a condition dependingnvolving the Euler numbey of the critical (compact) set
only on the topological type of the surface. and the number of umbilic®; of index —1/2. Among
The simplest concrete example showing ensembles dhose umbilics of index-1/2 are the elliptic umbilicDy, .
singularities is certainly provided by optical patterns [7]. The hyperbolic ones have either an index/2 and they
Optical patterns (images) are obtained by sectioning, bgre named ttiangle’ (D, ’), or an index+1/2 and they
a plane, the whole caustic produced by the rays emergre nameddrop’ (D, %) [10,11] [see Figs. 3(a) and 3(b)].
ing from a refracting medium or from a deflecting diopter. It has been shown [10] that
A caustic is the enve!ope of a set of rays and is generi- x +20D; + D) =0, @)
cally composed of singular surfaces, lines, and points
which form an ensemble of interconnected singularitiesHere, for convenience, each symbol of typg stands for
Whereas each singularity can be described locally byhe number of the respective singularities. To our knowl-
means of its normal form, the description of the ensembledge the relation (2) has not yet been checked experimen-
of singularities needs here, too, the knowledge of the adally. In this Letter we shall adapt the theory to a concrete
sociated invariants. Caustics are, in fact, particular casesxperimental case and give the first experimental evidence
of singularities, theLagrangian singularities, because of of the topological invariant (1).
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The basic assumption in the theory that the critical set
must be compact is hardly realized experimentally, because X =
generally caustics contain infinite branches and also are
limited by physical boundaries (area limited beams). But
this strong constraint is circumvented by considering the
points at infinity of the infinite branches. Each of these
points represents a stationary ray. As a consequence, the
caustic constitutes now a unique geometrical object com- =0 7
prising a real part and a virtual part connected together “
at infinity [7]. Secondly, if the optical pattern is periodic
in two independent directions (biperiodicity), one may ig-FIG. 1. The critical seb is a surface composed of two sheets,
nore any physical boundary in this plane, provided that theach one of Euler numbgr = 0 (each sheek, is, in fact, a
analysis is restricted to a unit cell of the pattern. The criti-forus represented here as a rectangle with periodic boundaries).
cal sets is a double-sheeted [12] biperiodical Surface.The surfaces are tiled with curvilinear triangles (see text). The
Each sheet, if taken apart, is topologically equivalent t full X is obtained by reconnection and now is # 0 by
! J g Qlimination of one vertex at the conical poibf; .

a torus, and results from the linking of the two toruses
by theconicalsingular points. Itis then convenientto con-
sider an optical system showing such a biperiodicity, forumbilics. In our case we count 8 umbilics by unit cell,
example, a light beam refracted on a biperiodic surface. therefore,y = —8. Another method would be to define

The experimental system used hereafter consists of @an the critical set, a Morse function and to enumerate
layer of nematic liquid crystal periodically distorted by the its extrema:n being the number of its minimay of its
application of an electric field and through which light is maxima, andS of its saddle points. The Euler number
transmitted [13]. The nematic liquid crystal is a uniaxial would be in the case of a regular surface the gum m —
material in which the local optical axis is directed along theS + M [1,6]. This method is not, in principle, valid for
molecules and is denoted by the unit veétgthe director).  singular surfaces, but it may give additional information
For a well-defined value of the applied voltage, a biperiodicon the topology as we shall see in the discussion.
stationary structure named the “varicose” is developed Now we enumerate the different types of umbilics. In
[14]. In this structure the distortion of is periodic in  a plane section, the fold surfaces appear as curved lines
two directions of the(x,y) plane of the nematic layer. and the cusp lines as the tips of semicubical parabolas.
The incident light beam is collimated and sent normally toThe identification of the punctual singularities, i.e., swal-
the plane(x, y). Inside the layer, the ordinarily polarized lowtails, elliptic, and hyperbolic umbilics, is made using
rays are not deviated and will not be considered hereaftesections at several heights (Fig. 2). As the height is in-
The extraordinary rays are deflected because along theireased, an elliptic umbilic appears as a small curved trian-
trajectories the optical axis and thus the local refractivegle, which reduces itself to a single point at the singularity.
index varies. The caustic is the envelope of the set of hyperbolic umbilic appears as a cusp tip located inside a
these outgoing rays and of their prolongation backwardscurve and forming a corner at the singularity. We find per
The part of the caustic located above the layer is real, andnit cella numbeD, = 4 of elliptic umbilics, and a num-
the part located below is virtual but yet observable. TheberD, = 4 of hyperbolic umbilics. Now there remains to
observation direction is along An image is the section distinguish between the two types of hyperbolic umbilics.
of the caustic by the observation plane, for instance, her&here is actually no technique to directly determine experi-
the focal plane of a microscope. By varying the heightmentally the index of a given hyperbolic umbilic. This
of this plane, one can observe the whole caustic surfac@roblem is solved here by calculating the different geo-
section after section. metrical elements [10,11] which define the index, using a

In order to verify the formula (2), one first has to deducemodel that is able to reproduce exactly the experimental
the Euler numbej from the topology of the caustic, and caustic (the details of the calculation shall be presented in
also identify each of the umbilics. The appropriate waya forthcoming publication).
to determine the value of for a singular surface is The whole caustic is calculated using for the director
to use a polygonal decomposition of it and to enumeratéield7z = (cos¢ cosiys, cose siny, sing) in the biperiodic
the numberv of vertices,e of edges, andf of faces varicose structure, a form which is deduced from the ex-
[15]. The Euler number is defined gs= v — ¢ + f.  perimental findingss = a{sin(px + gy) + bsin(p'x +
Note that each conical poim; (i.e., each umbilic) inS  ¢'y)}sinrz, ¢ = 0, wherer = 7 /d, d is the thickness of
must be associated with one vertex. Thef each torus the nematic layer, angp, ¢) and(p’, ¢’) are the wave vec-
deconnected from its twin is zero [15]. In the reconnectiortors defining the biperiodic structure. This form is found
process of two half-cones that giveDg, the two vertices  to reproduce exactly the experimental caustic withk=
reduce to one (see Fig. 1). Then the finais the sum 0.6, b = 0.5, (p,q) = (0.0115 um™', —0.0048 um ™),
of the initial ones (i.e., zero) minus the numbeg of  (p’,¢') = (0.0115 um~',0.0048 um '), d = 308 wm.
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semble of singularities coincides with the one observed in
the experiment: four redb, , four virtual D, , and 124,

per unit cell. Now we represent the singular set in the ray
manifold which is here parametrized Ry w, andz. In

this system of coordinates, the kerdebf the Lagrangian
projection is thegA, w) plane, and the characteristic direc-
tion d is alongz. We find that for each of the hyperbolic
umbilics, where the singular set is locally a cone, the ker-
nel separates the characteristic directicinom theAs; line
(see Fig. 3). Hence, all the hyperbolic umbilics present in
the experimental caustic are of index /2, i.e., they are

of the drop type D, ¢. Therefore there is no hyperbolic
umbilic with index—1/2, i.e., of typetriangle in the ex-
periment:D, " = 0.

We have thus found that each unit cell of the optical
pattern is characterized by a Euler numher —8 and
contains four elliptic umbilic®, , zero hyperbolic umbilic
of typetriangle D, , and four hyperbolic umbilics of type
drop D;¢. Hence, the sum-8 + 2(4 + 0) = 0, and the
Chekanov formula is experimentally verified. The other
method valid only for measuring the of regular surfaces
may be used now to characterize further the topology.
There one must define a generic functipron 3. If we
FIG. 2. Sections by the focal plane, of the experimentalchoose, for instance;, = 1/(z — zo), experimentally the
caustic produced by a biperiodic pattern. At two differentfunction level f = C will correspond to the section of
heights one evidences the elliptic umbilics (top), and the  the caustic by the focal plane of the microscope. The
hyperbolic umbilicsDy- (bottom). plane z = zo separates the real from the virtual part of

the caustic. We may show that there this method gives
The differential equations for the rays inside the nematiche samey under the condition that there is no triangle
layer are the 3D generalization of those we had obtainetlyperbolic umbilicD; . More precisely, one finds that
in the 2D case [7,16]. Numerically, we model the incidentthe sum{ =m — § + M is equal to—2D,, so that
beam by aset f X 10* parallel rays. Eachincomingray ¢ = y + 2D,'. In one unit cell of our optical pattern
is parametrized by two numbeisand ., which are the co- we count two minima, four maxima, and 14 saddle points.
ordinates of the intersection of the ray by a plane normaFinally, one checksthat =2 — 14 + 4 = -8 = y.
toit. The outgoing rays are characterized by four parame- The Chekanov formula may be used to characterize
ters: their positior(xy, yo) in the upper interface and their any ensemble of optical singularities and its transforma-
directiona, 8. From the functional dependence of thesetions. In general, there remains, however, the practical
parameters on and u, we determine the location of each problem of distinguishing between the hyperbolic umbil-
type of singularityA,, As, A4, andD; , by the method of ics. There are two particular cases where the solution
Thom’s classes [12,17]. We check that the calculated eris obvious: when the number db; " is equal either to

characteristic o

+d characteristic o

+—— characteristic

FIG. 3. In the neighborhood of B, point, the critical sef is a cone. The kerng? of the Lagrangian projection at the point
D, cuts the cone. If it separates the characterigtitom the lineAs, the hyperbolic umbilic is of thedrop’ type (a). It is of

the “triangle”’ type in the other case (b). See Ref. [11]. The calculation from the physical model, showing (c) the critiZal set
the cusp lined;, the kernelP, and the characteristi¢ going through a hyperbolic umbilic identical to the experimental one. This
umbilic is obviously of thedrop type (a).
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zero, or to the number of observed hyperbolic umbilicsties encountered in the various fields of physics (condensed
In general, the formula is unable to determine the indexmatter, wave propagation, shocks, hydrodynamics, etc.).
of each hyperbolic umbilic. If one associates the result of We wish to thank V. I. Arnold, M. Audin, Yu. Cheka-
our measuremeny = —D; with the Chekanov relation nov, E. Ferrand, and C. Viterbo for useful discussions on
x + 2Dy + DJ") =0, one deduces th&d, + D;" — some mathematical aspects. This work was supported by
D, ¢ = 0 which simply expresses the conservation of thethe Direction des Recherches et Etudes Techniques under
total index (here equal to zero). As a consequence, wEontract No. DRET94136.

may now define exactly the type of umbilics involved in

the Zakalyukin transformations [18]:
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