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Experimental Determination of a Topological Invariant in a Pattern of Optical Singularities

Alain Joets and Roland Ribotta
Laboratoire de Physique des Solides, Bˇatiment 510, Université Paris-Sud, 91405 Orsay Cedex, France

(Received 9 April 1996)

Topological invariants which control the organization and the evolution of ensembles of singularities
may be evidenced in optical caustics. Our physical model is the optical pattern produced by light
deflected through a nematic liquid crystal. We determine experimentally the Euler number of the
critical set associated with the caustic and we identify the umbilics. We develop a method that enables
us to determine the index of the umbilics and to distinguish between the two types of hyperbolic
umbilics. We are then able to check, for the first time, the value of the topological invariant predicted
by the recent Chekanov theory. [S0031-9007(96)00999-4]

PACS numbers: 42.15.Gs, 02.40.–k, 42.70.Df
wit
m

ica
si
on
se
lly
he
o-

w
al
ic
ys

, to
in
in
ce
lso
(o
-
ré
2D
on

nt.
ies
ing

s o
7].
, b
erg
er.
eri
int
ies

b
bl
as
se
f

ing

ocal

re-

all

ifold
ng

(or

t

].

wl-
en-

ete
nce
Fundamental laws of physics are often expressed
the help of invariant quantities: energy, linear momentu
angular momentum, etc. An invariant is a mathemat
constraint that controls the evolution of the relevant phy
cal quantities describing the state of a system. The c
cepts of topology have been widely applied in conden
matter or in quantum physics [1–4] and experimenta
tested, for example, in the optics of glass fibers [5]. T
introduction of topology in physics has widened the n
tion of invariant, and by topological invariant it is no
understood some “object” which may be an integer, an
gebraic structure, or a mathematical property, and wh
is preserved under any continuous modification of the s
tem. Topological invariants are related, for instance
discrete numbers such as topological charges, “wind
numbers” like the Burger’s vector of a point defect
a periodic pattern, etc. Thus they control, for instan
the spatial organization of singularities, and they a
help give the rules that govern the transformations
bifurcationsor metamorphoses) of those ensembles of sin
gularities. The typical example is given by the Poinca
Hopf equality between the Euler number of a compact
surface and the total index of any vector field defined
it [6]. There the Euler number is a topological invaria
It means that the global organization of the singularit
of a vector field is constrained by a condition depend
only on the topological type of the surface.

The simplest concrete example showing ensemble
singularities is certainly provided by optical patterns [
Optical patterns (images) are obtained by sectioning
a plane, the whole caustic produced by the rays em
ing from a refracting medium or from a deflecting diopt
A caustic is the envelope of a set of rays and is gen
cally composed of singular surfaces, lines, and po
which form an ensemble of interconnected singularit
Whereas each singularity can be described locally
means of its normal form, the description of the ensem
of singularities needs here, too, the knowledge of the
sociated invariants. Caustics are, in fact, particular ca
of singularities, theLagrangiansingularities, because o
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the Fermat principle [8]. In a 3D space,Lagrangiansin-
gularities have been classified into five types of decreas
dimension: thefoldsA2 (surfaces), thecuspsA3 (lines), the
swallowtailsA4, the elliptic umbilicsD2

4 , and thehyper-
bolic umbilicsD1

4 which are point singularities [9]. The
experiments on caustics have mostly concerned the l
aspect of the singularities (their universal unfolding).

However, taking into account the eikonal equation
sults in a restriction of the definition ofLagrangiansin-
gularity into that ofoptical singularity [10]. The caustic
is associated with the singularities of a mappingp be-
tween two 3D spaces [8]. More precisely, the set of
the deflected rays constitutes a 3D ray manifoldR inside
the phase space of greater dimension. The ray man
is a regular surface without any singularity. By projecti
it into the physical spaceR3 ­ sx, y, zd, one recovers the
initial set of rays. The singular points are the points ofR,
where the rank of the projectionp is less than its maxi-
mal possible value: 3. These points form the critical
singular) setS , R. This surfaceS may itself possess
singularconicalpoints that are precisely the umbilicsD6

4 .
The caustic is the imagepsSd , R3 of the critical setS.
Chekanov [10] has defined a topological invariant as

I ­ x 1 2D6
4 s21y2d , (1)

involving the Euler numberx of the critical (compact) se
and the number of umbilicsD6

4 of index 21y2. Among
those umbilics of index21y2 are the elliptic umbilicsD2

4 .
The hyperbolic ones have either an index21y2 and they
are named “triangle” (D1t

4 ), or an index11y2 and they
are named “drop” sD1d

4 d [10,11] [see Figs. 3(a) and 3(b)
It has been shown [10] that

x 1 2sD2
4 1 D1t

4 d ­ 0 . (2)

Here, for convenience, each symbol of typeD6
4 stands for

the number of the respective singularities. To our kno
edge the relation (2) has not yet been checked experim
tally. In this Letter we shall adapt the theory to a concr
experimental case and give the first experimental evide
of the topological invariant (1).
© 1996 The American Physical Society 1755
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The basic assumption in the theory that the critical
must be compact is hardly realized experimentally, beca
generally caustics contain infinite branches and also
limited by physical boundaries (area limited beams). B
this strong constraint is circumvented by considering
points at infinity of the infinite branches. Each of the
points represents a stationary ray. As a consequence
caustic constitutes now a unique geometrical object c
prising a real part and a virtual part connected toge
at infinity [7]. Secondly, if the optical pattern is period
in two independent directions (biperiodicity), one may
nore any physical boundary in this plane, provided that
analysis is restricted to a unit cell of the pattern. The cr
cal setS is a double-sheeted [12] biperiodical surfac
Each sheet, if taken apart, is topologically equivalen
a torus, andS results from the linking of the two toruse
by theconicalsingular points. It is then convenient to co
sider an optical system showing such a biperiodicity,
example, a light beam refracted on a biperiodic surfac

The experimental system used hereafter consists
layer of nematic liquid crystal periodically distorted by t
application of an electric field and through which light
transmitted [13]. The nematic liquid crystal is a uniax
material in which the local optical axis is directed along
molecules and is denoted by the unit vector$n (the director).
For a well-defined value of the applied voltage, a biperio
stationary structure named the “varicose” is develo
[14]. In this structure the distortion of$n is periodic in
two directions of thesx, yd plane of the nematic layer
The incident light beam is collimated and sent normally
the planesx, yd. Inside the layer, the ordinarily polarize
rays are not deviated and will not be considered herea
The extraordinary rays are deflected because along
trajectories the optical axis and thus the local refrac
index varies. The caustic is the envelope of the se
these outgoing rays and of their prolongation backwa
The part of the caustic located above the layer is real,
the part located below is virtual but yet observable. T
observation direction is alongz. An image is the section
of the caustic by the observation plane, for instance, h
the focal plane of a microscope. By varying the heig
of this plane, one can observe the whole caustic surf
section after section.

In order to verify the formula (2), one first has to dedu
the Euler numberx from the topology of the caustic, an
also identify each of the umbilics. The appropriate w
to determine the value ofx for a singular surfaceS is
to use a polygonal decomposition of it and to enume
the numbery of vertices,e of edges, andf of faces
[15]. The Euler number is defined asx ­ y 2 e 1 f.
Note that each conical pointD6

4 (i.e., each umbilic) inS
must be associated with one vertex. Thex of each torus
deconnected from its twin is zero [15]. In the reconnect
process of two half-cones that give aD6

4 , the two vertices
reduce to one (see Fig. 1). Then the finalx is the sum
of the initial ones (i.e., zero) minus the numberD6

4 of
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FIG. 1. The critical setS is a surface composed of two shee
each one of Euler numberx ­ 0 (each sheetS1,2 is, in fact, a
torus represented here as a rectangle with periodic bounda
The surfaces are tiled with curvilinear triangles (see text).
full S is obtained by reconnection and nowx is fi 0 by
elimination of one vertex at the conical pointD6

4 .

umbilics. In our case we count 8 umbilics by unit ce
therefore,x ­ 28. Another method would be to defin
on the critical setS a Morse function and to enumera
its extrema:m being the number of its minima,M of its
maxima, andS of its saddle points. The Euler numb
would be in the case of a regular surface the sumz ­ m 2

S 1 M [1,6]. This method is not, in principle, valid fo
singular surfaces, but it may give additional informati
on the topology as we shall see in the discussion.

Now we enumerate the different types of umbilics.
a plane section, the fold surfaces appear as curved
and the cusp lines as the tips of semicubical parabo
The identification of the punctual singularities, i.e., sw
lowtails, elliptic, and hyperbolic umbilics, is made usin
sections at several heights (Fig. 2). As the height is
creased, an elliptic umbilic appears as a small curved tr
gle, which reduces itself to a single point at the singular
A hyperbolic umbilic appears as a cusp tip located insid
curve and forming a corner at the singularity. We find p
unit cell a numberD2

4 ­ 4 of elliptic umbilics, and a num-
berD1

4 ­ 4 of hyperbolic umbilics. Now there remains
distinguish between the two types of hyperbolic umbili
There is actually no technique to directly determine exp
mentally the index of a given hyperbolic umbilic. Th
problem is solved here by calculating the different g
metrical elements [10,11] which define the index, usin
model that is able to reproduce exactly the experime
caustic (the details of the calculation shall be presente
a forthcoming publication).

The whole caustic is calculated using for the direc
field $n ­ scosw cosc , cosw sinc , sinwd in the biperiodic
varicose structure, a form which is deduced from the
perimental findingsw ­ ahsinspx 1 qyd 1 b sinsp0x 1

q0ydj sinrz, c ­ 0, wherer ­ pyd, d is the thickness o
the nematic layer, andsp, qd andsp0, q0d are the wave vec
tors defining the biperiodic structure. This form is fou
to reproduce exactly the experimental caustic witha ­
0.6, b ­ 0.5, sp, qd ­ s0.0115 mm21, 20.0048 mm21d,
sp0, q0d ­ s0.0115 mm21, 0.0048 mm21d, d ­ 308 mm.
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FIG. 2. Sections by the focal plane, of the experimen
caustic produced by a biperiodic pattern. At two differe
heights one evidences the elliptic umbilicsD2

4 (top), and the
hyperbolic umbilicsD1

4 (bottom).

The differential equations for the rays inside the nem
layer are the 3D generalization of those we had obta
in the 2D case [7,16]. Numerically, we model the incid
beam by a set of5 3 104 parallel rays. Each incoming ra
is parametrized by two numbersl andm, which are the co
ordinates of the intersection of the ray by a plane nor
to it. The outgoing rays are characterized by four para
ters: their positionsx0, y0d in the upper interface and the
directiona, b. From the functional dependence of the
parameters onl andm, we determine the location of eac
type of singularityA2, A3, A4, andD6

4 , by the method o
Thom’s classes [12,17]. We check that the calculated
l

c
d

l
-

-

semble of singularities coincides with the one observe
the experiment: four realD2

4 , four virtual D1
4 , and 12A4

per unit cell. Now we represent the singular set in the
manifold which is here parametrized byl, m, andz. In
this system of coordinates, the kernelP of the Lagrangian
projection is thesl, md plane, and the characteristic dire
tion d is alongz. We find that for each of the hyperbol
umbilics, where the singular set is locally a cone, the k
nel separates the characteristic directiond from theA3 line
(see Fig. 3). Hence, all the hyperbolic umbilics presen
the experimental caustic are of index11y2, i.e., they are
of the drop type D1d

4 . Therefore there is no hyperbol
umbilic with index21y2, i.e., of typetriangle in the ex-
periment:D1t

4 ­ 0.
We have thus found that each unit cell of the opti

pattern is characterized by a Euler numberx ­ 28 and
contains four elliptic umbilicsD2

4 , zero hyperbolic umbilic
of type triangle D1t

4 , and four hyperbolic umbilics of type
drop D1d

4 . Hence, the sum28 1 2s4 1 0d ­ 0, and the
Chekanov formula is experimentally verified. The oth
method valid only for measuring thex of regular surfaces
may be used now to characterize further the topolo
There one must define a generic functionf on S. If we
choose, for instance,f ­ 1ysz 2 z0d, experimentally the
function level f ­ C will correspond to the section o
the caustic by the focal plane of the microscope. T
plane z ­ z0 separates the real from the virtual part
the caustic. We may show that there this method gi
the samex under the condition that there is no triang
hyperbolic umbilicD1t

4 . More precisely, one finds tha
the sumz ­ m 2 S 1 M is equal to22 D2

4 , so that
z ­ x 1 2D1t

4 . In one unit cell of our optical patter
we count two minima, four maxima, and 14 saddle poin
Finally, one checks thatz ­ 2 2 14 1 4 ­ 28 ­ x .

The Chekanov formula may be used to characte
any ensemble of optical singularities and its transform
tions. In general, there remains, however, the pract
problem of distinguishing between the hyperbolic umb
ics. There are two particular cases where the solu
is obvious: when the number ofD1t

4 is equal either to
t

set
his
FIG. 3. In the neighborhood of aD1
4 point, the critical setS is a cone. The kernelP of the Lagrangian projection at the poin

D1
4 cuts the cone. If it separates the characteristicd from the lineA3, the hyperbolic umbilic is of the “drop” type (a). It is of

the “triangle” type in the other case (b). See Ref. [11]. The calculation from the physical model, showing (c) the criticalS,
the cusp lineA3, the kernelP, and the characteristicd going through a hyperbolic umbilic identical to the experimental one. T
umbilic is obviously of thedrop type (a).
1757



VOLUME 77, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 26 AUGUST 1996

ics
de
lt o
n

the
, w
in

m
tion
ly

s
bl
nt

d

as
ica
th

no
uc
na

en
ka
al

at-
nt
re-
gy
ex
ari
tic
ho
d o
o t
di-
ew
ri-

sed
.).
-
on

d by
nder

ts

-

s,
ed
a-

t

o,

s,
-
of

ic
ry
zero, or to the number of observed hyperbolic umbil
In general, the formula is unable to determine the in
of each hyperbolic umbilic. If one associates the resu
our measurementx ­ 2D6

4 with the Chekanov relatio
x 1 2sD2

4 1 D1t
4 d ­ 0, one deduces thatD2

4 1 D1t
4 2

D1d
4 ­ 0 which simply expresses the conservation of

total index (here equal to zero). As a consequence
may now define exactly the type of umbilics involved
the Zakalyukin transformations [18]:

D2
4 1 2A4 % D1t

4 , (3)

D1t
4 1 D1d

4 % ; . (4)

Note that similar relations were obtained, but in the fra
of regular wave surfaces [19]. The annihilation or crea
of one pair of hyperbolic umbilics [relation (4)] is the on
transformation which can modify the topology ofS by
changing thex value by62. Other types of invariant
exist that may prove also useful to characterize ensem
of optical singularities such as the cobordism invaria
[20]. There a result is that the number of swallowtailsA4

and of umbilicsD6
4 must be even [21]. This is checke

in our experiment, since we observe 12A4 and eight
D6

4 per unit cell. The physical conditions, as well
the symmetries, might also impose additional topolog
constraints. Moreover, the experimental caustics are
envelope ofstraight rays which are emitted by apunctual
source. These features bring in a restriction which is
considered in the actual theory, and they might ind
new effects, for instance, they might allow new additio
metamorphoses or forbid some.

In conclusion, we have experimentally studied an
semble of optical singularities and determined its Che
nov invariant. The condition of compacity of the critic
set is fulfilled by choosing a unit cell in a biperiodic p
tern. The difficult problem of distinguishing the differe
types of hyperbolic umbilics is solved by numerically
constructing from a very realistic model the local topolo
of these singularities. It is, to our knowledge, the first
ample of an experimental evidence of a topological inv
ant associated with a system of rays in geometrical op
Our results confirm the Chekanov theory, and they s
that the full description of ensembles of singularities an
their transformations thus becomes more accessible t
experimentalist. More generally, the possibility of a
rect determination of topological invariants provides n
powerful tools for the experimental study of the singula
1758
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ties encountered in the various fields of physics (conden
matter, wave propagation, shocks, hydrodynamics, etc
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