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Toward a New Criterion for High-Quality Synchronization
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We observe incomplete synchronization of coupled chaotic oscillators over a wide rang
coupling strengths and coupling schemes for which high-quality synchronization is expe
Long intervals of high-quality synchronization are interrupted at irregular times by large,
desynchronization events that can be attributed to “attractor bubbling,” clearly demonstrating
the standard synchronization criterion is not always useful in experiments. We suggest a s
method for rapidly selecting the coupling schemes that are most likely to produce high-q
synchronization. [S0031-9007(96)01028-9]
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Spontaneous synchronization of dynamical syste
such as that appearing in clocks [1] and fireflies [
for example, has been the subject of curiosity a
scholarly inquiry for many years. Recently, seve
research groups [3] have synchronizedchaoticsystems; a
surprising result considering that initially close trajector
of chaotic systems diverge exponentially. One motivat
for researching chaos synchronization techniques is
explore their practical application to various problems
communication [4], optics [5], and nonlinear dynam
model verification [6]. Also, a detailed understanding
the synchronization process may lead to new scheme
controlling complex spatiotemporal dynamics that oc
during cardiac fibrillation [7] or in diode laser arrays [8
for example.

Recent reports indicate that our understanding of
synchronization process is not complete: two we
matched chaotic systems do not necessarily synchro
under conditions when high-quality synchronization
expected [9–12]. Rather, long intervals of high-qua
synchronization are interrupted irregularly by lar
(comparable to the size of the attractor), brief desynch
nization events that may be undesirable or even harm
in some applications. It is proposed [9–12] that t
behavior, calledattractor bubbling, is associated with
invariant sets embedded within the synchronizat
manifold that are unstable to perturbations caused
noise or slight parameter mismatch [13].

The primary objectives of this Letter are to demonstr
that the popular and widely used criterion for synchroni
tion of coupled chaotic oscillators entirely fails to pred
the regime of high-quality (burst-free) synchronization
a simple experimental system, and to compare our ob
vations with recent theories [9–12]. A secondary obj
tive is to suggest a new, simple method for estimating
range of high-quality synchronization.

In our investigation, we consider one-way coupling
two chaotic electrical circuits. The dynamical evoluti
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of a single circuit [14], shown schematically in Fig. 1,
governed by the set of dimensionless equations

ÙV1j ­
V1j

R1
2 gfV1j 2 V2jg , (1a)

ÙV2j ­ gfV1j 2 V2jg 2 Ij , j ­ m, s , (1b)

ÙIj ­ V2j 2 R4Ij , (1c)

where V1j and V2j represent the voltage dro
across the capacitors (normalized to the dio
voltage Vd ­ 0.58 V), Ij represents the curren
flowing through the inductor (normalized toId ­
VdyR ­ 0.25 mA for R ­

p
LyC ­ 2, 345 V), gfV g ­

VyR2 1 IrfexpsaV d 2 exps2aV dg represents the cur
rent (normalized to Id) flowing through the paral
lel combination of the resistor and diodes, and ti
is normalized to t ­

p
LC ­ 2.35 3 1025 sec.

The circuit displays “double scroll” behavior fo
Ir ­ 2.25 3 1025, a ­ 11.6, R1 ­ 1.2, R2 ­ 3.44,
R3 ­ 0.043, Rdc ­ 0.15 (the dc resistance of the indu
tor), andR4 ­ R3 1 Rdc ­ 0.193, where all resistance
have been normalized toR.
n
y

e
-

r-
-
eFIG. 1. Chaotic electronic oscillator consisting of a nega
resistorR1 ­ 2814V, capacitorsC ­ 10 nF, an inductorL ­
55 mH (dc resistance353V), a resistorR3 ­ 100V, and a
passive nonlinear element (resistorR2 ­ 8, 067V, diodes type
1N914, dashed box).
© 1996 The American Physical Society 1751
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The dynamics of the coupled system can be expres
succinctly as

Ùxm ­ Ffxmg , (2a)

Ùxs ­ Ffxsg 2 cKsxm 2 xsd , (2b)

where xm sxsd denotes the position inn-dimensional
phase space of the master (slave) oscillators,F represents
the flow of the oscillators,K is ann 3 n coupling matrix,
c is the scalar coupling strength, andxT

j ­ sV1j , V2j, Ijd.
We match all components to within 1%, construct t
circuits, and select two from the group whose bifurc
tion diagrams are most similar (there are only slight d
ferences in the bifurcation diagrams for all ten). T
facilitate our discussion of the synchronization proce
we introduce new coordinatesxk ­ sxm 1 xsdy2 and
x' ­ sxm 2 xsdy2 that specify the dynamics within an
transverse to the synchronization manifold, respectivel

Synchronization of the oscillators occurs whenxsstd ­
xmstd ; sstd which is equivalent tox'std ­ 0; the
system resides on ann-dimensional synchronization
manifold within the2n-dimensional space. In practice
the occurrence of high-quality synchronization is ind
cated by jx'stdj , ´, where ´ is a length scale smal
(typically 1%) in comparison to the typical dimension
the chaotic attractor. We note that the synchronizat
condition has been generalized [15] to include the po
bility that the variables of the slave oscillator are equa
a function of the variables of the master oscillator.

The widely used criterion for synchronization of co
pled chaotic oscillators was proposed by Fujisaka a
Yamada [16] over a decade ago. They investigate
stability of the synchronized statex' ­ 0 by determin-
ing the transverse Liapunov exponentsl

1
' $ l

2
' $ · · · $

l
n
' characterizing the dynamics transverse to the sync

nization manifold. The exponents are determined fr
the solution to the variational equation

d Ùx' ­ hDFfsstdg 2 cKjdx' , (3)

obtained by linearizing Eq. (2) aboutx' ­ 0, where
DFfsstdg denotes the Jacobian ofF evaluated onsstd.
They propose that high-quality synchronization occurs
values of the coupling strengthc wherel

1
' , 0.

In stark contrast to the expected results, we
serve incomplete synchronization for all coupling schem
over a wide range of coupling strengths wherel

1
' , 0.

For example, consider “V2 coupling” (K22 ­ 1, Kij ­ 0
otherwise) of the oscillators forc ­ 4.6. A numerical
analysis of Eq. (3) reveals thatl

1
' , 0 whenc . c22

crit .
0.64. As seen in Fig. 2, we observe brief, large-scale
termittent desynchronization events in the experiment
observed temporal evolution ofjx'stdj. This behavior
persists indefinitely.

To demonstrate that the standard synchroniza
criterion fails entirely for theV2-coupled oscillators, we
measure the average distance from the synchroniza
manifold jx'stdjrms, which is sensitive to the globa
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FIG. 2. Experimentally observed intermittent loss of synch
nization in V2-coupled chaotic oscillators forc ­ 4.6. Long
intervals of high-quality synchronizationfjx'stdj ø 0g are in-
terrupted by brief, large-scale (comparable to the size
the synchronization manifold) desynchronization events. T
characteristic time scale of the system corresponds to,6t ­
0.141 msec.

transverse stability of the synchronized state [17], and
maximum observed value of the distance from the ma
fold jx'stdjmax, which is sensitive to the local stabilit
of the state [10]. Figure 3(a) shows the experimenta
measured values ofjx'stdjrms (solid line) andjx'stdjmax

(dashed line) as a function of the coupling streng
Compare these measurements to the predicted value
l

1
' (solid line) in Fig. 3(b). It is seen thatjx'stdjrms de-

creases rapidly as the coupling strength increases and
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FIG. 3. (a) Experimentally observed degree of synchroni
tion and (b) theoretically predicted stability of the synchroniz
state for V2-coupled chaotic oscillators. We observe desy
chronization events forc . c22

crit, as indicated byjx'stdjmax ¿
jx'stdjrms ø 0. High-quality synchronization is never observe
for this coupling scheme even though the standard sync
nization criterion predicts its occurrence forl1

' , 0. Recent
theories predict attractor bubbling forh' . 0, in agreement
with our observations.
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it is near zero forc . c22
crit, where l

1
' , 0. This ob-

servation indicates that our model of the electrical circ
accurately describes its dynamics [17]. Persistent
synchronization events occur forc . c22

crit, where
jx'stdjmax remains large; high-quality, bubble-free sy
chronization [jx'stdjmax comparable to the noise level]
never observed. Surprisingly, similar results are fou
for most other coupling schemes.

We find that high-quality synchronization can on
be obtained for coupling schemes whereK11 fi 0, al-
though the range is less than that expected based
the standard synchronization criterion. For examp
consider “V1-coupled” oscillators (K11 ­ 1, Kij ­ 0
otherwise) where high-quality synchronization is e
pected for c . c11

crit . 0.305 based on a numerica
analysis of Eq. (3). Figure 4(a) shows the experim
tally observed variation ofjx'stdjrms (solid line) and
jx'stdjmax (dashed line) with a coupling strength whic
should be compared to the predicted values ofl

1
'

(solid line) shown in Fig. 4(b). Again, it is seen th
jx'stdjrms decreases rapidly as the coupling stren
increases and that it is near zero forc . c11

crit where
l

1
' , 0. Note that high-quality synchronization

only obtained for coupling strengths much greater th
expected.

Our results indicate that the criterion proposed
Fujisaka and Yamada [16], and widely used in theoret
studies of synchronization [3,4,6], is not a sufficient con
tion for high-quality synchronization of chaotic oscillato
iza
ro-
ty
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FIG. 4. (a) Experimentally observed degree of synchron
tion and (b) theoretically predicted stability of the synch
nized state forV1-coupled chaotic oscillators. High-quali
synchronizationfjx'stdjmax ø 0g is observed only forh' , 0.
The range of high-quality synchronization predicted by our
proximate method isc . 1yR1.
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in an experimental setting. Recent research [9–12] s
gests that the criterion fails when the transverse Liapu
exponents characterizing invariant sets embedded w
the synchronization manifold are greater than zero un
conditions whenl

1
' , 0. A desynchronization even

corresponds to the growth of a perturbation (due to no
or parameter variation) during the interval when t
trajectory is in a neighborhood of these invariant sets.

To test this hypothesis, we determine the m
transversely unstable invariant set, characterized by
maximum transverse Liapunov exponenth', since it
mediates the transition from attractor bubbling to hig
quality synchronization. A numerical analysis of t
low-period unstable orbits [18] indicates that the unsta
steady-statexk ­ 0 is the most unstable set. Figures 3(
and 4(b) show the dependence ofh' on the coupling
strength (dashed line) forV2- andV1-coupled oscillators
respectively. ForV2-coupled oscillators, it is seen th
h' . 0 for all c, consistent with our observation th
desynchronization events occur for allc. For V1-coupled
oscillators, it is seen that the transition to high-qua
synchronization (jx'jmax comparable to the noise leve
occurs near the point whereh' becomes less than zer
The transition is not sharp, which may be the res
of the finite noise level and parameter variation in
experiment.

Based on our observations, it appears that the pro
criterion for high-quality synchronization of chaotic osc
lators ish' , 0. While this criterion is mathematicall
precise, it may be difficult to apply in practice becau
there are an infinite number of invariant sets whose
bility must be determined [18]. Is there a different meth
for estimating the range of high-quality synchronizati
that captures the essence of the mathematically pre
criterion without being overly complex? We believe th
recent studies of the dynamics of linear systems cha
terized by non-normal matrices offers some guidan
Trefethen [19] shows that perturbations can grow sign
cantly in the transient phase of the dynamics of a lin
system even when the eigenvalues of the matrix gov
ing the dynamics are all negative and distinct. Hen
the eigenvalues do not necessarily say much about
behavior of the system in the transient phase, rather
characterize the asymptotic, long-term behavior.

In a similar vein, our observations suggest that
Liapunov exponents characterizing the dynamics of a n
linear system do not necessarily say much about the t
sient behavior. Noise and the unstable invariant sets
rise to persistent transient behavior in which the effe
of perturbations are magnified during brief intervals.
simple method for testing whether perturbations can g
in the transient phase is to investigate the time der
tive of the Liapunov functionL ­ jdx'stdj2 computed
from a mathematical model of the system. The fu
tion L is equal to the square of the distance between
trajectory and the synchronized statex' ­ 0 for small
1753
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distances [20]. A sufficient condition that all perturb
tions decay to the manifold without transient growth is

dL

dt
­ 2dx'std ? hsssDFfsstdg 2 cKddddx'stdj , 0 (4)

for all times. We suggest that condition (4) can
used to quickly estimate the range of coupling streng
that result in high-quality, burst-free synchronization
coupled chaotic oscillators. Note that the Liapun
function depends on the choice of the metric (it is n
invariant), and hence it underestimates the range of h
quality synchronization.

For theV2-coupled oscillators,dLydt ­ 2hR21
1 dx2

1 2

g0fV1mstd 2 V2mstdg sdx1 2 dx2d2 2 cdx2
2 2 R4dx2

3 j,
where dx'std ­ sdx1, dx2, dx3d, and g0fV g ­ R21

2 1

aIr fexpsaV d 1 exps2aV dg. We see that dLydt
can be greater than zero regardless of the value
the coupling strengthc. Hence, attractor bubbling
may be present for allc, in agreement with our
experimental observations. For theV1-coupled
oscillators, dL ydt ­ 2hsR21

1 2 cddx2
1 2 g0fV1mstd 2

V2mstdg sdx1 2 dx2d2 2 R4dx2
3 j can be greater than zer

for all times whenc , R21
1 ­ 0.83, also in reasonable

agreement with our observations. These results sug
that our method is useful for estimating the range
high-quality synchronization without the need of compl
numerical calculations.
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