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Intermittent Loss of Synchronization in Coupled Chaotic Oscillators:
Toward a New Criterion for High-Quality Synchronization
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We observe incomplete synchronization of coupled chaotic oscillators over a wide range of
coupling strengths and coupling schemes for which high-quality synchronization is expected.
Long intervals of high-quality synchronization are interrupted at irregular times by large, brief
desynchronization events that can be attributed to “attractor bubbling,” clearly demonstrating that
the standard synchronization criterion is not always useful in experiments. We suggest a simple
method for rapidly selecting the coupling schemes that are most likely to produce high-quality
synchronization. [S0031-9007(96)01028-9]

PACS numbers: 05.45.+b, 84.30.Ng

Spontaneous synchronization of dynamical systemf a single circuit [14], shown schematically in Fig. 1, is
such as that appearing in clocks [1] and fireflies [2],governed by the set of dimensionless equations
for example, has been the subject of curiosity and ) Vi
scholarly inquiry for many years. Recently, several Vij = —L - glVij — Va;l, (1a)
research groups [3] have synchronizddhoticsystems; a
surprising result considering that initially close trajectories
of chaotic systems diverge exponentially. One motivation
for researching chaos synchronization techniques is to Po— Vo — Rl (1c)
explore their practical application to various problems in J 2 40
communication [4], optics [5], and nonlinear dynamicswhere V;; and V,; represent the voltage drop
model verification [6]. Also, a detailed understanding ofacross the capacitors (normalized to the diode
the synchronization process may lead to new schemes faoltage V, = 0.58 V), I; represents the current
controlling complex spatiotemporal dynamics that occurflowing through the inductor (normalized td, =
during cardiac fibrillation [7] or in diode laser arrays [8], V,/R = 0.25 mA for R = \/L/C = 2,345 Q), g[V] =
for example. V/Ry + I.[explaV) — exp(—aV)] represents the cur-
Recent reports indicate that our understanding of theent (normalized to/;) flowing through the paral-
synchronization process is not complete: two well-lel combination of the resistor and diodes, and time
matched chaotic systems do not necessarily synchronize normalized to 7= LC = 2.35 X 1077 sec.
under conditions when high-quality synchronization isThe circuit displays “double scroll” behavior for
expected [9—12]. Rather, long intervals of high-quality7, = 2.25 X 107>, « = 11.6, R; = 1.2, R, = 3.44,
synchronization are interrupted irregularly by largeRr; = 0.043, R4 = 0.15 (the dc resistance of the induc-
(comparable to the size of the attractor), brief desynchrotor), andR; = R3 + R4, = 0.193, where all resistances
nization events that may be undesirable or even harmfilave been normalized ®.
in some applications. It is proposed [9-12] that this
behavior, calledattractor bubbling is associated with

sz = g[Vi; — Vo] — I, j=ms, (1b)

invariant sets embedded within the synchronization Vi > Y
manifold that are unstable to perturbations caused by 1j 2j
noise or slight parameter mismatch [13]. R;\N

The primary objectives of this Letter are to demonstrate 4 L
that the popular and widely used criterion for synchroniza- - 5 L llj
tion of coupled chaotic oscillators entirely fails to predict T glVyi-Vy T
the regime of high-quality (burst-free) synchronization in R, C 2t C| Ry

a simple experimental system, and to compare our obser- T
vations with recent theories [9-12]. A secondary objec-

A ; ; ; IG. 1. Chaotic electronic oscillator consisting of a negative
tive is t?c ﬁgghgest ?tnew, s;]mplg rr:gthod for estimating th(!"r:esistorRl = 2814, capacitorsC = 10 nF, an inductorL =
range o ,'g -q'ua |_ysync rong lon. . 55 mH (dc resistance353(}), a resistorR; = 100(}, and a

In our investigation, we consider one-way coupling of passive nonlinear element (resis®r = 8,067€), diodes type

two chaotic electrical circuits. The dynamical evolution 1N914, dashed box).
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The dynamics of the coupled system can be expresse =~ 3
succinctly as
).(m = F[Xm] N (28.) E 2+
X, = F[x,] — ¢cK(x,, — Xx), (2b) x -
where x,, (x,) denotes the position im-dimensional
phase space of the master (slave) oscillatBregpresents 0 -
the flow of the oscillatorsK is ann X n coupling matrix, 0 1000 2000 3000 4000

¢ is the scalar coupling strength, arfl = (Vy;, V;, I). i
We match all components to within 1%, construct ten

circuits, and select two from the group whose bifurca-FIG. 2. Experimentally observed intermittent loss of synchro-
tion diagrams are most similar (there are only slight dif—i':]itzeart\i/(;?singﬁECﬁUPLLZﬁtCga%té%rgiﬂ';‘itg[ﬁ f‘();")l=~4(~)6]- arléo?r?
fe"?’ﬁces In th.e blfu.rcatlon diagrams foir a!l ten). Toterrupted by %rigf, Ia¥ge¥scale (compar;ble to the size of
facilitate our discussion of the synchronization processihe synchronization manifold) desynchronization events. The
we introduce new coordinates; = (x,, + X;)/2 and  characteristic time scale of the system correspondsGo =

x, = (x,, — Xy)/2 that specify the dynamics within and 0.141 msec.

transverse to the synchronization manifold, respectively.

Synchronization of the oscillators occurs whetr) = ransverse stability of the synchronized state [17], and the
X, (1) = s(t) which is equivalent tox,(s) = 0; the  maximum observed value of the distance from the mani-
system resides on am-dimensional synchronization fo|q |x, (f)|..x, Which is sensitive to the local stability
manifold within the2n-dimensional space. In practice, of the state [10]. Figure 3(a) shows the experimentally
the occurrence of hlgh—quallty synchronization is indi- measured values 9%k | ()]s (sOlid line) and|x ; (£)]max
cated by|x (r)] < e, wheree is a length scale small (gashed line) as a function of the coupling strength.
(typically 1%) in comparison to the typical dimension of compare these measurements to the predicted values of
the qhaotic attractor. We note that th(_e synchronizatiog\ll (solid line) in Fig. 3(b). It is seen thak  (¢)|ms de-
condition has been generalized [15] to include the posSigreases rapidly as the coupling strength increases and that
bility that the variables of the slave oscillator are equal to
a function of the variables of the master oscillator. V, coupling

The widely used criterion for synchronization of cou- € 2 w0 -
pled chaotic oscillators was proposed by Fujisaka and &£ \ experiment @
Yamada [16] over a decade ago. They investigate the§ g 87 \
stability of the synchronized state, = 0 by determin- 35 64 \
ing the transverse Liapunov exponeafs = A3 = ... = 5B N X, ®1 .

" characterizing the dynamics transverse to the synchro- $ = 47 \\\\‘_/__*
nization manifold. The exponents are determined from g?: 2 —@mm —————
the solution to the variational equation & § o

5%, = {DF[s(t)] — cK}ox, , @ 7 . ' ' '
obtained by linearizing Eq. (2) abowt,; = 0, where e __ theory (b)
DF[s(¢)] denotes the Jacobian & evaluated onrs(z). @ 050 - ___—_\_ ______
They propose that high-quality synchronization occurs for 8 22 L
Yy prop : gh-q y sy 1 % 0.25 Cerit

values of the coupling strengthwhereA] < 0. () \l/

In stark contrast to the expected results, we ob- § 0.00
serve incomplete synchronization for all coupling schemes 3 5 | e xl
over a wide range of coupling strengths where < 0. 8
For example, considerV, coupling” (K, = 1, K;; = 0 -0.50 T T T
otherwise) of the oscillators for = 4.6. A numerical 0 2 4 6 8
analysis of Eq. (3) reveals thal < 0 whenc > ¢, = c

0.64. As seen in Fig. 2, we observe brief, large-scale infg. 3. (a) Experimentally observed degree of synchroniza-
termittent desynchronization events in the experimentallyion and (b) theoretically predicted stability of the synchronized
observed temporal evolution gk, (r)]. This behavior state for V,-coupled chaotic oscillators. We observe desyn-
persists indefinitely chronization events for > cZf,, as indicated by (£)lm.x >

To demonstrate that the standard synchronizatiof: ()lms = 0. High-quality synchronization is never observed

iterion fail tirelv for thev. led illat or this coupling scheme even though the standard synchro-
criterion fails enurely for thevs-coupled oSCHlators, We nization criterion predicts its occurrence fab < 0. Recent

measure the average distance from the synchronizatiafeories predict attractor bubbling fof, > 0, in agreement
manifold |x, (r)|ms, Which is sensitive to the global with our observations.
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it is near zero forc > ¢2%,, where A} < 0. This ob- in an experimental setting. Recent research [9—12] sug-
servation indicates that our model of the electrical circuitgests that the criterion fails when the transverse Liapunov
accurately describes its dynamics [17]. Persistent deexponents characterizing invariant sets embedded within
synchronization events occur for > ¢4, where the synchronization manifold are greater than zero under
Ix, (t)lmax remains large; high-quality, bubble-free syn- conditions when/\ﬂ < 0. A desynchronization event
chronization [x | (#)|max COMparable to the noise level] is corresponds to the growth of a perturbation (due to noise
never observed. Surprisingly, similar results are foundr parameter variation) during the interval when the
for most other coupling schemes. trajectory is in a neighborhood of these invariant sets.

We find that high-quality synchronization can only To test this hypothesis, we determine the most
be obtained for coupling schemes whekg, # 0, al- transversely unstable invariant set, characterized by its
though the range is less than that expected based anaximum transverse Liapunov exponent, since it
the standard synchronization criterion. For examplemediates the transition from attractor bubbling to high-
consider ‘V;-coupled” oscillators K;; = 1, K;; =0 quality synchronization. A numerical analysis of the
otherwise) where high-quality synchronization is ex-low-period unstable orbits [18] indicates that the unstable
pected for ¢ > c¢li, = 0.305 based on a numerical steady-stat&; = 0 is the most unstable set. Figures 3(b)
analysis of Eq. (3). Figure 4(a) shows the experimenand 4(b) show the dependence f on the coupling
tally observed variation ofix, (r)l.ms (solid line) and strength (dashed line) fdr,- and V,-coupled oscillators,
Ix, (f)lmax (dashed line) with a coupling strength which respectively. ForV,-coupled oscillators, it is seen that
should be compared to the predicted values df n. > 0 for all ¢, consistent with our observation that
(solid line) shown in Fig. 4(b). Again, it is seen that desynchronization events occur for all For V;-coupled
Ix, (r)lms decreases rapidly as the coupling strengthoscillators, it is seen that the transition to high-quality
increases and that it is near zero for> cll, where synchronization |k |m..x comparable to the noise level)
AL < 0. Note that high-quality synchronization is occurs near the point wherg, becomes less than zero.
only obtained for coupling strengths much greater tharThe transition is not sharp, which may be the result
expected. of the finite noise level and parameter variation in the

Our results indicate that the criterion proposed byexperiment.

Fujisaka and Yamada [16], and widely used in theoretical Based on our observations, it appears that the proper

studies of synchronization [3,4,6], is not a sufficient condi-criterion for high-quality synchronization of chaotic oscil-

tion for high-quality synchronization of chaotic oscillators lators isn, < 0. While this criterion is mathematically
precise, it may be difficult to apply in practice because

V, coupling there are an infinite number of invariant sets whose sta-
EZ 10 - bility must be determined [18]. Is there a different method
<) N experiment (a) 0 . . o
= sd N\ for estimating the range of high-quality synchronization
e E AN that captures the essence of the mathematically precise
28 ¢ |X¢(t)|m:\ /le(t)lmax criterion without being overly complex? We believe that
b © . \l \\ recent studies of the dynamics of linear systems charac-
2's “ terized by non-normal matrices offers some guidance.
25 2 1 N\ Trefethen [19] shows that perturbations can grow signifi-
g S, 0 . . \\T — cantly in the transient phase of the dynamics of a linear
= system even when the eigenvalues of the matrix govern-
ing the dynamics are all negative and distinct. Hence,
£ os0{N theory ®| e eigenvalues do not necessar h about th
5 ~o ! eh elgenv? lI:I]eS 0 not ne:essarly sayhmuc ahou ! e
5 ehavior of the system in the transient phase, rather the
S o RN c=1R, N o the o o] oo y
¥ NG characterize the asymptotic, long-term behavior.
3 cr"\l/ ~ o \L In a similar vein, our observations suggest that the
g 000 Liapunov exponents characterizing the dynamics of a non-
& A 7 = linear system do not necessarily say much about the tran-
- 025 | L N sient behavior. Noise and the unstable invariant sets give
0.0 02 o4 06 08 10 rise to persistent transient behavior in which the effects

of perturbations are magnified during brief intervals. A

. ~ simple method for testing whether perturbations can grow
FIG. 4. (a) Experimentally observed degree of synchronizain the transient phase is to investigate the time deriva-
tion and (b) theoretically predicted stability of the synchro- tive of the Liapunov functionl = |6x ()2 computed
nized state forV;-coupled chaotic oscillators. High-quality f th tical del of th L t The
synchronizatiorf|x ; (#)|max = 0] is observed only fom, < 0. rom a mathemafical model of the sSysiem. € fTunc-
The range of high-quality synchronization predicted by our aplion £ is equal to the square of the distance between the
proximate method is > 1/R;. trajectory and the synchronized state = 0 for small

1753



VOLUME 77, NUMBER 9

PHYSICAL REVIEW LETTERS

26 AGUST 1996

distances [20]. A sufficient condition that all perturba-
tions decay to the manifold without transient growth is

2 — 26%,() - {(DFIs)] — cK)ox . (0} <0 ()
for all times. We suggest that condition (4) can be
used to quickly estimate the range of coupling strengths
that result in high-quality, burst-free synchronization of
coupled chaotic oscillators. Note that the Liapunov
function depends on the choice of the metric (it is not
invariant), and hence it underestimates the range of high-
quality synchronization.

For theV,-coupled oscillatorsg £ /dt = 2{R; '6x} —
gTVim(1) = Vau(]1(8x1 — 8x2)* — ¢85 — RySx3},
where 8x (1) = (8x1,8x2,0x3), and g'[V]=R,' +
al,[explaV) + exp(—aV)]. We see thatd[L/dt
can be greater than zero regardless of the value oficl
the coupling strengthc. Hence, attractor bubbling
may be present for allc, in agreement with our
experimental observations. For theV;-coupled
oscillators, dL /dt = 2{(R;' — ¢)8x} — g'[Vim(t) —
Vo ()] (8x1 — 8x2)% — R46x3} can be greater than zero [g]
for all times whenc < R{l = (.83, also in reasonable
agreement with our observations. These results suggest
that our method is useful for estimating the range of
high-quality synchronization without the need of complex
numerical calculations.
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