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We construct path-summation representations for the planar Ising ferromagnet at subc
temperatures. The paths are Gibbs dividing surfaces on the scale of the bulk correlation leng
are controlled by coarse-grained quantities such as the surface tension and the surface stiffne
recapture the phenomenological bubble model of correlation functions in a controlled way, and w
able to consider the scaling limit and the influence of a bulk field. [S0031-9007(96)00531-5]
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Applications of the solid-on-solid (SOS) model to th
statistical mechanical treatment of fluctuations in int
faces are widespread [1,2] and important in the the
of surface phase transitions [3–5]. The restrictions
herent in this model are easily appreciated by cons
ering an interface in two dimensions, which separa
two coexisting uniaxially ordered thermodynamic phas
and which is pinned ats2N , 1

2 d and sN, 1
2 d, but oth-

erwise free to fluctuate under the control of surfa
tension. The minimum energy state is a straight line c
necting s2N , 1

2 d to sN , 1
2 d. The shape of the fluctuat

ing interface is restricted so that it intercepts any li
x  i with 2N # i # N precisely once. Such an appa
ently gross but computationally convenient approximat
could only possibly be valid in a coarse-grained sense
which fluctuations up to the typical spatial extent fou
in a pure phase are summed out. Under these circ
stances, the putative interfaceG divides the space sharpl
into pure-phase regions. The shape of the interface is
lowed by giving its interceptyi with each linex  i for
2N # i # N . The statistical weight of any configura
tion G  hy2N , y2N11, . . . , yN j is then given by

W sGd  Z21 exp

"
2b

√
E2N sy2N d 1 EN syN d

1

N21X
i2N

Esyi11 2 yid

!#
, (1)

where b is the inverse temperature,Esyd  t
p

1 1 y2

wheret is the surface tension, and the functionsE6N cor-
respond to the boundary conditions atx  6N. This may
be generalized for smally to include an angle-depende
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surface tensiontsud [6,7]: In a quadratic approximation
Esyd  ts0d 1 Sy2y2 where S  ts0d 1 t00s0d is the
surface stiffness [8]. Notice that only neighboringy
variables are coupled. In order to evaluate the partit
functionZ, or expectation values with the probability dis
tribution (1), sums over configurations must be perform
To do this thea priori weight of they variables must
be known.

The wide applicability of SOS interface models to flu
ids (the columnar model of Weeks [9]), solid surfac
(TLK [10] and multiziggurat models [11]), and bubbl
models of correlation functions [12–16] motivates inve
tigating whether it is anything more that a lucky approx
mation of unspecified accuracy, derived by a rather sh
gedanken renormalization. By considering the interfa
between coexisting thermodynamic phases in the pla
Ising model, we shall show first how a path representat
comes about exactly, and then explicitly how it is appro
mated to get the Fisher-Fisher-Weeks discrete Gaus
form [8]. The correcta priori weighting in the sums over
the yi is stipulated. Further, the precise interpretation
theyi variables is given, allowing inclusion of an extern
magnetic field in the discussion. Finally, we describe t
pair correlation function below the critical temperature
terms of droplets, again in a controlled way.

First, consider a subcritical planar Ising model str
with edgesx  6N parallel to they axis, and with spins
fixed at 11 for x  6N and y $ 1, but fixed at 21
for x  6N and y # 0. This induces an interface, o
long Peierls contour on the dual lattice running fro
s2N , 1

2 d to sN, 1
2 d. The magnetization in such a syste

is known to display extensive spatial fluctuations: F
21 , b , 1 we have [17,18]
lim
N!`

kssbN, aNddl  mpssgnad

8>><>>:
0 for d , 1y2

F

µ
jaj

q
S

12b2

∂
for d  1y2

1 for d . 1y2

(2)
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n to the

0],
wheremp is the spontaneous magnetization, andF is a Gaussian error function:

Fsxd 
2

p
p

Z x

0
e2u2

du . (3)

The earliest phenomenological evidence for large fluctuations of the interface comes from applying equipartitio
Fourier modes of a fluid interface [19].

The result (2) was obtained using the transfer matrix along thex axis: This matrix has free-fermionic eigenstates [2
and (2) comes entirely from the one-particle sector of the spectrum, which contains the eigenvectorsG

y
k jF6l, where the

jF6l describe the bulk spontaneously magnetized phases and

G
y
k  M21y2

MX
j1

eijkfcosuskds1
j 2 i sinuskds2

j g
j21Y
l1

s2sz
l d , (4)
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where 2s
6
j  s

x
j 6 is

y
j and the spins are chosenx

quantized, giving the following interpretations for t
Pauli matrices: s

x
j measures thejth spin in the column

and2s
z
j is the spin-flip operator. ThusG

y
k is a weighted

sum over lattice positionsj of operators which revers
x-quantized spins between positions 1 andj # M. The
particular choice of weight is stipulated by the diagon
ization of V , which specifiesuskd. This procedure re
grettably does not allow a useful formulation in terms
Peierls contours.

The factor eijk in (4) and Fourier-transform idea
suggest the following change of basis:

jjl  M21y2
X

k

e2ijkeiwskdG
y
k jF6l , (5)

where wskd is an as yet unspecified phase. We requ
invariance under reversal of the horizontal directi
giving eiws2kd  e2iwskd. Note thatkj1jj2l  dj1,j2 , and
that inserting (4) in (5) relatesjjl directly to combinations
of block-rotated states: Ifeiwskd1iuskd is analytic in a strip
containing the real axis, as will turn out to be the c
below, thenjjl is a linear combination of states that ha
reversed spins from 1 tol, with coefficients that deca
exponentially injl 2 jj.

Consider now the partition function

ZN  kbjV 2N
s1d jbl , (6)

where jbl describes the Dobrushin boundary conditio
alluded to above, andVs1d is the transfer matrix restricte
to the one-particle subspace. Using thejjl basis, (6)
becomes

ZN 
X

hj2N ,...,jN j
kbjj2N l

√
N21Y

i2N

kjijVs1djji11l

!
kjN jbl . (7)

This change of basis achieves a path representation
no overhangs, just as the SOS ideas require. To put
further to the test, consider the matrix elements in
product: Using (5) and the diagonal form ofVs1d gives

tn
1 sj1, j2d  kj1jV

n
s1djj2l 

1
2p

Z p

2p

e2ngskdeisj22j1dk dk ,

(8)
172
l-

f

e
,

e

s

ith
is

e

where we have allowed matrix elements to be taken
every run ofn factorsVs1d in (6) (assumeN is a multiple
of n), andgskd is Onsager’s function [21] given by

coshgskd  cosh2Kp
1 cosh2K2 2 sinh2Kp

1 sinh2K2 cosk ,
(9)

where tanhKp
1  e22K1 , and K1 and K2 are the Ising

model’s coupling constants:Kp
1 , K2 for subcritical tem-

peraturesT , Tc.
The functiontn

1 sj1, j2d is positive and depends only o
the differencej2 2 j1. Its asymptotics are revealing: Fo
jj2 2 j1j ,,

p
ng00s0d,

tn
1 sj1, j2d ø e2ngs0df2png00s0dg21y2 exp

µ
2

sj2 2 j1d2

2ng00s0d

∂
.

(10)

Examination of (9) and the exact result for the ang
dependent surface tension [6,7] givets0d  gs0d and
S  g00s0d21; therefore (10) is indeed a discrete Gauss
with the fluctuations controlled by the surface stiffness
Fisher, Fisher, and Weeks suggested in [8]. Moreov
the a priori weights in the sums over theji are specified
by the prefactors.

It is also of interest to get the scaling limit, at lea
formally. TakeT ! Tc in (8), holding l  ngs0d and
L  Ngs0d fixed. We defineB  cothKp

1 tanhK2 (note
that B  egs0d in the caseK1  K2). Both gs0d and
lnB vanish assTc 2 T dyTc. We useu  ky lnB as a
momentum variable and setyi  ji lnB, which becomes
a continuous variable. This gives

tn
1 sj1, j2d ø

lnB
2p

Z `

2`
e2l

p
11u2

eisy22y1du du (11)

asymptotically asT ! Tc, reducing the path sum to
path integral [22] for a relativistic free particle.

We now develop the path summation approach
include an external magnetic field. Consider the to
magnetization of the portion of a column compris
betweenq andp 2 1, denoted by

Mpq 
p21X
jq

sx
j . (12)
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There is a unique choice of the phase factoreiwskd 
e2iky2 in (5) for which the matrix elements ofMpq for
the jjl basis have the simple asymptotic expression

kj1jM
pqjj2l  mpdj1,j2 sp 1 q 2 2j1 2 2d

1 OsB2p 1 B2jqjd . (13)

Here we have set the system up so that the b
magnetization far above the interface is1mp by careful
handling of jF1l and jF2l in a rather technical way
which is explained in Ref. [18]. This choice of pha
factor is also the only one for which thejjl basis is
covariant under a reflection transformation. If we ta
p 1 q  0, followed by the limitp ! `, then we have

kj1jM
`jj2l  22mpdj1,j2sj1 1 1d . (14)

This is what we would get if the magnetization jump
abruptly from2mp to mp when crossing the pointj1 1
1
2 : This is reminiscent of a Gibbs dividing surface.

It is also interesting to look at the matrix elemen
kj1js

x
j jj2l, since the local magnetization with th

Dobrushin boundary conditions is given by

kssn, jdl 

P
j1,j2

kbjV N1njj1l kj1js
x
j jj2l kj2jV N2njbl

kbjV 2N jbl
.

(15)

In the usual SOS approximation it is assumed that

kj1js
x
j jj2l  mpdj1,j2 sgnsj 2 j1 2

1
2 d . (16)

This misses significant local structure: The exact res
which replaces the difference form

kj1js
x
j11 2 sx

j jj2l  2mpdj1,j2dj,j1 (17)

equivalent to (16) is
g

e

e
w

m
a
tio

c
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kj1js
x
j11 2 sx

j jj2l  mpfa2sj1 2 jda1sj2 2 jd
1 a1sj1 2 jda2sj2 2 jdg ,

(18)

where

a6sjd 
1

2p

Z p

2p
ftanhsgy2dg61y2eijk dk . (19)

However, the recapture of (2) does not differentia
between the two because the limitN ! ` is taken,
and (14) shows that the local structure (18) disappe
when considering the total magnetization of a colum
Sincegskd is analytic in the stripjImkj , lnB containing
the real axis, the functionsa6sjd decay exponentially
on the scale of the correlation length in the vertic
direction j  slnBd21: The only information lost by
the SOS approximation is on that scale. Neverthele
(18) and (19) strongly support the view that there
an inhomogeneity of size about the correlation leng
associated with the interface, and, with that, the valid
of Widom scaling [23].

Another important application of this path represen
tion is the droplet model of subcritical spin correlatio
functions [12]. For large enough separationsx (with re-
spect to the correlation length), the decay of the tru
cated pair function is dominated by the two-particle sec
since the sum of the remaining terms is bounded ab
by e24xgs0d. We can change the basis to the two-doma
wall statesjjl defined by analogy with (5) by

jjl 
M21
p

2

X
k,,k.

e2j,k,2ij.k.

eiwsk,d1iwsk.dG
y
k, G

y
k. jFl ,

(20)

where j is any pairj  hj,, j.j ordered byj, , j..
Then we have
kss1, 1dss1 1 x, 1 1 ydl 2 smpd2 
X

hj1,...,j11x j
kF1jsx

1 jj1l

√
xY

i1

kji jVs2djji11l

!
kj11xjsx

11yjF1l . (21)
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The constraintj,
i , j.

i is characteristic of nontouchin
paths. The matrix elementskj1jV

n
s2djj2l are given by

kj1jV
n
s2djj2l  tn

1 sj,
1 , j,

2 dtn
1 sj.

1 , j.
2 d

2 tn
1 sj,

1 , j.
2 dtn

1 sj.
1 , j,

2 d (22)

in terms of the one-particle case (8), and the obvious g
eralization of (21) to the slab casen $ 2 enables us to
recover the Gaussian approximation to each path s
rately using (10), or the scaling limit as in (11). The ne
feature is the second term on the right of (21) which i
plies a repulsive interaction between the paths—norm
neglected—supplementary to the nontouching restric
j,

i , j.
i . Further, the matrix elementskj,, j.js

x
j jF1l,

which appear as terminating factors in (21), have a lo
structure similar to (18):
n-

a-

-
ly
n

al

kj,, j.jsx
j 2 sx

j11jF1l  mpfa2sj, 2 jda1sj. 2 jd
2 a1sj, 2 jda2sj. 2 jdg .

(23)

This implies thatkj,, j.js
x
j jF1l is insignificant when-

ever eitherjj, 2 jj or jj. 2 jj is large compared to
the correlation lengthj, justifying the SOS approxima
tion of holding the ends of the bubble fixed at 1 and
1 1 y, respectively.

Finally, we come to the role of the magnetic field in th
droplet model which we have constructed. By analo
with (13), consider the matrix elementkj1jM̃pqjj2l where
M̃pq is defined byM̃pq  Mpq 2 mpsp 2 qd and (12).
173
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This comes out in the limitp ! ` andq ! 2` as

kj1jM̃jj2l  22mpdj1,j2 sj.
1 2 j,

1 d 1 Ose2gs0d sj.
1 2j,

1 dd .
(24)

This vindicates the phenomenological contention that
expected magnetization of the correlation droplet is p
portional to its area, and entirely so when its opposite si
are sufficiently separated for the error term in (24) to
negligible.

In the case of a nonzero bulk fieldh, the expression
replacing (21) for the two-point function will contai
iterates ofVehM̃ . It is important to note that̃M scatters
significantly into the many-particle sectors. The proble
which this implies for treating nonzero fields can
obviated by going to the scaling limit. We chooseK1 
K2 and denotet  gs0d  lnB. The functiont1

1 coming
into expressions such as (22) for matrix elements ofV
is then given by (11). The magnetization term also h
scaling with the scaled field variableh  limt!0 t22hmp

[24]. Thus the two-point function becomes

lim
t!0

kss1, 1dss1 1 t21x, 1 1 t21y dl
smpd2

 kFjse2xHeiyPsjFl , (25)

whereP is the momentum operator,jFl is the ground state
eigenvector ofH, ands is the scaled local magnetizatio
at the origin. The two-particle sector of the Hamiltonia
which dominates the low-energy behavior, is given
terms of position and momentum operators by

Hs2d 
p

1 1 p2
, 1

p
1 1 p2

. 1 2hsy. 2 y,d . (26)

The nonrelativistic limit of (26) permits separation of th
problem into center of mass and relative motion; it lea
us back to the important work of McCoy and Wu o
the “breakup of the cut” in the Fourier transform of th
truncated two-point spin correlation [25]. This break
replaces the Kadanoff-Wu anomalous decay [26,27]
scaled separationr, with a prefactorr22, by a sum of
Ornstein-Zernike forms

hr21y2
X̀
j1

expf2s2 1 h2y3gjdr g , (27)

where thegj are related to the zeros of the Airy functio
Ai [12,25,28].

We now summarize our results. We have shown t
path representations without overhangs are achieved
actly without, we emphasize, any local mutilations of t
lattice. The fluctuations of these paths are controlled
coarse-grained quantities such as the surface stiffness
the paths are Gibbs dividing surfaces provided that they
not come too close together on the scale of the bulk c
relation length. Thus we recapture the phenomenolog
bubble model of correlation functions in a controlled wa
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