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Path-Summation Representations in Planar Uniaxial Ferromagnets
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We construct path-summation representations for the planar Ising ferromagnet at subcritical
temperatures. The paths are Gibbs dividing surfaces on the scale of the bulk correlation length, and
are controlled by coarse-grained quantities such as the surface tension and the surface stiffness. We
recapture the phenomenological bubble model of correlation functions in a controlled way, and we are
able to consider the scaling limit and the influence of a bulk field. [S0031-9007(96)00531-5]

PACS numbers: 75.40.—s, 05.50.+q, 64.60.Fr

Applications of the solid-on-solid (SOS) model to the surface tensiom(6) [6,7]: In a quadratic approximation,
statistical mechanical treatment of fluctuations in inter-E(y) = 7(0) + Sy?/2 where 3 = 7(0) + 7(0) is the
faces are widespread [1,2] and important in the theorgurface stiffness [8]. Notice that only neighboring
of surface phase transitions [3—5]. The restrictions invariables are coupled. In order to evaluate the partition
herent in this model are easily appreciated by considfunctionZ, or expectation values with the probability dis-
ering an interface in two dimensions, which separatesribution (1), sums over configurations must be performed.
two coexisting uniaxially ordered thermodynamic phasesTo do this thea priori weight of they variables must
and which is pinned at—N,+) and (N, 5), but oth-  be known.
erwise free to fluctuate under the control of surface The wide applicability of SOS interface models to flu-
tension. The minimum energy state is a straight line conids (the columnar model of Weeks [9]), solid surfaces
necting (N, 3) to (N, 5). The shape of the fluctuat- (TLK [10] and multiziggurat models [11]), and bubble
ing interface is restricted so that it intercepts any linemodels of correlation functions [12—16] motivates inves-
x = i with =N = i = N precisely once. Such an appar- tigating whether it is anything more that a lucky approxi-
ently gross but computationally convenient approximationimation of unspecified accuracy, derived by a rather shaky
could only possibly be valid in a coarse-grained sense, ifédanken renormalization. By considering the interface
which fluctuations up to the typical spatial extent foundbetween coexisting thermodynamic phases in the planar
in a pure phase are summed out. Under these circumsing model, we shall show first how a path representation
stances, the putative interfa€edivides the space sharply comes about exactly, and then explicitly how it is approxi-
into pure-phase regions. The shape of the interface is fomated to get the Fisher-Fisher-Weeks discrete Gaussian
lowed by giving its intercept; with each linex = i for ~ form [8]. The correct priori weighting in the sums over
—N =i = N. The statistical weight of any configura- they; is stipulated. Further, the precise interpretation of
tionT = {y_n,y_n+1....,yn} IS then given by they; variables is given, allowing inclusion of an external

magnetic field in the discussion. Finally, we describe the
pair correlation function below the critical temperature in
wr) =2z" exl{—ﬁ<E—N(y—N) + En(yn) terms of droplets, again in a controlled way.
First, consider a subcritical planar Ising model strip
)} 1) with edgesx = =N parallel to they axis, and with spins
fixed at +1 for x = =N andy = 1, but fixed at—1
for x = =N andy = 0. This induces an interface, or
where B is the inverse temperaturé(y) = 7/1 + y2  long Peierls contour on the dual lattice running from
wherer is the surface tension, and the functidisy cor-  (—N, %) to (N, %), The magnetization in such a system
respond to the boundary conditionsxat= *N. Thismay is known to display extensive spatial fluctuations: For
be generalized for small to include an angle-dependent —1 < g < 1 we have [17,18]

N-1
+ Z E(yi+1 — yi)
i=—N

0 for 6 < 1/2
}JL“J”(/BN’ aN?®)) = m*(sgn) (I)(Iah/l,iﬁz> for 6 =1/2 (2)
1 for 6 > 1/2

0031-900796/77(1)/171(4)$10.00 © 1996 The American Physical Society 171



VOLUME 77, NUMBER 1 PHYSICAL REVIEW LETTERS 1dJdLy 1996

wherem™ is the spontaneous magnetization, amds a Gaussian error function:

2 (Y
d(x) = ﬁfo e " du. 3

The earliest phenomenological evidence for large fluctuations of the interface comes from applying equipartition to the
Fourier modes of a fluid interface [19].
The result (2) was obtained using the transfer matrix along theis: This matrix has free-fermionic eigenstates [20],
and (2) comes entirely from the one-particle sector of the spectrum, which contains the eiger@ébioﬁ, where the
|® ) describe the bulk spontaneously magnetized phases and

M Jj—1
Gl =M™'2Y e*codd(k)o; — isid(K)o; 1[(—a), (4)
j=1 I1=1

where 20 = o} * io; and the spins are chosen | where we have allowed matrix elements to be taken for
quantized, giving the following interpretations for the every run ofn factorsV(;) in (6) (assumeV is a multiple
Pauli matrices: o; measures thgth spin in the column of ), andy(k) is Onsager’s function [21] given by
and—o5 is the spin-flip operator. ThLG’,zr is a weighted . . .
sum ov]er lattice positiong of operators which reverse coshy (k) = cost2Ky cosfek; — sinfRKj sinfK; cosk,
x-quantized spins between positions 1 gnet M. The 9)
particular choice of weight is stipulated by the diagonal-
ization of V, which specifiesf(k). This procedure re-
grettably does not allow a useful formulation in terms of
Peierls contours.

The factor ¢/* in (4) and Fourier-transform ideas
suggest the following change of basis:

where tanlk; = ¢ 2%, and K, and K, are the Ising
model’s coupling constant&; < K, for subcritical tem-
peratures” < T,.

The functions{ (1, j») is positive and depends only on
the differencej, — j;. Its asymptotics are revealing: For

lj2 = Jjil << /ny"(0),

. . 2
(i) = O oV-1/2 el — 2~ J1D)°
i) = e Oy O] ex - 2R ).
where ¢ (k) is an as yet unspecified phase. We require (20)
invariance under reversal of the haorizontal direction, o
giving e/#% = ¢~i¢®  Note that(j|j») = §,,,,, and Examination of (9) and the exact result for the angle-
that inserting (4) in (5) relatds) directly to combinations dependentﬁlsurface tension [6,7] give&0) = y(0) and
of block-rotated states: ¢®)*i%®) is analytic in a strip 3 = y"(0)~!; therefore (10) is indeed a discrete Gaussian
containing the real axis, as will turn out to be the caseVith the fluctuations controlled by the surface stiffness as

below, then| /) is a linear combination of states that have Fisher, Fisher, and Weeks suggested .in [8]. Moreover,
reversed spins from 1 té, with coefficients that decay the a priori weights in the sums over thg are specified

) = M7V ek e WG |0, (5)
k

exponentially inl/ — jI. by the prefactors. o
Consider now the partition function It is also of interest to get the scaling limit, at least
formally. TakeT — T, in (8), holding! = ny(0) and
Zy = <b|V(21’)V|b>, (6) L = Ny(0) fixed. We defineB = cothk] tanhk, (note

that B = ¢”© in the casek; = K,). Both y(0) and
where |b) describes the Dobrushin boundary conditionsinB vanish as(7. — T)/T.. We useu = k/InB as a
alluded to above, antl(;) is the transfer matrix restricted momentum variable and set = j; InB, which becomes
to the one-particle subspace. Using thg basis, (6) a continuous variable. This gives
becomes

Zv = > {blj-w

InB * M+ i(ve—v
( (1, J2) = —[ e IVITW iy gy (11)
{j*N ’’’’’ jN}

N=1
l_[ <ji|V(1)|ji+1>> (nlby. (7) 2m

i=—N . .
asymptotically asT — T., reducing the path sum to a

This change of basis achieves a path representation wifath integral [22] for a relativistic free particle.
no overhangs, just as the SOS ideas require. To put this We now develop the path summation approach to
further to the test, consider the matrix elements in thénclude an external magnetic field. Consider the total

product: Using (5) and the diagonal form %f;, gives magnetization of the portion of a column comprised
betweeng andp — 1, denoted by

- s R A i
11 G j2) = GilViyliz) = E[ o~ il =ik gp - pzl ) )
T = aj.
8 j=q
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There is a unique choice of the phase faceéf®) = (ilotey = aflj) = mla-(jy — ja+(ja = j)
e~*/2 in (5) for which the matrix elements a¥f?¢ for +as(y = Pa-(a — ]
the | j) basis have the simple asymptotic expression ;

(18)
(IMP4jo) = m*8;,,(p + g = 2j1 = 2) where
+ 0B " + By, (13)
. 1 (7 *1/2 ijk
Here we have set the system up so that the bulk a=(j) = E[_ﬂ[tanf{yﬂ)] Pt k. (19)

magnetization far above the interface-isn™ by careful

handling of |®.) and [®-) in a rather technical way However, the recapture of (2) does not differentiate
which is explained in Ref. [18]. This choice of phasepetween the two because the limif — « is taken,
factor is also the only one for which thkj) basis is and (14) shows that the local structure (18) disappears
covariant under a reflection transformation. If we takewhen considering the total magnetization of a column.
p + q = 0, followed by the limitp — <, then we have  Sincey(k) is analytic in the striglmk| < InB containing
ey . . the real axis, the functiong+(j) decay exponentially
GiIMZj2) = =2m™8;, 1, (i + 1) (14) " on the scale of the correlation length in the vertical
ddirection & =(InB)"!': The only information lost by
the SOS approximation is on that scale. Nevertheless,
(18) and (19) strongly support the view that there is
an inhomogeneity of size about the correlation length
associated with the interface, and, with that, the validity
of Widom scaling [23].
Another important application of this path representa-

This is what we would get if the magnetization jumpe
abruptly from—m* to m* when crossing the point, +
%: This is reminiscent of a Gibbs dividing surface.

It is also interesting to look at the matrix elements
(Jilojlj2), since the local magnetization with the
Dobrushin boundary conditions is given by

IV Cilot i) Cin lVN 7 b tion is the droplet model of subcritical spin correlation
(o(n, j)) = 25, ] |J1><112|NU" j2) (2l 15) . functions [12]. For large enough separationgéwith re-
(bIV2V]b) spect to the correlation length), the decay of the trun-

(15)  cated pair function is dominated by the two-particle sector
S since the sum of the remaining terms is bounded above
In the usual SOS approximation it is assumed that by e ~#*7©_ We can change the basis to the two-domain-

Il stated j) defined b | ith (5) b
Gilotliay = m*ssgity — g — 3. ag) WAl statesi) defined by analogy with (3) by

. . . .pe M71 <1< - . < : >
This misses significant local structure: The exact result|j) = —= > e /& Uk piel)tielk GGl @y,
which replaces the difference form V2 k<.k> (20)
(lojey = ojlj2) = 2m"5;, 1,8, (17)

where j is any pairj = {j=,j”} ordered by;~ < j~.
equivalent to (16) is Then we have

@, Do + 5,1+ ) = m 2= <<I>+|of|j1>(1‘[<ji|V<2>|j,»+1>)<j1+x|af+y|<1>+>. (21)

LA I o i=1

The constraintj;™ < j; is characteristic of nontouchind)
paths. The matrix elementg|V5 |j.) are given by <j<,j>|0f — ol |Ps) = mla-(j= — pa+(j~ — j)
GilVayli) = G iD)n Gisiz) — a5 — >
2oL +(j° = Pa-(~ = NI

- 00N (22) (23)
in terms of the one-particle case (8), and the obvious gen-
eralization of (21) to the slab case= 2 enables us to This implies that(;=, /|0 |®+) is insignificant when-
recover the Gaussian approximation to each path sepaver either|j< — j| or |j~ — j| is large compared to
rately using (10), or the scaling limit as in (11). The newthe correlation length¢, justifying the SOS approxima-
feature is the second term on the right of (21) which im-tion of holding the ends of the bubble fixed at 1 and at
plies a repulsive interaction between the paths—normally + y, respectively.
neglected—supplementary to the nontouching restriction Finally, we come to the role of the magnetic field in the
j= < ji. Further, the matrix elementg=, j"|o}|P), droplet model which we have constructed. By analogy
which appear as terminating factors in (21), have a locawith (13), consider the matrix elemeqy; |[M74]j,) where
structure similar to (18): MP4 is defined byMP? = MP1 — m*(p — ¢) and (12).
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