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We recalculate the amplitude for photon splitting in a strong magnetic field below the pair produ
threshold, using the world line path integral variant of the Bern-Kosower formalism. Nume
comparison (using programs that we have made available for public access on the Internet) sho
the results of the recalculation are identical to the earlier calculations of Adler and later of Ston
and to the recent recalculation by Baier, Milstein, and Shaisultanov. [S0031-9007(96)01004-6]
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Photon splitting in a strong magnetic field is an int
esting process, both from a theoretical viewpoint beca
of the relatively sophisticated methods needed to do
calculation, and because of its potential astrophysical
plications. The first calculation to exactly include the c
rections arising from nonzero photon frequencyv was
given by Adler [1], who obtained the amplitude as a trip
integral that is strongly convergent below the pair prod
tion threshold atv ­ 2m, and who included a numerica
evaluation for the special casev ­ m. Subsequently, the
calculation was repeated by Stoneham [2] using a dif
ent method, leading to a different expression as a tr
integral, that has never been compared to the formul
Ref. [1] either analytically or numerically. Recently,
new calculation has been published by Mentzel, Berg,
Wunner [3] in the form of a triple infinite sum, and nume
cal evaluation of their formula by Wunner, Sang, and B
[4] claims photon splitting rates roughly 4 orders of mag
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tude larger than those found in Ref. [1]. Since this resul
correct, would have important astrophysical implicatio
a recalculation by an independent method seems in or
We report the results of such a recalculation here, toge
with a numerical comparison of the resulting amplitu
with those of Adler and of Stoneham, as well as with a
cent recalculation independently carried out by Baier, M
stein, and Shaisultanov [5]. The comparison shows
these four independent calculations give precisely the s
amplitude, showing no evidence of the dramatic energy
pendent effects claimed in Refs. [3] and [4].

Our recalculation of the photon splitting amplitude us
a variant of the world line path integral approach to t
Bern-Kosower formalism [6–9]. As is well known, th
one loop QED effective action induced for the photon fie
by a spinor loop can be represented by the following dou
path integral:
GfAg ­ 22
Z `

0

ds
s

e2m2s
Z

D x D c exp

∑
2

Z s

0
dt

µ
1
4

Ùx2 1
1
2

c Ùc 1 ieAm Ùxm 2 iecmFmncn

∂∏
. (1)
ains
Here s is the usual Schwinger proper-time parame
the xmstd’s are the periodic functions from the circ
with circumferences into spacetime, and thecmstd’s are
antiperiodic and Grassmann valued.

Photon scattering amplitudes are obtained by speci
ing the background to a sum of plane waves with d
nite polarizations. Both path integrals are then evalua
,

z-
-
d

by one-dimensional perturbation theory; i.e., one obt
an integral representation for theN-photon amplitude by
Wick-contractingN “photon vertex operators”

V ­
Z T

0
dt f Ùxm´m 2 2icmcnkm´ng expfikxstdg . (2)

The appropriate one-dimensional propagators are
k ymst1d ynst2dl ­ 2gmnGBst1, t2d ­ 2gmn

∑
j t1 2 t2 j 2

st1 2 t2d2

s

∏
,

kcmst1dcnst2dl ­
1
2 gmnGFst1, t2d ­

1
2 gmnsignst1 2 t2d . (3)

The bosonic Wick contraction is actually carried out in the relative coordinateystd ­ xstd 2 x0 of the closed loop, while
the (ordinary) integration over the average positionx0 ­

1
s

Rs
0 dt xstd yields energy-momentum conservation.
© 1996 The American Physical Society 1695
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To take the additional constant magnetic backgro
field B into account, one chooses Fock-Schwinger gau
where its contribution to the world line Lagrangia
becomes

DL ­ 1
2 ieymFmn Ùyn 2 iecmFmncn . (4)

Being bilinear, those terms can be simply absorbed
the kinetic part of the Lagrangian [9,10]. This leads
generalized world line propagators defined by

1
2

µ
≠2

≠t2
2 2ieF

≠

≠t

∂
GBst1, t2d ­ dst1 2 t2d 2

1
s

,

(5)

1
2

µ
≠

≠t
2 2ieF

∂
GFst1, t2d ­ dst1 2 t2d . (6)

The solutions to these equations can be written in the f
[11]

GBst1, t2d ­
1

2seFd2

µ
eF

sinsesFd
e2iesF ÙGB12

1 ieF ÙGB12 2
1
s

∂
, (7)

GFst1, t2d ­ GF12
e2iesF ÙGB12

cossesFd
(8)

(we have abbreviatedGBij ; GBsti , tjd, and a dot always
denotes a derivative with respect to the first variab
1696
d
,

o

.

Those expressions should be understood as power s
in the field strength matrix. To obtain the photon splitti
amplitude, we will use them for the Wick contractio
of three vertex operatorsV0 and V1,2, representing the
incoming and the two outgoing photons.

The calculation is greatly simplified by the special kin
matics of this process. Energy-momentum conservat
k0 1 k1 1 k2 ­ 0, forces collinearity of all three four-
momenta, so that, writing2k0 ; k ; vn,

k1 ­
v1

v
k, k2 ­

v2

v
k; k2 ­ k2

1 ­ k2
2

­ k ? k1 ­ k ? k2 ­ k1 ? k2 ­ 0 . (9)

Moreover, a simple CP invariance argument toget
with an analysis of dispersive effects [1] shows th
there is only one allowed polarization case. This is
one where the incoming photon is polarized parallel
the plane containing the external field and the direct
of propagation, and both outgoing ones are polari
perpendicular to this plane. This choice of polarizatio
leads to the further vanishing relations

´1,2 ? ´0 ­ ´1,2 ? k ­ ´1,2 ? F ­ 0 . (10)

In particular, we cannot Lorentz contract´1 with anything
but ´2. This leaves us with only a small number
nonvanishing Wick contractions,
ll
and
kV0V1V2l ­
2Y

i­0

Z t

0
dti i exp

∑
1
2

2X
i,j­0

v̄iv̄jnGBijn

∏Ω
f´1G̈B12´2 1 ´1GF12´2v̄1v̄2nGF12ng

3

∑
2

2X
i­0

v̄i´0
ÙGB0in 1 v̄0´0GF00n

∏
2 v̄0v̄1v̄2´1GF12´2fnGF10´0 nGF20n 2 s1 $ 2dg

æ
. (11)

For compact notation we have definedv̄0 ­ v, v̄1,2 ­ 2v1,2. This result has still to be multiplied by an overa
factor of sesBd coshsesBdys4psd2 sinhsesBd, which by itself would just produce the Euler-Heisenberg Lagrangian,
here appears as the product of the two free Gaussian path integrals [8].

It is then a matter of simple algebra to obtain the following representation for the matrix elementC2fv, v1, v2, Bg
appearing in Eq. (25) of [1]:

C2fv, v1, v2, Bg ­
m8

4vv1v2

Z `

0
ds s

e2m2s

sesBd2 sinhsesBd

Z s

0
dt1

Z s

0
dt2

3 exp

Ω
2

1
2

2X
i,j­0

v̄iv̄j

∑
GBij 1

1
2eB

coshsesB ÙGBijd
sinhsesBd

∏æ

3

Ω
f2 coshsesBdG̈B12 1 v1v2sss coshsesBd 2 coshsesB ÙGB12ddddg

3

∑
vsss cothsesBd 2 tanhsesBdddd 2 v1

coshsesB ÙGB01d
sinhsesBd

2 v2
coshsesB ÙGB02d

sinhsesBd

∏

1 vv1v2
GF12

coshsesBd
fsinhsesB ÙGB01d sss coshsesBd 2 coshsesB ÙGB02dddd 2 s1 $ 2dg

æ
. (12)

Here translation invariance int has been used to set the positiont0 of the incoming photon equal tos. Coincidence
limits have to be treated according to the rulesÙGBst, td ­ 0, ÙG2

Bst, td ­ 1.
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Alternatively, one may removëGB12 by partial integration on the circle. This leads to the equivalent formula

C2fv, v1, v2, Bg ­
m8

4

Z `

0
ds s e2m2s coshsesBd

sesBd2 sinhsesBd

Z s

0
dt1

Z s

0
dt2

3 exp

Ω
2

1
2

2X
i,j­0

v̄iv̄j

∑
GBij 1

1
2eB

coshsesB ÙGBijd
sinhsesBd

∏æ
3

Ω∑
ÙGB12

µ
ÙGB12 2

sinhsesB ÙGB12d
sinhsesBd

∂
2

µ
1 2

coshsesB ÙGB12d
coshsesBd

∂∏
3

∑
2 cothsesBd 1 tanhsesBd 1

v1

v

coshsesB ÙGB01d
sinhsesBd

1
v2

v

coshsesB ÙGB02d
sinhsesBd

∏
1 ÙGB12

∑µ
coshsesB ÙGB02d

sinhsesBd
2

1
esB

∂ µ
ÙGB01 2

sinhsesB ÙGB01d
sinhsesBd

∂
2 s1 $ 2d

∏
1

1
2

ÙGB12

∑
v

v2

µ
ÙGB01 2

sinhsesB ÙGB01d
sinhsesBd

∂
2 s1 $ 2d

∏ µ
2 cothsesBd 1

1
esB

1 tanhsesBd
∂

1 GF12

∑
sinhsesB ÙGB01d

coshsesBd

µ
1 2

coshsesB ÙGB02d
coshsesBd

∂
2 s1 $ 2d

∏æ
. (13)
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This form of the amplitude is less compact, but t
integrand (apart from the exponential) is homogeneou
thevi.

Finally, let us remark that the analogous express
for scalar QED would be obtained by deleting all ter
in Eq. (11) containing aGF , as well as the coshsesBd
appearing in the overall factor and the global factor
22 in Eq. (1).

In order to compare the amplitudes of Eqs. (12) a
(13) to those of Refs. [1], [2], and [5], we observe th
both Eqs. (12) and (13) can be written in the form

C2fv, v1, v2, Bg ­
m8

4B2vv1v2

3
Z `

0

ds
s

e2m2sJ2ss, v, v1, v2, Bd ,

(14)

in which J2 is independent of the electron massm.
Inspection shows that the amplitude expressions of A
[1] and Baier, Milstein, and Shaisultanov [5] are alrea
in the form of Eq. (14), while that of Stoneham [2] ca
be put in this form by doing an integration by parts in t
proper time parameters, using the identity

m2e2m2s ­ 2
d
ds

e2m2s (15)

to eliminate a term proportional tom2 in the amplitude.
In rewriting Stoneham’s formulas in this form, we no
that his M1sBd is what we are callingC2fv, v1, v2, Bg,
and that there is an error of an overall minus s
in either his Eq. (37) or the first line of his Eq. (40
Similarly, in rewriting the formulas of Baier, Milstein, an
Shaisultanov in this form, we note that their amplitudeT
is related toC2 by

C2fv, v1, v2, Bg ­
p1y2m8

4a3B3vv1v2
T . (16)
in

n

f

d
t

r

Once all amplitudes are put in the form of Eq. (1
we can compare them by comparing the proper time
tegrandJ2ss, v, v1, v2, Bd, which in each case involve
only a double integral over a bounded domain. The o
remaining subtlety is that we must remember thatJ2 van-
ishes asvv1v2 for small photon energy; this is manife
in Eq. (13) above, but in Eq. (12) and the correspond
equations obtained from Refs. [1], [2], and [5], there
an apparent linear term in the frequencies which vani
when the double integral is done exactly. In order to
robust results for small photon frequency when the do
integral is done numerically, this linear term must first
subtracted away, by replacing expressions of the formZ Z

eQsL 1 Cd , (17a)

with L, Q, andC, respectively, linear, quadratic, and c
bic in the photon frequencies, by the subtracted expresZ Z

fseQ 2 1dL 1 eQCg . (17b)

This subtraction is already present in the expres
of Eq. (25) of Ref. [1], and is discussed in the fo
of Eqs. (17a) and (17b) in Ref. [5], and it also m
be applied to Eqs. (37) and (39) of Ref. [2] after
integration by parts of Eq. (15) has been carried
While in principle this subtraction should be appli
to Eq. (12) above, it turns out not to be needed th
because the linear term in the frequencies involves
integrals of the general formZ s

0
dt1 fss, t1d

Z s

0
dt2fdst1 2 t2d 2 1ysg , (18)

which is exactly zero using a discrete center-of-
integration method when thed function is discretized as
Kronecker delta. Thus Eq. (12) is robust for small pho
1697
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frequencies as it stands, when used in conjunction w
center-of-bin integration.

With these preliminaries out of the way, it is the
completely straightforward to program the functio
J2ss, v, v1, v2, Bd for the five cases represented by t
formulas of Adler [2], Stoneham [3], Eq. (12) of th
paper, Eq. (13) of this paper, and Baier, Milstein, a
Shaisultanov [5], with the result that they are all seen
be precisely the same; the residual errors approach
quadratically as the integration mesh spacing approa
zero, as expected for trapezoidal integration. We h
not carried out thes and v1 integrals needed to get th
photon splitting absorption coefficient, since this w
done in Ref. [1], with results confirmed by the mo
extensive numerical analysis given in Ref. [5]. Howev
anyone wishing to do this further computation can obt
our programs for calculating the proper time integra
J2 by accessing S. L. A.’s home page at the Institute
Advanced Study [12].
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