VOLUME 77, NUMBER 9 PHYSICAL REVIEW LETTERS 26 AGUST 1996

Collective Excitations of Atomic Bose-Einstein Condensates
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We apply linear-response analysis of the Gross-Pitaevskii equation to obtain the excitation frequencies
of a Bose-Einstein condensate confined in a time-averaged orbiting potential trap. Our calculated values
are in excellent agreement with those observed in a recent experiment. [S0031-9007(96)00981-7]
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The recent attainment of quantum degeneracy condiand w; = 27 v; is the angular frequency of oscillation
tions in magnetically trapped alkali vapors [1-3] hasalong the axisi. The time-averaged orbiting poten-
opened the road to understanding the many-body physidgl (TOP) trap [1,10] treated here is cylindrically sym-
of atomic Bose-Einstein condensates (BECs) in unprecenetric; its potential is given byw, = w, = w, and
dented detail. For dilute gases, it is believed that the esw, = \/8 w . The results presented below correspond to
sential physics of the BEC ground state is captured in the, = w_/27 = 210 Hz. The parametel/, expresses the
Gross-Pitaevskii mean-field formalism. Calculations donenteraction between two atoms &g = 47 h>a/m, where
with the Gross-Pitaevskii (GP) equation [4,5] have indeed; is the scattering length, which characterizes the zero-
agreed reasonably well with the few experimental deterenergy behavior of the-wave phase shift in collisions
minations of condensate shapes, sizes, and lifetimes theetween two atoms. The scattering lengtls the only
have been made to date, but it cannot be said that the thpiece of atomic collision data used as input to our calcu-
ory has been subject to stringent tests. lations. The present results are given in terms of the most

In this paper we report theoretical results for the exci-recent [11] experimental value, = 1104y, whereay is
tation spectrum of a BEC of trappetdRb, obtained by the Bohr radius; our calculations were actually carried out
computing the response to small mechanical disturbancesith a previously published [12] value af, = 100ay.
of a BEC described by the GP equation. These results agince Eq. (1) obeys a scaling law involving, », , anda
compared with those of a recent experiment [6], which(see below), we can rescale our results to compare quan-
has observed the free oscillations of a BEC that is brieflytitatively with experiment. We have also performed the
shaken at frequencies near resonance. We believe thadlculation for the exact conditions of the experiment of
this comparison provides the most critical quantitative tesRef. [6]. It should be noted that for the alkali atoms in
of mean-field theory made to date. The agreement bezurrent BEC studies, the experimental determination of
tween experimental and theoretical results is excellent. requires extensive spectroscopic analysis. Present values

To describe a magnetically trapped atomic gas, wef a are accompanied by substantial uncertainties [13] for
adopt the standard GP equation, which is applicable [7some of the alkalis; this is not, however, the caseffeib.

9] when the condensate fraction of a gaseous system is Equation (1) has previously been solved by several
close to unity. Each atom in the condensate occupies thadependent methods [4,5] to describe the BEC ground
same orbitaly, (r), which is determined by solution of the state. Here we investigate the response of the ground

nonlinear Schrodinger equation, state to an oscillatory perturbation at angular frequency
[Ho + NoUolihe(0)F1ho(r) = wip,(r), (1) wp using standard linear-response theory [14]. The
2 ) o associated time-dependent GP equation takes the form

where Hy = —mvz + Virap(r) is the Hamiltonian for
an isolated atom in the trapNy is the number of atoms oW 2 —iwpt
. . . h— = [Hy + W(r, )| + g
in the condensatd/, represents the interaction between ! ot LHo -+ Uol¥(r, 1) Fer)e ™
condensate atoms, and the eigenvalués the chemical + fo(0)elr W (r, 1), )
potential.

In most current trap design8.,, can be described by where f-(r) are the spatially dependent amplitudes of
the anisotropic harmonic oscillator potentid.,(r) =  the perturbation. We solve this equation in the linear-

3 m(w2x? + w}y* + w?z?), wherem is the atomic mass response limit. The details of this approach are described
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elsewhere [15], and we simply state the central result; the solutions was assessed by increasing the basis-set

here. By using the form size until the mode frequencies converged to at least three
W(r 1) = —iut/h N1/2 r) + ulr)e it flgures. .
(r.e)=e [No™ 4 ‘) , u(r)e Figure 1 shows our results for the lowest three excita-
* LWy . . . .
+ vi(r)e' '] (3)  tion frequencies (in units of the trap frequem&?), as a

we obtain Eq. (1) and also the linear-response equationsfunction of Ny. A simple scaling law facilitates compari-
. 2 I V) son of calculation and experiment. A solution of Egs. (1),
[L = hwpJulr) + NoUolyy (r) v (x) 0 f+(r) (6), and (7), plus normalization for experimental values
X g (r), (4) of the parameterfNy”, a., v, m,}, will also satisfy the
NoUo[o*®)Pu(r) + [£ + hw,Ju(r) =— N1/2 () equations for the parameter _d@tot),a,, v(f),m,}, if the
oUol g (r)Fulr @pJUir o f-(r quantityy = Noa(mv,)'/? is constant. Thus, excitation
X ¢, (r), (5) measurements performed on a BEC V\mﬁ) atoms in a

where L = Hy — u + 2UoNoli, (r)|2. trap of frequencyu(f) can be related to the spectrum dis-
This pair of equations can be solved by expansion irfPlayed in Fig. 1 by taking
terms of the GP normal-mode equations, (1) a\ [ v V2 (e)
N = <_) YL NS, ©)
[L£ — hw)Jua(r) + NoUo[h,(r)Pva(r) =0,  (6) ar )\ "

NoUo[; (0)Pua(r) + [L + hopJua(r) =0, (7) wherer!) = 210/+/8 =~ 74.25 Hz.
where w, is an eigenvalue and,(r), v,(r) are corre- We have used this scaling law to compare our results

sponding eigenfunctions. In solving the above equationwith those of the recent experiment [6], where excitations
we demand that,(r) andwv,(r) be square integrable and, of an atomic BEC were observed for the first time. In-

in solving Eq. (1), we require that cluded on this graph are the data points of Ref. [6] rescaled
using Eq. (9) to match the trap, scattering-length, and
j d3r|¢/g(r)|2 =1. (8) condensate-number parameters of our calculdiion =

210/+/8 Hz,a, = 100ao). As a check of the scaling law,
The ground-state condensate wave functipf(r) for  we have also performed the calculation for the precise pa-
the TOP trap is symmetric under rotations about the rameters of the experimeft, = 43.2 Hz, 132 Hz, and
axis; it follows that Egs. (6) and (7) are invariant under, = 1104,). Table | presents the comparison. As ex-
such rotations, so the eigenfunctiomg(r) andv,(r) are  pected, the results are identical to those predicted by us-
characterized by sharp eigenvaluesof the z projection  ing the scaling law and the previous calculation. No
of the angular momentum. attempt has been made here to account for experimental

As we have discussed elsewhere [15], there is a straightmcertainties. The ranges presented for the experimental
forward connection between the resonant oscillation fre-

guenciesw, and the quasiparticle mode frequencies that

are encountered. Stated simply, Egs. (6) and (7) are identi-
cal to the equations that define the quasiparticle modes an™ 5 oF
frequencies within the Bogoliubov approximation. Thus _

m=0
an experiment that measures the free oscillatory responsg |\ o+ e
of a shaken BEC provides a direct observation of the quasi 2
particle spectrum. In particular, by shaking the BEC at a £
frequency near one of the resonanegs one can produce 16 -
ml =

a response that is dominated by that. This is the ap-
proach that has been taken by the first such experiment o
the SyStem [6] . Basis-set

We have solved numerically the system of equationsg 12 = Large Ny limit (Stringari)
consisting of Egs. (1), (6), and (7) under the conditions of % * JibAdaa
that experiment. The solution was accomplished in two 19
steps. First, Eg. (1) was solved by expanding the solutior 0 > 1 6 8 10
Ye(r) in a basis set consisting of a finite number of No [10% Atoms]
trap eigenfunctions. The details of the numerical metho
have been recounted elsewhere [5]. Equations (6) and (

were then_ solved by expandlw(r) and v,(r) in the rap condensate as a function of the number of condensate
same basis set. These expansions convert Egs. (6) and %ms,Né’). The dotted lines show the largé, predictions

into a generalized matrix eigenvalue problem that can bgf Ref. [17], and the filled circles show the raw data points of
solved by standard numerical techniques [15]. The erroRef. [6] rescaled according to Eq. (9).

1.4 e S S e

on frequency

Iml =1

G. 1. The lowest three calculated excitation frequencies, in
its of the perpendicular trap frequenz&’/), of the JILA TOP-
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TABLE I. A comparison of the data of Ref. [6] with a shown in Fig. 1. The fact that the middle curves also

calculation performed using the actual experimental trapseem to be approaching this limit & — o also lends

scattering-length, and condensate-number parameters. NOg, .t to their interpretation as quadrupole excitations.

that the first column of the table indicates the azimuthal . N “ »
The curve labeledr: = 0" corresponds to a “largér

quantum number of the mode. e - - -
= excitation that is a breathing mode in they plane. The

SO N Pote SO N % o diff.  asymptotic limit is shown in Fig. 1 and is given by [17]
vy Vi

m
3 1 1/2

0 43.2 3420 1.84-1.88 43.2 3421 1.89 2.7 Vmode/VL N <2 + )2 = _\/9)\4 — 1612 + 16) ,

0 132 2400 1.79-1.83 132 2401 1.88 5.0 2 2

2 43.2 2800 1.41-1.44 43.2 2801 1.49 5.7

2

132 2200 1.39-1.42 132 2203 1.47 5.8 (10)

whereA = v, /v, = +/8 for the TOP trap. In the non-

interacting limit, the frequencies of the breathing and
ratio(vfrf(),de/vf)) in Table | involve a (1-3)% reduction of quadrupole modes are seen to degenerate, reflecting a
the raw data to extrapolate to zero-amplitude driving [16].well-known property of the two-dimensional harmonic os-
It is fair to say that the agreement is excellent, as the difcillator. As discussed in Ref. [6], the symmetries of the
ference between theory and experiment ranges from 2%ormal modes can be tested by experimental selection
to 6%. rules, and the classifications of the observed modes are

To better understand the nature of these excitationfound to agree with those given here.
we compare them with the results of Stringari [17] who In conclusion, we have presented excitation spectra that
obtained analytic solutions to the linearized GP equatioragree well with the data of a recent experiment. We have
in the hydrodynamic limi{Ny — ). The curve labeled shown that these data constitute a direct measurement of
“Im| = 1" is a doubly degenerate dipole excitation that the 7 = 0 Bogoliubov spectrum of an atomic BEC. We
coincides exactly with the first excited state of the barehave also used the largé; limit and mode shapes to de-
trap. This is because the lowest dipole mode of arscribe the nature of these excitations. The experimental
ensemble of identical interacting atoms in an externakconfirmation of these data will have significant implica-
harmonic potential corresponds to a rigid motion of thetions for understanding the many-body physics of these
center of mass, independent of the nature of interatomidilute, weakly interacting bosonic systems, and for practi-
forces [17]. cal use in future BEC engineering.

The curve labeled || = 2" corresponds to the two We thank D. S. Jin, J. R. Ensher, M. R. Matthews, C. E.
degenerate excitations that have magnetic quantum nunwWieman, and E. A. Cornell for stimulating discussions and
bersm = *2. The excitation frequencies tend 2@ in  for making their experimental data available to us in ad-
the noninteractindN — 0) limit, as expected for a two- vance of publication. Work at Oxford was supported with
dimensional harmonic oscillator. The quadrupolar naturgunding from the Rhodes Trust and the U.K. Engineer-
of these excitations is exhibited in Fig. 2, which con-ing and Physical Sciences Research Council. This work
tains a plot ofu, over a region of thex-y plane [i.e., was supported in part by National Science Foundation
u,(x,y,0)] for Ny = 2000 atoms. This plot clearly shows Grants PHY-9601261 and PHY-9612728 and by the GSU
the four-peak structure characteristic of quadrupole excifoundation.
tations, which is simply the angular dependenceZp$.

The largeN, limit of this mode, vmeae/¥ 1 — /2, is also
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