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Level Statistics and Localization for Two Interacting Particles in a Random Potential
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We describe the level statistics of two interacting particles in a disordered conductor by a Gaussian
matrix ensemble with preferential basis. This simplified model allows us to identify the energy scale
Ey, below which the spectrum exhibits the universal Wigner-Dyson rigidiy; o« |U|, when a small
interaction|U| yields “Rabi oscillations” between only two eigenstates/at= 0, while Ey o« U? for
larger |U|, as numerically confirmed for conductors. Scaling to insulators, this yields a localization
length increasing al’| before eventually behaving 8.  [S0031-9007(96)00896-4]

PACS numbers: 72.15.Rn, 73.20.Fz

For a single particle diffusing in a disordered system ofcase, and to determine its dependencé&/onWe assume
size L smaller than the one particle localization lengtha tight-binding model [2] on a/-dimensional lattice K¢
L, there are two characteristic energies: the Thoulessitesp, random potential with a box distribution of width
energyE, = hiD/L? and the level spacing, = B;/L¢Y  2W). The hopping term takes a constant vaie= 1
(By, D, andd are the bandwidth, the diffusion constant, and U is the on-site interaction. Assuming two electrons
and the system dimension, respectively). If one writeswith opposite spins, we consider the symmetric states.
the distribution of energy levels as a Gibbs factor ofThe TIP Hamiltonian [2] can be written in a basis of
a fictiious Coulomb gas, the corresponding pairwisehe N = L{(L{ + 1)/2 (symmetrized) products of one
interaction for levels with separatioa < E. coincides particle state§AB). We denote by, the value on site
[1] with the logarithmic repulsion characteristic of the p of the one particle eigenstate with energy. On this
matrix ensembles which are statistically invariant undeibasis, the diagonal terms are dominated by one particle
change of basis, e.g., the Gaussian orthogonal ensemhgentributionse, + €z and the interaction Hamiltonian
(GOE). Fore > E,, the level repulsion vanishes more or yields a full matrix (forL = L) with entriesUQapap =
Ie_ss qu_ickly, depending on t_he system dimension.. The/ >, R,AR R, Rpp. The magnitude of those terms is
dimensionless conductangg is given byE./A;. This orderU/Li’d/z with a random sign.

ratio is the single relevant parameter in the scaling theory peafore considering the TIP Hamiltonian, it is instruc-

of localization. In quasi-one-dimension, the size whergjye 1o discuss a simplified matrix model where the
g1 ~ 1 definesL;. In ti]ree dimensions, the mobility edge ¢qrelations between matrix elements are neglected: an
is characterized by, ~ g., whereg. is of order 1. ensemble of real symmetric matric&s with indepen-

‘We shall generalize those concepts to two particlegent entries, characterized by Gaussian distributions with
with a local (repulsive or attractive) interaction. This two variances(G2) =~ B2/3 (B, = 4Vd + 2W) and(G?) ~
i t

interacting particle (TIP) problem has received partlcularUz/L%d for the diagonal and off-diagonal terms, respec-

fla_tltpenggtlessmr%eaShsxagggnsbgr[zg F)ch;tgdrﬁﬁéghgr Cgtan?ively. The averages are set to zero, which neglects a shift
y 9 of the diagonal terms by an amouiQapap = U/Lf as-

than L;. Shepelyansky’s original reasoning consists in .
; sumed to be much smaller th&. These shifts preserve
mapping the problem fol. > L; onto a random band the sign of U and, for largeU, eventually split the en-

matrix model with a superimposed diagonal matrix. Imry . L
[3] later used the Thouless scaling block picture too' 9Y band into two parts. For the sake of simplicity, we

. . : ignore them, restricting us to small and to a Gauss-
arrive at precisely the same results. The smearing du: L . . ;
. X o ian matrix with preferential basis (GMPB) model which
to the interaction of the energy levels withib, was

estimated using Fermi's golden rule, yieldidg o U2, has been used previously [7] to study the GOE to Poisson

This delocalization effect has been confirmed by transfe(r:ross'oVer for the level statistics, and to define a maxi-

matrix studies [4,5], and unambiguously illustrated ffomgfgtiﬂtrggyeﬂggiﬂ Wr;?;ng::rrawz é(;%)thig I\/e(;/rgl n-
numerical studies [6] of rings threaded by a® flux. P P ' ! y

2 .
However, in one dimension, for system sizes WhichIarge as _compqred tOG.ff.)’ one ha_s, indeed a strongly_
can be numerically investigated, one obtains [5] preferential basis and it is convenient to reorder the di-

|U| contrary to Fermi’'s golden rule, and a disorder2gonal terms such thal;, < Gy < --- < Gyy. Those
dependence [4l, = L% with & ~ 1.5-1.7 and not2, as G;; may be considered as the positions of the energy lev-
predicted by Shépelyalmsky and Im.ry ’ ' els in the zeroth approximation, when the interaction with

To understand those contradictory results, we studt € other states is ngglected. The small coupling terms
the TIP energy level statistics at a scdle in order to i spread those basis states oligiA, neighbors. A, ~

identify the energy which plays the role @, in this 27(G})/N is the level spacing anBl can be estimated
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using Fermi’s golden ruld’ = 27T<G,~2j>/A2. Diagonaliz-  p,(G) which removes the statistical invariance under
ing G by an orthogonal transformatioft (G = 0G,0',  change of basis. Expressed [8] in eigenvalue-eigenvector
where G, is a diagonal matrix with real entrieg,), coordinates, it reads
we consider the Wigner strength functigny (E,n) = N “
N
Y01 02,8(E — E,). ForL > Ly, the ensemble aver- p,(G) =« l_[ exp<— 353 (E, — E5)220§a0§ﬁ> .
p

age ofpw(E + G, n) has been found [9—-11] in agree- a<p
ment with the Breit-Wigner form 3
r The question is to understand how this additional factor,

(pw(Gun + E,n)) = 2alE2 + 12/4] Rr(E). (1)  after integration over the matrice8 [distributed with

L . . Haar's measure.(dO) over the orthogonal group], can
We show in Fig. 1 that this form characterizes also thedestroy the logarithmic level repulsion coming from

original TIP Hamiltonian forZ = L;, once the shifts o measure:(dG) = N<p |E, — E,ell—[N dEq u(dO).
UQn of the qua5|energ|e§l2,ln are taken into account. Tpjs will allow us to identify the characteristic scalg,
For the squared amplitude®;, of the projection of an a0y which one recovers the GOE rigidity, and above

eigenvector|a) on a basis staté:) separated in energy \ynich the levels become uncorrelated. Two cases have to
by E = E, — Gy, this implies [12] that its ensemble o -onsidered.

average is of ordeA,Rr(E). This shows us that a () T <A,—The G; are so small that one can

basis stateln) = |fiB> (ie., an eigenstate of the TIP j,q' consider the coupling between two nearest neigh-
Hamiltonian forU = 0) becomes delocalized ovéi/A, bor diagonal entries, i.e., @ X 2 matrix which can

of its neighbors (i.e., over the basis stali€’$ whereH,,,,, be diagonalized by a rotation of an ange One

is close toH,, = €4 + €p), with a Lorentzian shape finds I8 d00.(G) = — ext(—x)I where
centered inH,,, + UQ,,. I determines the localization ¥ = Me[z]/&{z gﬂée%otihg(xghe segar;'zi(())rgﬂ(,)f the two

in the preferential basis, and is given by Fermi's 9°|de”coupled levels. For < 1, f(x) ~ 1 and decreases as

rule for smallU (U = 2 in Fig. 1). 1 for x > 1. This gives
Having understood how the eigenstates are delocalize(/ v forx ' ¢
by the interaction over the preferential basis, we focus our ﬂ _ V8a?/u o N )
attention on the energy levels. We introduce a symmetry A, A, JE
breaki tex in th bability densit - .
reaxing parame q&mGze probabiiity Nen(s;lzy For e < E,, one has the GOE statistics, while fer>
G xexpl =S 2L (1 + A E,, the levels are uncorrelated.
p(G) p( FZI 207 ( M)KZ, 02> @ (i) T > A,.—Many neighboring G;; are coupled

by the off-diagonal terms. First, we consider the case
with o2 ~ B1/3 and ¢?/2(1 + p) =~ U?/L}*. When where ¢ = |E, — Egl <T, ie., the case where the
u = 0, one recovers the GOE ensemble Wiigor(G) *  two corresponding eigenvectors have a strong overlap.
exd—tr(G*)/20%]. When u # 0, there is a factor Assuming that the eigenvectot®,) have nonzero co-
ordinates of orde?2, = A,/T over I'/A, neighboring
100 , ! , : basis states only, one gety)_ 02,0,5 =~ Ay/T,

a
and exp—ue?A,/20°T) =~ 1, indepegdent ofe (<I).
Writing O = expA, with A a real antisymmetric matrix
[#(dO) = [ly<p dAapl, one can see that the small
fluctuations of theA,, around their typical values will
not yield a correction to the GOE level repulsion. This
means that there is no coupling between eigenvalues and
eigenvectors as far as< I' = E,, with

Ay

10 ¢

<pW (Hnn+ Uan +E )>

0.1

(5)

5 now, instead ofV/,/w previously. Whenle| > T, the

: i ' eigenvectors do not overlap and the levels become uncorre-
-0.2 -0.1 0 0.1 0.2 lated. In Ref. [8], it was noted that@®,, = 6, + Apa
whereA,, < 1,30, 02,0;5 ~ 2A%, which gives a
FIG. 1. The ensemble averaged strength function for a TIP /|¢| factor, after integration oved,z. This level at-
Hamiltonian (5 by 5 lattice in the metallic regimé = 2,V = y50ti0n exactly compensates the level repulsion due to
1). Diamonds, squares, and triangles are for= 0.2, 0.6, . - .
and 1.0, respectively. Lines are Breit-Wigner functids(E), n(dG). Qualitatively, one can adapt this reasoning to ob-
fitted to the numerical data. The inset shows hbBwdepends tain the requested level attraction, after integration over the

onU. The line representE = U?/22. eigenvectors.
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A numerical study of the GMPB ensemble as a functionU = 0, correlations which are neglected in the GMPB
of u exhibits the two regimes. The variané(E) of  model). The other difference results from the shifig,,,,
the number of levels in an interva is shown in Fig. 2. of the diagonal terms which become important wiiéis
For smallE, 2,(E) coincides with the GOE-logarithmic large. Clearly, the GMPB model is oversimplified for giv-
increase. One definds, from the energy interval where ing the asymptotic regimes, f& > A, and for largeU,

3, is above the GOE curve by a certain threshold (e.g.but gives the correct energy scale By < A;, and its
20%). For E > E,, it turns out that3,(E) can be U dependence for not too largé. TheU dependence of
fitted by (E/E#)“(“), which gives a second determination the exponentr (see inset of Fig. 4) is also different.

of E,. Note that those methods give a nonzefg For d = 1, a similar study is very instructive. When
(depending on the chosen threshold) even for uncorrelated = V = 1,E ~ 0, we have L, = 25, which gives
levels, which has been subtracted from the data. The insegain U, = 1. As expected, one can see in Fig. 4
of Fig. 2 shows the agreement of the two determinationghat Ey « |U| when |U| < U,, but whenU > U,, the

of E, and exhibits the predicted crossover #; when  splitting of the energy band occurs, ait, decreases.
I' = A, (u = N?), from aN?/u dependence (smajt)  One recovers uncorrelated levels for very large(for
towards aV/,/m dependence. The dependence of the d = 2, there is only a saturation d@fy). Ford = 1, this
exponenta (see inset in Fig. 4 below) depends on themeans that one can couple only two basis states within
exact form of the level interaction. L, = 25, with a small enough value d¥ to justify the

We now study directly the TIP Hamiltonian. Fdr=  simplified GMPB ensemble. The observation of tié
2, 3, is given around the band center (Fig. 3). We haveébehavior ofE requires larger values df; in d = 1 than
obtained the same curves fof = 1 andU = —1, and  considered in the numerical studies [4—6].
consider in more detail repulsive interactions in rings con- We now follow the argument developed by Imry [3] to
taining 10 X 10 sites threaded by a magnetic flux, so thatestimate the localization length,. First, we consider a
the level statistics should have a GUE behavior for energgeries of building blocks of size{. I'y is the smearing of
intervalse < Ey = E,, with (1 + w)~' = 6U%/L{“B}.  the TIP levels of one of the blocks, due to the interaction-
Except for this change from orthogonal to unitary symme-induced coupling with the neighboring block. For such a
try, the similarity with the GMPB model is very striking. quasi-1D wire, the dimensionless conductance at scale
The crossover valu&/, = /2(8Vd + 4W)//7 L4/? be- s given by
tween the two regimes is of order 1, for the considered L, 1 Ty
parameters. Wheti > U,, we observe thé/? behavior g(Ly) = .~ 7 TAL (6)
of Ey. However, the behaviors for large energy intervals ! 2
and for large values o/ differ. In the TIP Hamilton- The factorl/2 gives [5] the right limit whenU — 0 and
ian, the one particle level rigidity becomes relevant wherd is a constant. Obviously, one should have = Ey.

E > A, (one hasA /A, superimposed GUE series when When I'y > A, I'y is given by Fermi's golden rule,
the case considered in Ref. [3], and we only discuss the

22 + '
10 o+
10 | Lt g ]
Ba| e &
A, . LY o R
1 .{4/ '."f
(L2 s 1020 /.-':H..f"/
N//}_J. "." 2 GOE
0.1 F &
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0.1 1 10 ga, EIA,

FIG. 2. %, for the GMPB ensembléN = 500). Diamonds, FIG. 3. 3, for the symmetric states of a 2D TIP Hamiltonian
squares, and triangles are far= 30000, 5000, and 1000, re- (ring with 10 X 10 sites, W =V = 1,E ~ 0). The ring is
spectively. The inset shows hoi, depends oru. The tri-  threaded by a magnetic flub = ®,/4. Diamonds, squares,
angles give the energy wheb is 20% above the GOE value. and triangles are fo/ = 0.25, 0.75, and 2.0, respectively. The
The solid and the dotted line represeft /A, = 0.039N?/u inset shows howE, depends orU. The data are obtained as
and E,/A, = 0.19N/,/u, respectively. The squares result described in the caption of Fig. 2. The dotted line [solid line]
from a fit>, = (E/E, )", valid for E > E,,. corresponds t&y /A, = 1.35U/V [Ey/A, = 2.1(U/V)?].
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Eu ' I whereE is the total excitation energy. One immediately
Ay L L obtains that the quasiparticle conductang&E, L) is
1 LIRS i P ] of order of g»(L;) when E = B;, which givesLi(E =
3 a " B1) = Ly, in agreement with Ref. [13]. Similarly, in
* A i three dimensions, Imry’s relatidik,,,, = (B%/IUI)E,Z”II/Z]
2 . % between the one quasiparticle mobility ed@g; and
} @ ,,.—w--"' the two quasiparticle mobility edgg,, does not change
i 1 %y, whenU < U, (v denotes the critical exponent associated

with Ly).

| In summary, we have shown that the basic concepts

0 5 10 developed for noninteracting particles can be naturally
vhw N extended to two interacting particles, after the changes

' Ec — E, andA; — A,. A similar conclusion has been

U obtained from a nonlinear model description of the TIP

FIG. 4. Ey for a 1D TIP Hamiltonian ¥ =V =1 and Hamlltonlan [14], wherL. > L. Moreover, ourapproa(_:h

L = L, = 25 sites). The dotted line correspondsfg/A, =  Can be easily extended to an arbitrary number of particles.

1.2U/V. Inset.« in the fit3, « E< for largeE. Squares: 1D We acknowledge a useful discussion with Boris

TIP Hamiltonian, as a function dfv/L/V. Diamonds: GMPB  Shapiro and Dima Shepelyansky, and the financial sup-
ensemble, as a function of/./u. port of the European HCM program (D. W.).
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