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Level Statistics and Localization for Two Interacting Particles in a Random Potential
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We describe the level statistics of two interacting particles in a disordered conductor by a Gaussia
matrix ensemble with preferential basis. This simplified model allows us to identify the energy scale
EU , below which the spectrum exhibits the universal Wigner-Dyson rigidity.EU ~ jUj, when a small
interactionjUj yields “Rabi oscillations” between only two eigenstates atU ­ 0, while EU ~ U2 for
larger jUj, as numerically confirmed for conductors. Scaling to insulators, this yields a localization
length increasing asjUj before eventually behaving asU2. [S0031-9007(96)00896-4]

PACS numbers: 72.15.Rn, 73.20.Fz
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For a single particle diffusing in a disordered system
size L smaller than the one particle localization len
L1 there are two characteristic energies: the Thou
energyEc ­ h̄DyL2 and the level spacingD1 ø B1yLd

(B1, D, andd are the bandwidth, the diffusion consta
and the system dimension, respectively). If one wr
the distribution of energy levels as a Gibbs factor
a fictitious Coulomb gas, the corresponding pairw
interaction for levels with separatione , Ec coincides
[1] with the logarithmic repulsion characteristic of t
matrix ensembles which are statistically invariant un
change of basis, e.g., the Gaussian orthogonal ense
(GOE). Fore . Ec, the level repulsion vanishes more
less quickly, depending on the system dimension.
dimensionless conductanceg1 is given byEcyD1. This
ratio is the single relevant parameter in the scaling the
of localization. In quasi-one-dimension, the size wh
g1 ø 1 definesL1. In three dimensions, the mobility ed
is characterized byg1 ø gc, wheregc is of order 1.

We shall generalize those concepts to two parti
with a local (repulsive or attractive) interaction. This t
interacting particle (TIP) problem has received particu
attention since Shepelyansky [2] pointed out that cer
TIP states may extend over a scaleL2 much larger
than L1. Shepelyansky’s original reasoning consists
mapping the problem forL ¿ L1 onto a random ban
matrix model with a superimposed diagonal matrix. Im
[3] later used the Thouless scaling block picture
arrive at precisely the same results. The smearing
to the interaction of the energy levels withinL1 was
estimated using Fermi’s golden rule, yieldingL2 ~ U2.
This delocalization effect has been confirmed by tran
matrix studies [4,5], and unambiguously illustrated fr
numerical studies [6] of rings threaded by anAB flux.
However, in one dimension, for system sizes wh
can be numerically investigated, one obtains [5]L2 ~

jUj contrary to Fermi’s golden rule, and a disord
dependence [4]L2 ~ La

1 with a ø 1.5 1.7 and not2, as
predicted by Shepelyansky and Imry.

To understand those contradictory results, we s
the TIP energy level statistics at a scaleL1 in order to
identify the energy which plays the role ofEc in this
0031-9007y96y77(8)y1556(4)$10.00
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case, and to determine its dependence onU. We assume
a tight-binding model [2] on ad-dimensional lattice (Ld

1
sitesp, random potential with a box distribution of widt
2W ). The hopping term takes a constant valueV ­ 1
andU is the on-site interaction. Assuming two electro
with opposite spins, we consider the symmetric sta
The TIP Hamiltonian [2] can be written in a basis
the N ­ Ld

1 sLd
1 1 1dy2 (symmetrized) products of on

particle statesjABl. We denote byRpA the value on site
p of the one particle eigenstate with energyeA. On this
basis, the diagonal terms are dominated by one par
contributions eA 1 eB and the interaction Hamiltonian
yields a full matrix (forL # L1) with entriesUQABA0B0 ­
U

P
p Rp

pARp
pBRpA0 RpB0 . The magnitude of those terms

of orderUyL
3dy2
1 with a random sign.

Before considering the TIP Hamiltonian, it is instru
tive to discuss a simplified matrix model where t
correlations between matrix elements are neglected
ensemble of real symmetric matricesG with indepen-
dent entries, characterized by Gaussian distributions w
varianceskG2

iil ø B2
1y3 sB1 ­ 4Vd 1 2W d and kG2

ijl ø
U2yL3d

1 for the diagonal and off-diagonal terms, respe
tively. The averages are set to zero, which neglects a s
of the diagonal terms by an amountUQABAB ø UyLd

1 as-
sumed to be much smaller thanB1. These shifts preserv
the sign ofU and, for largeU, eventually split the en-
ergy band into two parts. For the sake of simplicity, w
ignore them, restricting us to smallU and to a Gauss
ian matrix with preferential basis (GMPB) model whic
has been used previously [7] to study the GOE to Pois
crossover for the level statistics, and to define a ma
mum entropy model [8], where the range of the level
teraction depends on a parameter. WhenkG2

iil is very
large as compared tokG2

ijl, one has indeed a strongl
preferential basis and it is convenient to reorder the
agonal terms such thatG11 , G22 , · · · , GNN . Those
Gii may be considered as the positions of the energy
els in the zeroth approximation, when the interaction w
the other states is neglected. The small coupling te
Gij spread those basis states overGyD2 neighbors.D2 øq

2pkG2
iilyN is the level spacing andG can be estimated
© 1996 The American Physical Society
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using Fermi’s golden rule:G ø 2pkG2
ijlyD2. Diagonaliz-

ing G by an orthogonal transformationO (G ­ OGdOt ,
where Gd is a diagonal matrix with real entriesEa),
we consider the Wigner strength functionrW sE, nd ­PN

a­1 O2
nadsE 2 Ead. For L ¿ L1, the ensemble ave

age ofrW sE 1 Gnn, nd has been found [9–11] in agre
ment with the Breit-Wigner form

k rW sGnn 1 E, ndl ­
G

2pfE2 1 G2y4g
; RGsEd . (1)

We show in Fig. 1 that this form characterizes also
original TIP Hamiltonian forL # L1, once the shifts
UQnn of the quasienergiesHnn are taken into accoun
For the squared amplitudeO2

na of the projection of an
eigenvectorjal on a basis statejnl separated in energ
by E ­ Ea 2 Gnn, this implies [12] that its ensemb
average is of orderD2RGsEd. This shows us that
basis statejnl ; jABl (i.e., an eigenstate of the TI
Hamiltonian forU ­ 0) becomes delocalized overGyD2

of its neighbors (i.e., over the basis statesjn0l whereHn0n0

is close to Hnn ­ eA 1 eB), with a Lorentzian shap
centered inHnn 1 UQnn. G determines the localizatio
in the preferential basis, and is given by Fermi’s gold
rule for smallU (U # 2 in Fig. 1).

Having understood how the eigenstates are deloca
by the interaction over the preferential basis, we focus
attention on the energy levels. We introduce a symm
breaking parameterm in the probability density

rsGd ~ exp

0@2

NX
i­1

G2
ii

2s2
2 s1 1 md

NX
i,j

G2
ij

s2

1A , (2)

with s2 ø B2
1y3 and s2y2s1 1 md ø U2yL3d

1 . When
m ­ 0, one recovers the GOE ensemble withrGOEsGd ~

expf2trsG2dy2s2g. When m fi 0, there is a facto
TI

ll
l
is
and

rre-

to
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the
FIG. 1. The ensemble averaged strength function for a
Hamiltonian (5 by 5 lattice in the metallic regimeW ­ 2, V ­
1). Diamonds, squares, and triangles are forU ­ 0.2, 0.6,
and 1.0, respectively. Lines are Breit-Wigner functionsRGsEd,
fitted to the numerical data. The inset shows howG depends
on U. The line representsG ­ U2y22.
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rmsGd which removes the statistical invariance und
change of basis. Expressed [8] in eigenvalue-eigenve
coordinates, it reads

rmsGd ~

NY
a,b

exp

0@2
m

2s2
sEa 2 Ebd2

X
p

O2
paO2

pb

1A .

(3)
The question is to understand how this additional fac
after integration over the matricesO [distributed with
Haar’s measuremsdOd over the orthogonal group], ca
destroy the logarithmic level repulsion coming fro
the measuremsdGd ­

QN
a,b jEa 2 Ebj

QN
a dEamsdOd.

This will allow us to identify the characteristic scaleEm

below which one recovers the GOE rigidity, and abo
which the levels become uncorrelated. Two cases hav
be considered.

(i) G , D2.—The Gij are so small that one ca
just consider the coupling between two nearest nei
bor diagonal entries, i.e., a2 3 2 matrix which can
be diagonalized by a rotation of an angleu. One
finds [8]

R
durmsGd ­ fsxd ­ exps2xdI0sxd, where

x ­ me2y8s2, e denoting the separation of the tw
coupled levels. Forx , 1, fsxd ø 1 and decreases a
1y

p
x for x ¿ 1. This gives

Em

D2
­

p
8s2ym

D2
~

N
p

m
. (4)

For e , Em, one has the GOE statistics, while fore ¿

Em, the levels are uncorrelated.
(ii) G . D2.—Many neighboring Gii are coupled

by the off-diagonal terms. First, we consider the ca
where e ­ jEa 2 Ebj , G, i.e., the case where th
two corresponding eigenvectors have a strong over
Assuming that the eigenvectorsjOal have nonzero co-
ordinates of orderO2

na ø D2yG over GyD2 neighboring
basis states only, one gets

PN
p­1 O2

paO2
pb ø D2yG,

and exps2me2D2y2s2Gd ø 1, independent ofe s,Gd.
Writing O ­ expA, with A a real antisymmetric matrix
fmsdOd ­

Q
a,b dAabg, one can see that the sma

fluctuations of theAna around their typical values wil
not yield a correction to the GOE level repulsion. Th
means that there is no coupling between eigenvalues
eigenvectors as far ase , G ; Em with

Em

D2
~

N2

m
(5)

now, instead ofNyp
m previously. Whenjej ¿ G, the

eigenvectors do not overlap and the levels become unco
lated. In Ref. [8], it was noted that ifOpa ø dp,a 1 Apa

whereApa ø 1,
PN

p­1 O2
paO2

pb ø 2A2
ab, which gives a

1yjej factor, after integration overAab . This level at-
traction exactly compensates the level repulsion due
msdGd. Qualitatively, one can adapt this reasoning to o
tain the requested level attraction, after integration over
eigenvectors.
1557



VOLUME 77, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 19 AUGUST 1996

io

c
e
.g

n

at
ns
on

e
he

v

on
a
rg

e
.

re

al

e
n

B

v-

f

n

4

.

thin

to

n-
a

,

A numerical study of the GMPB ensemble as a funct
of m exhibits the two regimes. The varianceS2sEd of
the number of levels in an intervalE is shown in Fig. 2.
For smallE, S2sEd coincides with the GOE-logarithmi
increase. One definesEm from the energy interval wher
S2 is above the GOE curve by a certain threshold (e
20%). For E . Em, it turns out thatS2sEd can be
fitted by sEyEmdasmd, which gives a second determinatio
of Em. Note that those methods give a nonzeroEm

(depending on the chosen threshold) even for uncorrel
levels, which has been subtracted from the data. The i
of Fig. 2 shows the agreement of the two determinati
of Em and exhibits the predicted crossover forEm when
G ø D2 sm ø N2d, from a N2ym dependence (smallm)
towards aNyp

m dependence. Them dependence of th
exponenta (see inset in Fig. 4 below) depends on t
exact form of the level interaction.

We now study directly the TIP Hamiltonian. Ford ­
2, S2 is given around the band center (Fig. 3). We ha
obtained the same curves forU ­ 1 and U ­ 21, and
consider in more detail repulsive interactions in rings c
taining10 3 10 sites threaded by a magnetic flux, so th
the level statistics should have a GUE behavior for ene
intervalsE , EU ; Em, with s1 1 md21 ø 6U2yL3d

1 B2
1.

Except for this change from orthogonal to unitary symm
try, the similarity with the GMPB model is very striking
The crossover valueUc ø

p
2 s8Vd 1 4W dy

p
p Ldy2 be-

tween the two regimes is of order 1, for the conside
parameters. WhenU . Uc, we observe theU2 behavior
of EU . However, the behaviors for large energy interv
and for large values ofU differ. In the TIP Hamilton-
ian, the one particle level rigidity becomes relevant wh
E . D1 (one hasD1yD2 superimposed GUE series whe
-

e.

ult

the

n

,
e
s
e]
FIG. 2. S2 for the GMPB ensemblesN ­ 500d. Diamonds,
squares, and triangles are form ­ 30 000, 5000, and 1000, re
spectively. The inset shows howEm depends onm. The tri-
angles give the energy whereS2 is 20% above the GOE valu
The solid and the dotted line representEmyD2 ­ 0.039N2ym
and EmyD2 ­ 0.19Nyp

m, respectively. The squares res
from a fit S2 ­ sEyEmda, valid for E ¿ Em.
1558
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U ­ 0, correlations which are neglected in the GMP
model). The other difference results from the shiftsUQnn

of the diagonal terms which become important whenU is
large. Clearly, the GMPB model is oversimplified for gi
ing the asymptotic regimes, forE . D1 and for largeU,
but gives the correct energy scale forEU , D1, and its
U dependence for not too largeU. TheU dependence o
the exponenta (see inset of Fig. 4) is also different.

For d ­ 1, a similar study is very instructive. Whe
W ­ V ­ 1, E , 0, we have L1 ø 25, which gives
again Uc ø 1. As expected, one can see in Fig.
that EU ~ jUj when jUj , Uc, but whenU . Uc, the
splitting of the energy band occurs, andEU decreases
One recovers uncorrelated levels for very largeU (for
d ­ 2, there is only a saturation ofEU). For d ­ 1, this
means that one can couple only two basis states wi
L1 ø 25, with a small enough value ofU to justify the
simplified GMPB ensemble. The observation of theU2

behavior ofEU requires larger values ofL1 in d ­ 1 than
considered in the numerical studies [4–6].

We now follow the argument developed by Imry [3]
estimate the localization lengthL2. First, we consider a
series of building blocks of sizeLd

1 . GU is the smearing of
the TIP levels of one of the blocks, due to the interactio
induced coupling with the neighboring block. For such
quasi-1D wire, the dimensionless conductance at scaleL1
is given by

g2sL1d ;
L2

L1
ø

1
2

1 A
GU

D2
. (6)

The factor1y2 gives [5] the right limit whenU ! 0 and
A is a constant. Obviously, one should haveGU ; EU .
When GU . D2, GU is given by Fermi’s golden rule
the case considered in Ref. [3], and we only discuss
FIG. 3. S2 for the symmetric states of a 2D TIP Hamiltonia
(ring with 10 3 10 sites, W ­ V ­ 1, E , 0). The ring is
threaded by a magnetic fluxF ­ F0y4. Diamonds, squares
and triangles are forU ­ 0.25, 0.75, and 2.0, respectively. Th
inset shows howEU depends onU. The data are obtained a
described in the caption of Fig. 2. The dotted line [solid lin
corresponds toEU yD2 ­ 1.35UyV fEUyD2 ­ 2.1sUyV d2g.
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FIG. 4. EU for a 1D TIP Hamiltonian (W ­ V ­ 1 and
L ­ L1 ­ 25 sites). The dotted line corresponds toEU yD2 ­
1.2UyV . Inset:a in the fit S2 ~ Ea for largeE. Squares: 1D
TIP Hamiltonian, as a function ofU

p
LyV . Diamonds: GMPB

ensemble, as a function ofNyp
m.

caseGU , D2, whereGU ø
q

U2yL3d
1 . Physically, this

means thatU is so small that it couples only a singl
TIP state in one of the blocks to another TIP state
the next block, giving rise to “Rabi oscillations” betwee
those two coupled states. The inverse lifetime is no lon
given by the square of the coupling term, as in Ferm
golden rule, but by its absolute value. In addition, w
have shown that this inverse lifetime also gives the sc
below which one has a GOE spectral rigidity.

We discuss a few implications for TIP localization
For d ­ 1 andU , Uc (Uc ø 1 whenW ø V ø 1, see
Fig. 4), one getsL2yL1 ø 1y2 1 AsjUjyB1d

p
L1 which

is in agreement with the dependence onU observed in
the numerical studies [5]. The conjecture proposed
Ref. [5] givesL1 instead of

p
L1. As noted in Ref. [4],

the distribution of theQABA0B0 is far from being Gaussian
Moreover, the estimate of the variance comes fro
oversimplified “ergodic” one particle states [2]. This ca
matter as far as the description of theL1 dependence
by the GMPB model is concerned. However, theU
dependence is not affected by these simplifications
is correctly described by the GMPB model.

If one considers two quasiparticles above a Fermi s
one should replace [3] in Eq. (6)D2 by D2sEd ø D

2
1yE,
r

e

d

,

whereE is the total excitation energy. One immediate
obtains that the quasiparticle conductanceg

q
2 sE, L1d is

of order of g2sL1d when E ø B1, which givesL
q
2 sE ø

B1d ­ L2, in agreement with Ref. [13]. Similarly, in
three dimensions, Imry’s relationfEm2 ø sB2

1yjUjdEndy2
m1 g

between the one quasiparticle mobility edgeEm1 and
the two quasiparticle mobility edgeEm2 does not change
whenU , Uc (n denotes the critical exponent associat
with L1).

In summary, we have shown that the basic conce
developed for noninteracting particles can be natura
extended to two interacting particles, after the chan
EC ! Em andD1 ! D2. A similar conclusion has bee
obtained from a nonlinears model description of the TIP
Hamiltonian [14], whenL . L1. Moreover, our approach
can be easily extended to an arbitrary number of partic
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