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Equilibrium and Fluctuations in a Plasma Confined in a Pure Toroidal Field
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Equilibrium and confinement in currentless toroidal devices is explained in terms of a flow-fluctuation
cycle. The initial limiter equilibrium is shown to get fortified via fluctuation driven poloidal rotation
and ponderomotive force in a self-consistent manner. The relevance of this to the recently proposed
L-H transition theories is briefly discussed. [S0031-9007(96)00596-0]

PACS numbers: 52.55.Hc, 52.25.Gj, 52.30.Bt, 52.35.Py

It is well known that plasma cannot be confined in athis equilibrium, fluctuations which are generally due
pure toroidal magnetic field. This is because the curvaturéo Rayleigh-Taylor (RT) instability [9—-12] grow to a
of field lines gives rise to an effective gravity in which significant level. These fluctuations provide rotational
plasma experiences a free fall along the major radiugransform in two ways. Firstly, fluctuations directly drive
(R). In a typical moderate size machine the free fall timea radial current/, [2] or poloidal rotation which improves
is about a fewus. Surprisingly, however, experimental the limiter equilibrium. Secondly, the flow back reacts
observations have shown that the typical confinement timen fluctuations to modify the rms level profile. The mean
in such currentless toroidal devices (CTD) is about 2ponderomotive force (PF) due to these fluctuations then
orders of magnitude larger than the free fall time. Thisopposes the free fall of the plasma and further fortifies
interesting observation has attracted considerable attentidghe limiter equilibrium. The two new elements of our
in the field. model are as follows. Firstly, we show the generation of

Yoshikawaet al.[1] suggested that the space chargerotational transform through the fluctuation driven PF. In
on a plasma surface can be shorted out by a conductirgpme cases, this mechanism is found to be more efficient
limiter and provide what is known as the “limiter equi- than the one involving a radial electric field. Secondly,
librium.” However, in this equilibrium the space charge and perhaps more importantly, our model enlarges the role
within the plasma is uncompensated and attempts hawf the flow-fluctuation cycle in the context of confinement
been made to find additional mechanisms of rotationaphysics. In tokamaks, the rotational transform is provided
transform which may operate within the plasma. The fluchy the toroidal current, while the flow-fluctuation cycle
tuation driven cross-field current [2], or poloidal rotation provides an access to an equilibrium with quenched
which is generally observed in CTD [3], has been invokedluctuations, i.e.H mode. In CTD, on the other hand,
for this purpose. this cycle provides the basic rotational transform itself

The mechanism involving poloidal rotation and im- required for the equilibrium. In this sense, the role of
proved confinement finds strong support in a recent exthe flow-fluctuation cycle in confinement physics becomes
periment by Jain [4] where the rotation is enhanced byeven more important.

a biased probe driven radial electric field. The upshot We begin by describing the axisymmetric plasma equi-
of all this is that the fluctuation driven and/or exter- librium in the poloidal plane using cylindrical coordinates
nally assisted poloidal rotation or radial electric field isR, ¢, Z (R is along the major radiug, is the toroidal an-
one of the primary reasons for enhanced confinement igle). Within the single fluid magnetohydrodynamics, the
CTD. However, this explanation is incomplete. It is well equation of motion is given by [13]

known that flows affect the characteristics of many types r 4y IXB 2P.

of fluctuations [5,6]. Thus not only fluctuations affect (orp[a— + <V V) } = + ?R — pVri, (1)
generate) flows but also flows affect fluctuations. This ¢

flow-fluctuation synergy is the central theme of recentwherep, V, andJ are plasma mass density, velocity and
theories by Diamond and co-workers [5—8] regarding higteurrent density, respectively. This equation is a model
confinement transitions in tokamaks, elgH transition, ~equation where the effective gravity due to field line
CH transition, and recently discovered enhanced reverseurvature is represented by the tef?®/R)R and suffices
shear (ERS) transition. A self-consistent explanation mugior the compact derivation of the results given here.
thus take into account not only the generation of flowsEarlier, this equation has been used by Cogipal. [13]
due to fluctuations but also the backreaction of flows orénd Rosenblutfet al. [13] for studying curvature driven
fluctuations. modes. The termy;, represents ion-neutral collision

In this Letter, we provide such an explanation offrequency. TheR component of this equation describes
equilibrium and confinement in CTD in terms of the the free fall along? in the presence of various forces
flow-fluctuation cycle. Briefly, our model is as follows. Vg 2¢2
Initially, the limiter provides the “seed equilibrium.” In “or ~[(V V)V]R + R Vin VR » (2)
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where B = |B|Z and ¢, is the ion sound speed. In O T T T T T T
Eq. (2) we have neglected thie component of the term
J X B. Using Possion’s equation, the continuity equation ash b |
for charges, and Ohm'’s law, it can be shown that the ratio
of this term to the inertial term on the left hand side of /} a
Eq. (2) isV3/c?, which is small {4 is the Alfvén speed). 2 sof ]
We next consider PF due to fluctuation given ky - {15/
V)olr ~ (1/2)092/0R (g is the perturbed velocity). st i
From Eq. (2), without the fluctuation effect, one gets the
terminal velocity of the fallvg ~ 2c§/v,-,,R. The ion-
neutral collisions impede the radial acceleration of plasma e T 2 e o
due to effective gravity. It is interesting to note that a
significant improved confinement can be observed in such MINOR RADIUS (cm)
devices ifv;, > (2¢2/Ra)'/2. The terminal velocity of FIG. 1. Radial distribution of potential fluctuation amplitude
the fall in the presence of fluctuations is given by for (a) B = 200 G and (b)B = 800 G.
2
Ve = %[% - % %f/%} : (3)  Since the wavelength of these modes is small as compared
124

to a, we use slab approximatiom,(y, Z). The plasma is
If 99z/9R > 0, the PF due to fluctuations opposes thein a vacuum field which decreases aéR1We assume
free fall. For static equilibrium, the estimated critical that the linear eigenfunction is slowly varying in(or
fluctuation level ise@./T. =~ (2/kgas)\/a/R where & @) so that the poloidal variation of the mode amplitude is
is the potential fluctuationiz = —i(c/B)kg®, k¢ is the  neglected. We thus consider an eigenfunction of the form
poloidal wave number, and is the Larmor radius with & = ¢(x) exd—i(wt — kyy)]. The electron continuity
ion sound speed. It is interesting to note that the plasmgnqv . j = ( equations give two coupled equations for
confinement timea/Vg, wherea is the minor radius, znqgg:
can be extended by (1) exciting the shorter wavelength _ _
fluctuat@ons, (2) going to higher atomic mass, and (3) dn + V*eai + enV*ei(ﬁ - @) =0, (4
increasing neutral pressure. dt dy ay

We now present some results from a device called 5
BETA [4] which are consistent with this theoreti- 2 4 _ KV*ei <a_ _ k2>¢—
cal study. For typical BETA parameters of the ar- *| dt ay [\oxz 7
gon plasmaR =45cm, a = 15 cm, plasma radius (Vi D\ 9@ o
r=10cm, T, ~5eV, T;~02eV, B=200G, as<— . T VE)(:)_ = —€Vee o, (5)
plasma densityN ~ 5 X 10 cm™3, neutral density " Y Y
N, ~ 1.5 X 10" cm™3, ky ~ 0.3 cm™!, and equilibrium where the dependent variables are normalized: as
scale lengths of density, potential, and mean rms flucz/N, & = e¢/T,, N is the equilibrium densityn and
tuation level are-15 cm, we gete, ~ 3.5 X 10° cm/s, ¢ are the pertuﬁrbedﬁ density and potential fluctuations,
ag ~7cm, vy, ~10*s™!, and e@./T. =55%. In d/dt = 9d/ot + Vg -V, Vi = ascy/L, is the diamag-
Fig. 1 we show the experimentally measured rms fluctunetic drift velocity, a, = ¢,/Q;, ¢s = /T./m;, L' =
ation level profile atB = 800 and 200 G. The profile —d InN/dx, K = T;/T,, Q; is the ion cyclotron fre-
has an off-axis maxima with a value® /T, = 45% quency,e, = 2L,/R, Vi andV} are the first and second
(and 9|9%|/9R > 0 on the outboard) which within the derivatives ofE X B in the x direction, Vy = —cE,/B.
experimental uncertainties is sufficient to arrest the fred¢dere we have ignored the electron and ion temperature per-
fall on the outboard. The figure also shows significanturbations.
level on the inboard. The implication of this will be  We now solve the coupled Egs. (4) and (5) in weak
discussed at the end. shear limit. The effect of the strong velocity shear

We would now like to describe the theory of fluctua- on the RT mode will be investigated in a future pa-
tions in a toroidal device (like BETA). Since such devicesper. We choose E, = E,(xo) + EL(xo) (x — xo) +
typically always have self-consistent poloidal flows, weE”(xo) (x — x¢)*/2 to separate the sheakE![(x,)] and
shall investigate the theory in the presence of such flowssurvature E”(xo)] effects around the local radial point
In the last part of our calculation, we will make our analy-x = x,. Eliminating7i from Egs. (4) and (5), we get the
sis self-consistent by calculating poloidal flow generatioreigenvalue equation in the weak shear limit as
due to these fluctuations via Reynolds stress. 2 ~

A X o ) ; . 9°d 5 o 2VE — a,Vi/L,

s has been identified earlier, the fluctuations in CTD— = [kya‘Y - —

are generally due to RT mode [9—-12]. We investigate the? T o+ K

effect of poloidal flow on linear RT mode. This problem L el-e) a? N 2} 5 (6
has been investigated by a number of authors earlier [14]. @+ K)(@ —€,) 48 Br e, ()
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wherer = (x — xo)/a, + a/2B, @ =[w — kVe(xp)l/ ~ of Eq.(6) ¢ ~ exp(—B'’[(x — x0)/as + (a/2B)]},

wx, is the normalized Doppler shifted eigenvaldg, =  while the linear dispersion relation is expressed as
! (7!l __ 1l — N A
L,Vg/cs, Vg A_,,(aSL”/z)VE/CS evalu_ated at = xo, and o W — a,VL/L, 6.1 — €) B a_2
_ 2aSVE En(l - Gn) (2a) + K — En) A1 yax W+ K (5 + K) (5 — € ) 43
a = — + — — Ve, n
L,(w + K) (@ + K)2(w — €,)?
5 — e,(1 —¢€,)Qw + K — ¢, o @ = _,31/2~ (8)
- — — i
(@ + K)(@ — €,) We now take the effect of electric field shear and

Equation (6) is a standard Hermite equation. Fer 0  curvature perturbatively in Eq. (8). Fdar /T, < 1, the
(I is the radial mode number) case, the eigenfunct\omesult is

€n \7,/32 \7,'5' 1 €2 \7,'5' €n 2
w=—+iyy— =5t [1+ <” —1>}+i <1 >

2 avy " Ka? 4k2L2\ 477 K2a? 2y,\  K2L2
1 Gn(l - Gn) & 172
+ (1 — i) [ — v”} , 9
2k2a? Yo E

with the constraint Rg'/2) > 0 for the growing mode! where G, = (87)'/2F exdF2V!" (xo)] and F = €/4/

so that the eigenfunction is spatially bounded. The firsfok 1,(1 — 6”)1/27,0‘3/4]. It should be noted that
two terms on the right hand side (r.h.s)) of Eq. (9Eq. (10) is still not an equation fdrg(x) becausd,|?,

are the standard response of the RT moaibere’, =  which is the rms level of fluctuation, is still a function
[ex(1 = €,)]"%/kyas). The third, fourth, and the real part of x, which is not yet determined. This should be
of .the last term on the r.h.s. contribute to the.Dopp|erdetermined by some other physical arguments. In the
shifted real frequency. The growth due to the fifth termpresent case, we use the following physical arguments
Is neglected in comparison to that of the last term sinc®ased on the linear theory described earlier. The radial
(eaVE/¥y)"/? < 1. Thus the imaginary part of the last mode width of the mode is small, i.e.,A/a < 1. In
term indicates the destaAbiIization of theAmOdeS due t®his case, the mode will sense 0n|y the local Ve|ocity
electric-field curvature fob/z(xo) < 0. ForVg(x) >0,  shear and curvature rather than the average global profile.
the mode stabilizes. The behavior of the eigenfunctiorNow, the conditionV2(x,) < 0 is satisfied around the
¢ atx — o is lbzoulngled and the typical jﬁdlm ITOde maximum of Vg (x,) and, according to the linear theory,
width A = a,/2'2B'4 ~ (0.92/k;)[€./87,VE(x0)]/*.  the mode is destabilized here; hence, the fluctuation
For typical BETA parametersh ~ 1 cm. Here, it is  |evel 33(xo) is expected to be maximum at this location.
interesting to note that the electric-field shear affects On|)SimiIarIy, the fluctuation level will be a minimum at
the real part of frequencye). locations wheré/f(xo) > 0. It is thus reasonable to look

_ In the last .part of our calculgnons, we make th_e analyfor a |@o|? profile which follows theVg(xo) profile, i.e.,

sis self-consistent by calculating the mean poloidal rovv|¢,0|2 = G,Vg(xg), where Vg(xo) = Ve(xo)/cs; and G,
generation in the core due to Rayleigh-Taylor fluctuais a constant. Using this ansatz in Eq. (10), we obtain
tions. As shown by Diamond and Kim [15], the meanthe following differential equation for poloidal flow

poloidal flow in the core at the radial location =  generation in the core:
xo, due to Reynolds stress, is given by, (xy)/dr = | | .
— 87y (x0)/dx0 — vinVy(x0) wWhere the last term de- V1" (o) Ve (x) = Vin Znr (xo). (11)

scribes the damping of flows due to ion-neutral col-
lisions, 7., (xo) is the mean Reynold’s stress ab,

and is defined a& ., (xo) = [7.[0:0;) + 0} 0yldx, b =

kyas G1G2 Qi ag

Here, third and higher order derivatives ®f;(xo)
R have been neglected, and; and F are assumed to
(¢/B)z X V@. (It should be noted that now, is the pe weak functions ofx,. With the boundary condi-
radial coordinate with the origin aty = 0.) The con- tions Vg(xo) and Vi(x,) = 0 at x, = 0, the solution
dition for 7,,(xo) # 0 is that the linear eigenfunctiop  of Eq. (11) is given by|@|> = Vg(xo) = a*xS, where
should be radially inhomogeneous and asymmetric [15]a = 0.07v;,L,/k,a2G,G,€;. This solution implies a
In the present case, the radial asymmetry comes frommonotonically increasing rms level in the core consis-
Ve. This gives rise to a partial differential equation for tent with the experimental observations shown in Fig. 1.
V,(xo,) which can be solved in the steady state to ob-The magnitude ofV; can be estimated from Eq. (1) as
tain V,(xo) [= Ve(xo)]. With the eigenfunctiong, the Vi ~ (kyc,a?/viLyA,)|@|*> wherek, = A ' andL, is
flow equation a7y, (xo)/dxo + v, Vy(x9) = 0 gives the the equilibrium scale length of rms fluctuation level. For

following equation involving &o|*> and v, (xo): BETA parameters, we gétz ~ ¢,. For poloidal rotation
d ~ 120 _ 1 iy Vi(xo) to effectively neutralize the charge accumulation in the
s dxg [G1l@ol V™ (xo)] = kya; Qi ¢ (10) core, the poloidal convective timg/Vx should be smaller
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than the free fall timez/Vx, thusVg = Vg ~ 2¢2/v;,R  current. Next, according to the theories of Diamond and
for BETA parameters/g ~ Vg, which implies that the co-workers [5-8], thé mode is a state of high fluctuation
fluctuation driven poloidal rotation is just about suffi- level and low poloidal rotation. When the external drive,
cient to neutralize the charge accumulation in the coresay neutral beam power, exceeds a threshold, fluctuations
In this paper, we have discussed the poloidal flow generagenerate flow which in turn back reacts on fluctuations to
tion via the Reynold stregé - V)#],. Equivalently, one give rise to a new state of large rotation and a low level of
can also consider poloidal flow generation using the ternfluctuations, i.e., thél mode. In CTD, on the other hand,
J,B; (J, is the radial current in the poloidal cross sec-there is no equilibrium. However, we have shown that
tion) as is done by Rypdadt al.[2]. However, the two the flow-fluctuation cycle provides the basic rotational
approaches are equivalent and give identical results. In#ansform itself. Thus the role of the flow-fluctuation
detailed paper, Diamond and Kim [15,16] have shown the&eycle in CTD is similar to that of the flow-fluctuation cycle
equivalence for the drift wave fluctuations and, in general[5—8] in a tokamalalbeit with important differences
for any class of electrostatic fluctuations. The two crucial elements of the theories of Diamond
We now return to the point regarding the fluctuationset al.,i.e., flow generation and modification of fluctuation
on the inboard (Fig. 1). One may surmise that thes®y flow, can be seen at work in CTD. Besides, the
fluctuations could be due to drift waves or any othersuppression of fluctuations by flows in CTD has been
instability which does not depend on magnetic curvaturexperimentally demonstrated by Jain [4]. It thus appears
[17,18]. However, on the basis of and & phase that the CTD can serve as a test bed for some of the
relationship, there is strong evidence in BETA that thehot ideas which are being currently discussed in high
nature of fluctuation on the inboard and outboard is nearlgonfinement tokamak physics.
the same [9—11]. One could then argue that the poloidal The authors would like to thank Professor P. K. Kaw for
rotation convects fluctuations if, which are originally — useful discussions and valuable comments and Rajwinder
created on the outboard [17]. The condition for this isKaur for useful discussions. Finally, we acknowledge
27 yoa/Vy < 1 where a/Vg is the time for poloidal Dr. G. Prasad for providing Fig. 1.
convection for typical BETA parametefdryoa/Ve ~
a//RLy ~ 1. Hence fluctuations could be convected
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