VOLUME 77, NUMBER 8 PHYSICAL REVIEW LETTERS 19 AcusT 1996

Double-Cross Instability: An Absolute Instability Caused by Counter-Propagating
Positive- and Negative-Energy Waves
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The resonant interaction of a negative-energy wave with a positive-energy wave gives rise to a
linear instability. Whereas a single crossing of rays in a nonuniform medium leadsdavactively
saturated instability, we show that a double crossing can yieldbsoluteinstability, if the two rays
are oppositely directed. We obtain expressions for the growth rate and the threshold, and present one
application. [S0031-9007(96)00921-0]

PACS numbers: 52.35.Hr, 52.35.Qz, 03.40.Kf

Negative-energy waves are known to produce a numbeéng, energy conservation is represented7as- C = 1,
of interesting effects, such as linear instability due towhereT is the ratio of the transmitted to incident flux of
dissipation, and explosive instability due to three-wavea, while C is the ratio of theb-converted toa-incident
interaction [1]. Such waves are typically supported byflux. When the wave energies have opposite signs, we
beams [2] or flows [3], or by inverted populations [4]. have [9,10]T = exp2x|n|*/|B|) > 1, wheren is the
Here we investigate a novel and possibly importantcoupling strengthandB is thePoisson brackedf the two
phenomenon, the linear absolute instability caused by thdispersion functions (evaluated at the conversion point):
double crossing, in ray phase space, of oppositely directe® = {D,, D,} [see Eq. (8)]. Thug =1 - T <0, and
rays of anegative-energywave and apositive-energy if T > 2, then|C| > 1, i.e., rayb hasgreaterenergy flux
wave of equal frequencies. (An analogous phenomenomagnitude than (incident) ray.
involving the transformation of a parametric convective
instability into an absolute one because of wave reflection k.
is studied by Cairns [5].)

In Fig. 1, we illustrate the situation to be studied. We
assume that the medium has spatial variation in amlg
dimensionx, so that each wave (of typ¢ = a or b),
of definite frequencys and wave-vector components

(ky,k;), has the ray orbiti(x), determined by its dis-
persion functionD; (x, ky; w, ky, k;) = 0. Leta label the
positive-energy wave, anidthe negative-energy wave, of
the samdw; k,, k). Near their caustics (whee, /dx is
infinite), the two rays typically have different curvatures,
and so can cross twice, as shown.

The motivation for our study is a plasma instability,
wherein a magnetosonic wave is made unstable by an in-
verted population of neonatal alpha particles produced in
fusion reactions [6,7]. This instability leads to enhanced
emission at harmonics of the alpha gyrofrequency, and is
considered a useful diagnostic [8]. Since the alphas can
support anegative-energyBernstein wave at a gyrohar-
monic [4], and since this wave can underjzear con-
versionwith a (positive-energy) magnetosonic wave when ) » )
their frequencies and wave vectors are equal, the situatiddC- 1. The orbits of thepositive-energyray a (with down-
of Fig. 1 can arise. (Later in this Letter, we demonstrate¥ard velocity ].‘{f < 0) and thenegative-energyay b (with up-
that the rays are oppositely directed, and calculate the raff2dVvelocityk; > 0), of the same frequency. (Thesignsof
curvatures and other characteristics of this application.) & are chosen from the application discussed here.) Their caus-

. . S tics (dk, /dx — =) are atx,, x,. The rayscrossandconvertat
We first examine the energy transmission and CONVEIE " ke If the energy-flux magnitude in the converted ray

sion coefficientsT and C, at each of the crossings, and exceedshat of the incident ray, at each crossing, the system is
see how an absolute instability arises. At the lower cross@bsolutely) unstable.
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If there is onlyonecrossing, that is the end of the story; circuit:
but if the second(upper) crossing occurs (with the same

parameters, for simplicity), then (converted) rayrises T = Z ] dk,/\k?|
with energy flux|C| relative to the incidend, and thus Jj=a.b
|C|? relative to its value on entering the lower crossing. = (k217 + [K217H Ga)' Aap)' A, (6)
Thus the condition for absolute instability €| > 1, or
T >2, or and (4) has been used.
) B 5 We now proceed to derive and solve the differential
Inl® > [(n2)/27]|B| = |nul". (1) equations for the propagation and coupling of the two

. . wave fields. This will serve to check the validity of
We see that thehresholdcoupling strength (squared) is the results above based on eikonal theory. We begin

pr(1)_port|0n|al :oitghe Poisson _bractlr(]et.d_ ion functi with the variational Hermitian formA[E] = [ d*xE-
0 evaualel, we examiné the CISpersion TUNnclons n, . g /5 iy terms of the total wave fieldi(x,s) and

in more detail. In the neighborhood of a caustic, eact}h : ; : o .

. : : e (given) dispersion operatdr(x; k = —iV,w = id,).
ray (j = a,b) is a parabolic curvex(k,) = x; + Bjki,  \with D independent of(y.z.r). we take E(x,r) —
WheI’ij.E x(k, = 0) is the caustic chatlon, ang; = E(x)expi(k,y + k.z — i) + c.c., and obtainA[E] =
dx/dk? is the ray curvature. (As discussed later, WEfdx E*(x) _yD . EZ('X) With D(x,ky = —id,: ky, ko, o)

s - ) s vx X vys VZs .
assimle ghaif 'Sl(e/\zleflikxc') ;he tAwo_rays thus grois al Next we apply a congruent reduction [12]: From the three
ky = £(Ax/Ap) =n&kX’_W ereax = x“h_ xpISthe iy p ) eigenvaluesD;(x, k,) of the 3 X 3 matrix
caustic separation, anlig = g, — B, Is the cuvature 4 ) \ve select the twd j = a, b) whose dispersion
difference. It follows that the dispersion functions havecurvesD-(x k,) = 0 have a double (avoided) crossing

J\As Rx :

the form Outside the crossings, we determine their polarizations
) ¢;(x) [eigenvectors of the matri®(x, k.(x))], and ex-

presskE(x) = E,(x)e,(x) + Ey(x)é,(x), wheree,, ¢, are
now interpolated smoothly from the outside regions. Sub-
stituting, we now have

Dj(x,k,) = (DI) (x — x; — Bjk2),

where D! =aD;/ax = —(dD;/0w) (9w /dx); =
(aDj/aw)ki < 0 is proportional to the (constant) ray

velocity in thek, direction. We obtain (after straightfor- A[g, £,] = [ dx[ Z E'DE; + (EInEy + c.c.)},
ward algebra) ; ! “ A

whereD; = ¢;-D-¢;,n =2, -D-¢, OnvaryingA,

Thus, for given parameters, the threshold coupling Ve obtain the coupled equations [9,10] foy(x). £, (x):

minimized byminimizingthe caustic separatiofix. D, 7 E,

To determine the latter, we impose the requirement of < n* D, ><Eb> =0. (8)
phase matching: the phase chanye of raya (say),
after one circuit, must be an integer multijleof 277:  Next, we find thereference frequency wy such that
A¢p =27 N. To find A¢, we use eikonal theory (to D,(x,k; wo) = 0 = D,(x,k,; wg) are dispersion curves
lowest order inn): A¢ = §x(k.)dk, — 7/2, where x;j(ky; wo) whose caustics;(wg) = xj(ky = 0; wo) = xo
the first term is the standard phase integral (the areeoincide (i.e., Ax = 0). We expandDj(x,k,; w) (to
enclosed by the rays), and the second term is the sutowest order) about = xg, kx = 0, w = wy:
of the two (lowest-order) phase shifts at the conversion . . -
points [11]. The evaluation of the phase integral is Dj(x: ki @) = (0 — wo)Dj, + (x = x0)D{ + k;Dj:

j=a,b

|B| = 2D“Db(AB)KE = 2DD(ABAX)'?.  (3)

elementary: § x(k,) dk, = (4/3)(AB)~/?>(Ax)*2. The —[ow — wo + (x — xo — BKDKIIDI .
minimum separatiomx;, is thus obtained by setting S
N =0: Expressing thesigenfrequencyw as w — wo = Aw +
iy, this reads
Axmin = Bm/8)2(AB)'. (4)

Dj(x, k@) = [iy + (x — x; — Bikpk],  (9)
Inserting (4) into (3), we haviB |, = (37)/*°D*D? X _
(AB)*/3, yielding the threshold from (1): where x; = x;j(wo + Aw) = xo + (Aw) (9x;/dw) is
the caustic at the real part of the eigenfrequency. Com-
Inwl? = [(In2)/27]1(37)'*DeDE(AB)?3.  (5)  paring (9) with (2), we note thag = Im w now appears
explicitly. Because the field equations (8) are singular
To obtain the positive growth ratg (when T > 2), in the x representation, we Fourier transform to the
we track the energy around one circuit, obtainingk, representation, withc — i9/dk, in (9). We set the
v = [In(T — 1)]/7, where 7 is the time interval for a slowly varyingn equal to its value atxg, k, = 0, wy).
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From the coupled equations, we now obtain the wave- As an application, we consider the double crossing of a
energyconservatiorlaw magnetosoniavave a with a negative-energy-particle
5 Bernsteinwave b, in a slab model of the outer edge
_ Lity _ of a tokamak:By = ZBo(x). We takew = [{),, with
2y ; Witke) + ok, (Z kXW’(kX)> 0. (19 12 > 1 (to model interpretations of ICE [8]; for simplic-
_ ity, we choose deuterium as the majority species since
where W;(k,) = a)D{ulEj(kx)l2 is the wave-energy den- Qp = Q,), k; = 0 (to avoid resonant-particle effects),
sity (in k, space) of wavg. The first term is the time and f, ~ 6(v, — v,) (to avoid dispersion of cross-
derivative of the total energy densitW(k,) = W, +  field drift). The polarizations are?, = (—il% + J)/
W, = W, — |[W,|, and the second is the divergence of (I* + 1)!/2, ¢, = k, and the elements of the reduced dis-
the energy flux. This conservation law guides our heurispersion matrix are
tic interpretation of the double-conversion process. 5

J

2

The eigenfrequenciew are determined by solving D.(x, k% w) = C_2< 21 — k_i2> (14)
(8) numerically, subject to the boundary conditions Fleax) o
representing zermcomingwave energy. The asymptotic 5 5
behavior of the field magnitudes are, from (9) or (10), D, (x,k3;k,, w) = — 262 B w, ()
|E; (k)| — A% exp(—yk,/kt), as k, — +». Hence Pcy  woilxk, o)
we requireA? = 0 = A as boundary conditions (see (15)
Fig. 1). We now introduce the action-fluamplitudes ) 2w
E. . Lk ky, =i—F , 16
Ej(kx)- n(x 1 y (l)) l lch‘ ,LL[()\) ( )

, = |p/|712F.
E](kx) - |Dx| E/(kx) N Ml(/\) = 12/\—1(][2)/, Vl()l) = /\—I(IZJIZ _ /\-]l-][/)/,
X exp(—ixjky — iBjki/3 — yk./ki), (11) (17)

the dimensionless variabl& = (AB) 3k, the dimen-  \here A = kiva/Qa = lva/ca is the Bessel-function
sionless eigenvalue argumentc, is Alfvén speedpw, is plasma frequency of

— ~1/3 Lokt 1! the alphas, and; = w — 1Q,(x) — kyvp, with cross-

Z = (@A) lax + (k] 71 (A2 Gl drift vy, In (14) and (15), we have used a cold-fluid
and the dimensionless couplingg = (AB)~!/3 x  model for the background plasma, which is justified be-
(D¢D?)~/2y. The coupled field equations are then cause botti* > 1 and a large Doppler shifk,v ) allow

o _ us to neglect deuterium kinetic gyroresonance effects.
—id/dK  Te E K)\ _ FromD; = 0, the frequency functions awe, = k, c4,
—x —@ . O? (13) J 2
n'e —id/dK )\ Ep(K) wp = [1Qa(x) + kyupl[l — wi(V)w2/w0y]. The Bern-
stein waveb has negative energy if and only jif;(1) <

H . — _ 3
with ©(K:Z) = iZK — iK*/3. From (13), we see that (which requiresa > ) [4]. For k, < |k,|, we ex-

the set of dimensionless complex eigenvalfégs} de- _ 9 N 5 :
pends only on thesingle dimensionless parametés|?. pressk, = (k; + k) 2 = Ik, + ki/2lk,| (thus D 1s
LT . : even ink,, as assumed above). The ray velocities in
(For givenT;, we expect a discrete set of eigenvalues, or- o — W /oL d b —
dered by their imaginary parts. This corresponds to théﬁaSpaC; Ere XL_ r‘?“’“/Lax:__ fl)l/ n ;n_l ;6
set of integersV.) Only that eigenvalueZy(7) whose ‘ib/ x I_ w/ 5, WhereL, T:I (dInny/ ﬁ) >0,
imaginary part is the largest is of interest. The thresh2s = —(dInBo/dx)"" > 0, andL, < Lg. Thuskg/k;
old value([7,,|?) is thus found by setting Ii#o(77) = 0. is negative as assuined, an]gtij is positive. TEe
By numerical integration of (13), we obtaifij,,|> = &Y curvatures arg, = —La/ky, By < |Bal, SOAB =

0.236. This is to be compared with the eikonal result (5): |B«l- Inserting these formulas into (5), we obtain the

[Tl = [(IN2)/27] (37) A DEDP(ABY3, or [T, = threshold value of the (alpiieajority) density ratio:
0.233, in quite remarkable agreement. 5
By (12), thereal part of the eigenvalug, (at thresh- <“’_§v> = (37)3[(In 2)/27,.]M
old) is the dimensionless caustic separation. By (4), its Wiy /th ]2
analytic value is R&, = (37/8)%% = 1.1, to be com- X (lky|Lp) " (lky L)', (18)

pared with the numerical result 0.9, again in good agree-

ment. Finally, we examine the dependence of the growtlwhere |k, | = IQ,/cas = lwy/c. The threshold is seen
rate on the coupling/y/d|»n|?, or in dimensionless form, to be sensitive to the value ¢ft;(A)|, with A dependent
d(Im Z)/d|7]*. Numerically, we find 2.9, to be compared on the local majority density. Estimates based on JET
with our analytic approximatiorip47/9)'/3 = 2.8,inex-  parameters [8] indicate that this threshold may be exceeded
cellent agreement. We conclude that the eikonal approxi¢see [13] for additional details on this application), and thus
mation is a reliable analytic solution. an absolute instability of double-cross type may occur.
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