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Couette-Taylor Flow in a Dilute Polymer Solution
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We present experimental evidence of the striking influence of small additions of high molecular
weight polymers on stability and pattern selection in Couette-Taylor flow. Two novel oscillatory flow
patterns were observed. One of them is essentially due to the fluid elasticity. The other results from
inertial instability modified by the elasticity. [S0031-9007(96)00915-5]

PACS numbers: 47.20.—k, 47.54.+r, 47.50.+d, 61.25.Hq

In this Letter, we report experiments showing the drastioscillatory vortex patterns are intersecting, is known as a
influence of small additions of polymers on the character otodimension-two (ct) point [4]. Exploring the diagram of
instability in Couette-Taylor (CT) flow. This phenomenon states in its vicinity is the main subject of this Letter.
has some common features with the well known drag Rheological properties of the dilute polymer solutions
reduction effect, when minute additions of high molecularthat we used are rather well described by the Zimm
weight polymers dramatically reduce turbulent drag. Inmodel [3], with stress given by = o* + o?. Here,
spite of large theoretical and experimental efforts [1], thethe contributiono* is due to Newtonian viscosity of the
latter effect is not completely understood. The obvioussolvent, byn,, o° = n,y. The polymer paro? is, in
difficulty here is that turbulence and rheology of polymergeneral, flow history dependent with a whole spectrum of
solutions in complex flows are both unsolved problemsrelaxation times. For the case of stationary flow =
The CT system is a simple arrangement of two rotatingy,¥. So, one can introduce an apparent solution viscosity
coaxial cylinders with a working fluid in the annular » = 9, + 1,. The polymer part of viscosityy,, is
gap between them. In CT flow with Newtonian fluids, proportional to the polymer concentratiorand viscosity
transition to turbulence occurs through a well knownof the solvent. A solution is considered as dilute, and
sequence of bifurcations [2]. As the rotation velocity ofthe model is applicable, i), < n,. A simplification of
the inner cylinder is raised, at a particular Reynolds numbethis model with a single relaxation tlmer is given by
Re. the basic, purely azimuthal Couette flow bifurcates tothe OldroydB equation [3,5” + Trtr(l) 1,7%, Where
a new, stationary, Taylor vortex flow (TVF). At a higher 0'(1) is a convected time derivative. It can be derived from
Re, TVF becomes wavy, and as Re grows further the flowthe molecular elastic dumbbell model [3], and proved to
becomes increasingly complex and chaotic. Thereforehe rather good for describing relaxational properties and
the CT system appears to be very appropriate for th@ormal stress differences of dilute polymer solutions [5].
investigation of the influence of polymer additions on A theoretical and experimental review of instabilities in
three-dimensional flows and flow stability. CT flow with polymer solutions has been recently given

Polymer solutions have a few properties that distinguistby Larson [5]. A convenient parameter of elasticity here
them from Newtonian fluids [3]. The stress field in ais k = 7,/t,, wheret, = d*/v is the viscous diffusion
polymer solution is not uniquely defined by the currenttime,d = R, — R, is the gap between the cylinders and
rate of strain, but rather depends on the flow history, withw is kinematic viscosity of the solutions does not depend
some characteristic memory timg. (That is why poly-  on the fluid motion and is connected to De by Bex Re.
mer liquids are called viscoelastic.) In simple shear flowThe case mainly considered was fgr = 0 (Maxwell
(vy = ky), there is a difference between diagonal elementsnodel). Atsmall, TVF and a slight decrease of Reere
of the stress tensoN; = o\, — oy, (first normal stress found [6]. At largex, oscillatory instabilities and drastic
difference). These two properties can provide a mechaeduction of Rg were predicted. Recent theoretical stud-
nism of energy transfer in a CT system from strong azides [7] showed that the most unstable oscillatory modes
muthal flow in ther-6 plane to a weak vortex flow in are always nonaxisymmetric, and transitions to them are
the r-z plane (herez, r, and @ are cylindrical coordi- probably discontinuous (backward bifurcations). A few
nates). A relevant parameter here is the Deborah nunauthors [8] experimentally observed oscillatory flow pat-
ber De= y,,7, (Whereyy, is the azimuthal shear rate), terns at Re that were close to Rer Newtonian liquids and
which defines the degree of stretching of the polymers. Ipresented diagrams of flow states-iiRe plane. These re-
an oscillatory flow of frequencw, the viscoelastic force sults are hard to interpret, though, because characterization
becomes increasingly out of phase with the rate of strainpf the solution rheology and oscillatory patterns was poor.
as the factorw 7, grows. Therefore, TVF may become For our polymer solutions, we used high molecular
oscillatory whenr, is large enough. A point on a dia- weight PAAm [V = (5 + 6) X 10°, with broad molecu-
gram of states, where transition lines to stationary andar weight distribution] and a 58% solution of saccharose
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in water as a viscous solveny( = 42¢Ps at 20C). A T
viscous solvent was required to obtain large values af
which the influence of elasticity on the Taylor instability
becomes significant:, ~ ny, r, ~ 1/7,, SOk ~ nf. N
The HAAKE 100 viscometric system that we used en-
abled temperature controlled measurements of viscoelastip 11
properties of liquids in regimes of constant and oscillat- 3
ing shear rate. At constant shear rate, we could measur®™
viscosity with a precision of 0.5%. Carrying out mea-
surements in the oscillatory regime, we obtained the phas
shift § between stress and shear rate as a function of os
cillation frequencyw. The solution relaxation time was
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taken ash /w atw — 0 and the polymer relaxationtimeas ~ °7 | ois
o+ . . : :

7, = 742 Oscillatory measurements at various poly-

mer concentrations allowed us to fiagd with a precision FIG. 1
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Diagram of flow states for a 40 ppm solution of

of about 10%. Measuring, in a temperature range 10— paAm in 58% saccharose in watey, /7, = 0.08. Points of
35°C with saccharose concentrations 50%—58%, we founetansition to TVF, RSW, and DO are shown by squares, circles,

good agreement with theoretically predicted~ n,/T.
Therefore, the relaxation time was carefully measured
a particular temperaturg® and solvent viscosity;?, and
T, = %T—QT? was substituted for other temperatures andiscous diffusion time.
solvent viscosities. The apparent solution viscositwas
decreasing with increasing shear rate, so we usealt
v — 0 for calculation of Re.

We conducted our experiments in a standard Taylor col-
umn with a stationary outer cylindeR, = 26.85 mm,
rotating inner cylinderR; = 19 mm, and length aspect
ratioI" = L/d = 54. Temperature stability af0.025 °C
was achieved by circulating water in a jacket around th
column. By varying the temperature in the column be-
tween 10°C and 35°C we could tunex with a precision
of 1% over of an order of magnitude (~ 7?2, % =
0.05/°C). Light reflecting flakes were added to solutions
for flow visualization. Flow patterns were captured and
digitized with the aid of a CCD camera and a frame grab-
ber. In other experiments, the laser Doppler velocimetry
(LDV) technique was used for point measurements of the
axial velocity of the fluid.

Exploring flow states at differeny,/n, «, and Re
we found several novel oscillatory flow patterns, which
are not observed in Newtonian fluids. The full diagram
of states is described elsewhere [9,10]. Here we will
concentrate on a region near the ct-poirt=t «.) at
which Couette flow becomes simultaneously unstable to
both TVF and an oscillatory flow pattern. A typical Re-
diagram of flow states for dilute solutions is presented
in Fig. 1. One can see two new oscillatory flow states
that we call rotating standing wave (RSW) and disordered
oscillations (DO). Their space-time plots are shown in
Figs. 2 and 3.

RSW can be viewed as a superposition of two coun-
terpropagating waves of the same amplitude, each wave
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and triangles, respectively. Ris the Reynolds number at TVF
nset in Newtonian fluids. Insets: typical frequency spectra of
axial velocity for RSW, DO fork < k., and DO fork > k.

I intensity (arbitrary units); - ¢,: frequency in units of the

velocity field due to one double spiral can be generally
presented as(7, 1) = vo(r)e! ket @t=mb) where “+” and

—" are for a right-handed and left-handed spiral, respec-
tively; the azimuthal wave number was always one. The
two counterpropagating spirals always have opposite he-
licities, so the resulting pattern i (r) cogkz)e!@' =9 It

% a standing wave in the axial direction [Fig. 2(a)] and a

1ds
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having a form of a double spiral. Such a double spiral .

consists of two spiral vortices spinning in opposite direcg,5 5. Space-time plots of RSW and DO. Space coordinate

tions. It has a pitch of abo, fills the whole column,
and translationally moves through it.

is taken along the column axis. (a) RSW, (b) DOxak k
So, the secondarjust above the RSW-DO transition line, and (c) DOxat> «,.
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FIG. 3. Space-time plot of RSW. Space coordinate is angle " il * . .
around the column.T is the oscillation period. One can see a - a _ whofo
wave withm = 1 running in the azimuthal direction. 4 i ‘a R VR Xopmmnen e
— -
traveling wave in the azimuthal direction (Fig. 3). Alter- 3 s : gragl g b
natively, one can say that the patterg(r) cogkz) cose LR LB 0.2 0.5 0.3 LEL
rotates around the axis as a solid with an angular ve- K

locity w, so that a standing wave in the axial direction iSg. 4. Angular frequencies and wave numbers (inset) of the
formed. The rotation direction (the sign ef) always co-  flow patterns from the diagram in Fig. 1 at the transition points:
incided with the direction of the inner cylinder rotation. TVF (empty squares), RSW (empty circles), DO (full triangles),
Such a pattern was discussed in the literature [11] (“rib&nd NLO (full circles). Small crosses preseht() at the
bons”) in connection with CT flow with Newtonian fluids Et)sn%a?g%nNLo onset. 1/7, (continuous line) is shown for
and counterrotating cylinders. '

DO are characterized by some typical frequency, but
the peaks in the frequency spectra are much broader thautocorrelation analysis. The regian> . is presented
in the case of RSW (see insets in Fig. 1), and radial anth Fig. 4 by two frequencies. The frequency of persistent
axial velocities change in space and time rather chaotifinite amplitude DO slightly above the saddle node is
cally [10]. The space-time diagram in Fig. 2(b) corre-shown by full triangles. One can see that this frequency
sponds to a case of DO with weak disorder, where oneoughly follows the linel /7, ~ 1/%,. We also measured
can distinguish patches of standing and traveling wavethe frequency of neutral linear oscillations (NLO) during
which are randomly placed in space and time. Figure 2(chransition from Couette flow to DO. They look like ordered
presents DO with a stronger disorder at larger solution eladRSW or traveling spirals. Their frequency dependence
ticity (insets in Fig. 1). of k is more or less a continuation of RSW frequency

When the solution elasticity is lowx(< «.), which  dependence, and it roughly follows the inner cylinder
corresponds to small), and high temperature in the angular velocity). These results suggest that we observe
column, the sequence of flow patterns is the followingtwo different types of oscillatory modes (DO on one hand
(Fig. 1). As Re increases, first, transition to TVF occursand RSW and NLO on the other) which are due to two
at Re which is lower by a few percent than Rr  different physical mechanisms. The wave numbef
Newtonian fluids. If Re is raised further, transition to 27 /A for TVF (inset in Fig. 4) is practically the same as
the RSW occurs, and at even higher Re, the oscillationfor Newtonian fluids £, = 3.12). The wave number of
become disordered. Allthese transitions are nonhysteretiRSW is also independent a&f but about 2% larger than
The polymer effects should disappear in the limit= 0. k.. DO wave numbers are significantly larger tharand
Indeed, at sufficiently smalk, the bifurcation sequence grow with x, which is in qualitative agreement with the
was the same as in the Newtonian case [10]. theoretical predictions [6,7].

At high solution elasticity k¢ > k), TVF does not ap- The diagram of states in Fig. 1 and the valuecgfde-
pear at all, and the first instability leads to DO of a typepend ony,/n (and thus orr), which is actually the third
shown in Fig. 2(c). This transition becomes increasinglycontrol parameter. Exploring Re-diagrams at polymer
hysteretic with growingc<. LDV measurements also con- concentrations up to 160 ppm, we found that the ct-point
firm that it is a backward bifurcation [9]. Reignificantly  exists in a wide range of concentrations, 4.2—160 ppm,
decreases with increasirg This agrees well with experi- and the diagrams of states in its vicinity are similar. It
mental observations of purely elastic instability at large is remarkable that polymer additions have a profound in-
and Re— 0 [12]. The nonaxisymmetric character of the fluence on the character of the Taylor instability even at
oscillatory flow patterns and backward bifurcation to DOc¢ = 4.2 ppm, where the polymer contribution to the solu-
at largex are also in general agreement with the recention viscosity is only 0.8%. At higher, whenn, = 7;,
theoretical studies [7]. the diagram of states changes so that a direct transition

Wave numbers and frequencies of oscillations are showfrom Couette flow to RSW becomes possible [10].
in Fig. 4 as functions ofk for various patterns. They  The dependence of the Deborah number at the ct-point
were obtained from space-time diagrams using FFT ande., on the polymer contribution to the solution viscosity
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L ' Re. Their frequency is proportional tb/7,, which is
= in general agreement with the predictions for the purely
I - i elastic instability [5,13]. On the other hand, parameters
@ gl S~ i of RSW and NLO are rather close to those predicted for
oot ° T~ a nonaxisymmetric oscillatory mode in Newtonian fluids
[ ] [14], which is purely inertial. FoR,/R; = 0.708, as in
1 our case, the latter mode has= 1, k. = 3.175, and
/M o = 0.43(), but it cannot be realized in Newtonian fluids,
S because its critical Re is a few percent larger than Re for
S~ Pg.pe27 (m/mp TVF. Thus, DO is obviously an essentially elastic mode,
10 iy while RSW and NLO can be identified as an inertial

i D\Q\Q ] mode modified by elastic effects. A detailed study of

0.01 0.1 competition between these two modes will be published
n/n elsewhere [9].
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FIG. 5. De, as a function ofp, /7 in the range 4.2—160 ppm
of polymer concentrations. Inset: frequeney of DO at
versusn,/n. /4 (dashed line) an@/7, (continuous line)
are shown for comparison.
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