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Couette-Taylor Flow in a Dilute Polymer Solution
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We present experimental evidence of the striking influence of small additions of high mole
weight polymers on stability and pattern selection in Couette-Taylor flow. Two novel oscillatory
patterns were observed. One of them is essentially due to the fluid elasticity. The other result
inertial instability modified by the elasticity. [S0031-9007(96)00915-5]

PACS numbers: 47.20.–k, 47.54.+r, 47.50.+d, 61.25.Hq
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In this Letter, we report experiments showing the dras
influence of small additions of polymers on the characte
instability in Couette-Taylor (CT) flow. This phenomeno
has some common features with the well known d
reduction effect, when minute additions of high molecu
weight polymers dramatically reduce turbulent drag.
spite of large theoretical and experimental efforts [1],
latter effect is not completely understood. The obvio
difficulty here is that turbulence and rheology of polym
solutions in complex flows are both unsolved problem
The CT system is a simple arrangement of two rotat
coaxial cylinders with a working fluid in the annula
gap between them. In CT flow with Newtonian fluid
transition to turbulence occurs through a well know
sequence of bifurcations [2]. As the rotation velocity
the inner cylinder is raised, at a particular Reynolds num
Rec the basic, purely azimuthal Couette flow bifurcates
a new, stationary, Taylor vortex flow (TVF). At a highe
Re, TVF becomes wavy, and as Re grows further the fl
becomes increasingly complex and chaotic. Therefo
the CT system appears to be very appropriate for
investigation of the influence of polymer additions o
three-dimensional flows and flow stability.

Polymer solutions have a few properties that distingu
them from Newtonian fluids [3]. The stress field in
polymer solution is not uniquely defined by the curre
rate of strain, but rather depends on the flow history, w
some characteristic memory timetr . (That is why poly-
mer liquids are called viscoelastic.) In simple shear fl
(yx ­ ky), there is a difference between diagonal eleme
of the stress tensor,N1 ­ sxx 2 syy (first normal stress
difference). These two properties can provide a mec
nism of energy transfer in a CT system from strong a
muthal flow in ther-u plane to a weak vortex flow in
the r-z plane (herez, r , and u are cylindrical coordi-
nates). A relevant parameter here is the Deborah n
ber De­ Ùgurtr (where Ùgur is the azimuthal shear rate
which defines the degree of stretching of the polymers.
an oscillatory flow of frequencyv, the viscoelastic force
becomes increasingly out of phase with the rate of str
as the factorvtr grows. Therefore, TVF may becom
oscillatory whentr is large enough. A point on a dia
gram of states, where transition lines to stationary a
0031-9007y96y77(8)y1480(4)$10.00
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oscillatory vortex patterns are intersecting, is known a
codimension-two (ct) point [4]. Exploring the diagram o
states in its vicinity is the main subject of this Letter.

Rheological properties of the dilute polymer solutio
that we used are rather well described by the Zim
model [3], with stress given bys ­ ss 1 sp. Here,
the contributions s is due to Newtonian viscosity of the
solvent, byhs, s s ­ hs Ùg. The polymer partsp is, in
general, flow history dependent with a whole spectrum
relaxation times. For the case of stationary flowsp ­
hp Ùg. So, one can introduce an apparent solution visco
h ­ hs 1 hp . The polymer part of viscosity,hp , is
proportional to the polymer concentrationc and viscosity
of the solvent. A solution is considered as dilute, a
the model is applicable, ifhp , hs. A simplification of
this model with a single relaxation timetr is given by
the Oldroyd-B equation [3,5]sp 1 tr s

p
s1d ­ hp Ùg, where

s
p
s1d is a convected time derivative. It can be derived fro

the molecular elastic dumbbell model [3], and proved
be rather good for describing relaxational properties a
normal stress differences of dilute polymer solutions [5

A theoretical and experimental review of instabilities
CT flow with polymer solutions has been recently give
by Larson [5]. A convenient parameter of elasticity he
is k ­ tryty, wherety ­ d2yn is the viscous diffusion
time, d ­ R2 2 R1 is the gap between the cylinders an
n is kinematic viscosity of the solution.k does not depend
on the fluid motion and is connected to De by De­ k Re.
The case mainly considered was forhs ­ 0 (Maxwell
model). At smallk, TVF and a slight decrease of Rec were
found [6]. At largek, oscillatory instabilities and drastic
reduction of Rec were predicted. Recent theoretical stu
ies [7] showed that the most unstable oscillatory mod
are always nonaxisymmetric, and transitions to them
probably discontinuous (backward bifurcations). A fe
authors [8] experimentally observed oscillatory flow pa
terns at Re that were close to Rec for Newtonian liquids and
presented diagrams of flow states inc-Re plane. These re
sults are hard to interpret, though, because characteriza
of the solution rheology and oscillatory patterns was po

For our polymer solutions, we used high molecu
weight PAAm [M ­ s5 4 6d 3 106, with broad molecu-
lar weight distribution] and a 58% solution of saccharo
© 1996 The American Physical Society
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in water as a viscous solvent (hs ­ 42cP s at 20±C). A
viscous solvent was required to obtain large values ofk at
which the influence of elasticity on the Taylor instabil
becomes significant:tr , hs, ty , 1yhs, sok , h2

s .
The HAAKE 100 viscometric system that we used e

abled temperature controlled measurements of viscoel
properties of liquids in regimes of constant and oscil
ing shear rate. At constant shear rate, we could mea
viscosity with a precision of 0.5%. Carrying out me
surements in the oscillatory regime, we obtained the ph
shift d between stress and shear rate as a function o
cillation frequencyv. The solution relaxation timet was
taken asdyv atv ! 0 and the polymer relaxation time a
tr ­ t

hs1hp

hp
. Oscillatory measurements at various po

mer concentrations allowed us to findtr with a precision
of about 10%. Measuringtr in a temperature range 10
35±C with saccharose concentrations 50%–58%, we fo
good agreement with theoretically predictedtr , hsyT .
Therefore, the relaxation time was carefully measure
a particular temperatureT 0 and solvent viscosityh0

s , and
tr ­

hs

T
T 0

h0
s
t0

r was substituted for other temperatures a
solvent viscosities. The apparent solution viscosityh was
decreasing with increasing shear rate, so we usedh at
Ùg ! 0 for calculation of Re.

We conducted our experiments in a standard Taylor
umn with a stationary outer cylinder,R2 ­ 26.85 mm,
rotating inner cylinder,R1 ­ 19 mm, and length aspec
ratioG ­ Lyd ­ 54. Temperature stability of60.025 ±C
was achieved by circulating water in a jacket around
column. By varying the temperature in the column
tween 10±C and 35±C we could tunek with a precision
of 1% over of an order of magnitude (k , h2

s , d ln hs

dT .
0.05y±C). Light reflecting flakes were added to solutio
for flow visualization. Flow patterns were captured a
digitized with the aid of a CCD camera and a frame gr
ber. In other experiments, the laser Doppler velocime
(LDV) technique was used for point measurements of
axial velocity of the fluid.

Exploring flow states at differenthpyh, k, and Re
we found several novel oscillatory flow patterns, wh
are not observed in Newtonian fluids. The full diagr
of states is described elsewhere [9,10]. Here we
concentrate on a region near the ct-point (k ­ kct) at
which Couette flow becomes simultaneously unstabl
both TVF and an oscillatory flow pattern. A typical Rek

diagram of flow states for dilute solutions is presen
in Fig. 1. One can see two new oscillatory flow sta
that we call rotating standing wave (RSW) and disorde
oscillations (DO). Their space-time plots are shown
Figs. 2 and 3.

RSW can be viewed as a superposition of two co
terpropagating waves of the same amplitude, each w
having a form of a double spiral. Such a double sp
consists of two spiral vortices spinning in opposite dir
tions. It has a pitch of about2d, fills the whole column,
and translationally moves through it. So, the second
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FIG. 1. Diagram of flow states for a 40 ppm solution
PAAm in 58% saccharose in water,hpyhs ­ 0.08. Points of
transition to TVF, RSW, and DO are shown by squares, circ
and triangles, respectively. Re0 is the Reynolds number at TVF
onset in Newtonian fluids. Insets: typical frequency spectra
axial velocity for RSW, DO fork , kct, and DO fork . kct.
I: intensity (arbitrary units);f ? ty : frequency in units of the
viscous diffusion time.

velocity field due to one double spiral can be genera
presented asys$r , td ­ y0srdeis6kz1vt2mud, where “1” and
“2” are for a right-handed and left-handed spiral, resp
tively; the azimuthal wave numberm was always one. The
two counterpropagating spirals always have opposite
licities, so the resulting pattern isy0srd cosskzdeisvt2ud. It
is a standing wave in the axial direction [Fig. 2(a)] and

FIG. 2. Space-time plots of RSW and DO. Space coordin
is taken along the column axis. (a) RSW, (b) DO atk , kct
just above the RSW-DO transition line, and (c) DO atk . kct.
1481
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FIG. 3. Space-time plot of RSW. Space coordinate is an
around the column.T is the oscillation period. One can see
wave withm ­ 1 running in the azimuthal direction.

traveling wave in the azimuthal direction (Fig. 3). Alte
natively, one can say that the patterny0srd cosskzd cosu

rotates around thez axis as a solid with an angular ve
locity v, so that a standing wave in the axial direction
formed. The rotation direction (the sign ofv) always co-
incided with the direction of the inner cylinder rotatio
Such a pattern was discussed in the literature [11] (“r
bons”) in connection with CT flow with Newtonian fluid
and counterrotating cylinders.

DO are characterized by some typical frequency,
the peaks in the frequency spectra are much broader
in the case of RSW (see insets in Fig. 1), and radial
axial velocities change in space and time rather cha
cally [10]. The space-time diagram in Fig. 2(b) corr
sponds to a case of DO with weak disorder, where
can distinguish patches of standing and traveling wa
which are randomly placed in space and time. Figure 2
presents DO with a stronger disorder at larger solution e
ticity (insets in Fig. 1).

When the solution elasticity is low (k , kct), which
corresponds to smallhs and high temperature in th
column, the sequence of flow patterns is the followi
(Fig. 1). As Re increases, first, transition to TVF occu
at Re which is lower by a few percent than Rec for
Newtonian fluids. If Re is raised further, transition
the RSW occurs, and at even higher Re, the oscillati
become disordered. All these transitions are nonhyster
The polymer effects should disappear in the limitk ! 0.
Indeed, at sufficiently smallk, the bifurcation sequenc
was the same as in the Newtonian case [10].

At high solution elasticity (k . kct), TVF does not ap-
pear at all, and the first instability leads to DO of a ty
shown in Fig. 2(c). This transition becomes increasin
hysteretic with growingk. LDV measurements also con
firm that it is a backward bifurcation [9]. Rec significantly
decreases with increasingk. This agrees well with experi
mental observations of purely elastic instability at largek

and Re! 0 [12]. The nonaxisymmetric character of th
oscillatory flow patterns and backward bifurcation to D
at largek are also in general agreement with the rec
theoretical studies [7].

Wave numbers and frequencies of oscillations are sho
in Fig. 4 as functions ofk for various patterns. They
were obtained from space-time diagrams using FFT
1482
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FIG. 4. Angular frequencies and wave numbers (inset) of
flow patterns from the diagram in Fig. 1 at the transition poin
TVF (empty squares), RSW (empty circles), DO (full triangle
and NLO (full circles). Small crosses present0.4V at the
RSW and NLO onset. 1ytr (continuous line) is shown for
comparison.

autocorrelation analysis. The regionk . kct is presented
in Fig. 4 by two frequencies. The frequency of persist
finite amplitude DO slightly above the saddle node
shown by full triangles. One can see that this frequen
roughly follows the line1ytr , 1yhs. We also measured
the frequency of neutral linear oscillations (NLO) durin
transition from Couette flow to DO. They look like ordere
RSW or traveling spirals. Their frequency dependen
of k is more or less a continuation of RSW frequen
dependence, and it roughly follows the inner cylind
angular velocityV. These results suggest that we obse
two different types of oscillatory modes (DO on one ha
and RSW and NLO on the other) which are due to t
different physical mechanisms. The wave numberk ­
2pyl for TVF (inset in Fig. 4) is practically the same a
for Newtonian fluids (kc ­ 3.12). The wave number of
RSW is also independent ofk but about 2% larger than
kc. DO wave numbers are significantly larger thankc and
grow with k, which is in qualitative agreement with th
theoretical predictions [6,7].

The diagram of states in Fig. 1 and the value ofkct de-
pend onhpyh (and thus onc), which is actually the third
control parameter. Exploring Re-k diagrams at polymer
concentrations up to 160 ppm, we found that the ct-po
exists in a wide range of concentrations, 4.2–160 pp
and the diagrams of states in its vicinity are similar.
is remarkable that polymer additions have a profound
fluence on the character of the Taylor instability even
c ­ 4.2 ppm, where the polymer contribution to the sol
tion viscosity is only 0.8%. At higherc, whenhp . hs,
the diagram of states changes so that a direct trans
from Couette flow to RSW becomes possible [10].

The dependence of the Deborah number at the ct-p
Dect on the polymer contribution to the solution viscosi



VOLUME 77, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 19 AUGUST 1996

of

ion
ce

r

io
ce

y
-
il-
ing
ng
di

-
s

a
ta
pri
int

es

ely
ers
for
ds

s,
for
e,

ial
of
ed

a

er,

s.

s,

R.

ce,

on-

uid
FIG. 5. Dect as a function ofhpyh in the range 4.2–160 ppm
of polymer concentrations. Inset: frequencyv of DO at kct
versushpyh. Vy4 (dashed line) and2ytr (continuous line)
are shown for comparison.

hpyh is shown in Fig. 5. In a rather wide range
hpyh, from 0.028 to 0.19, which corresponds toc of
14–160 ppm, there is a good fit to a power law Dec ,
shpyhd20.5560.01. This result suggests that the express
De2shpyhd remains almost constant at the ct-point. Sin
De ­ Ùgurtr , the polymer relaxation timetr and the shea
rate Ùgur enter this expression quadratically, whilehpyh

enters it only linearly. One could expect such behav
from an effect involving the first normal stress differen
N1, becauseN1 , hp Ùg2 [3].

The law De2shpyhd ­ const was actually theoreticall
predicted by Larsonet al. [13], who used the Oldroyd
B model to consider criteria for a purely elastic instab
ity at Re! 0. The suggested mechanism was coupl
of polymer elongation by weak radial flow to the stro
azimuthal shear, so that the radial flow resulted in ad
tional normal stress differenceDN1 , De2hp Ùgrr . Since
the system is curvilinear,DN1yr acts as an additional ra
dial pressure gradientD ≠p

≠r (hoop stress [3]) and drive
the instability. The enhancement factor De2, which can
be much larger than one, explains the way in which sm
additions of polymers can strongly influence the flow s
bility. Polymer molecules are stretched by the strong
mary flow and release their large stretching energies
the weak secondary flow.

Let us now discuss the two types of oscillatory mod
that we observed. DO set in at largek and reduced
r

-

ll
-
-
o

Re. Their frequency is proportional to1ytr , which is
in general agreement with the predictions for the pur
elastic instability [5,13]. On the other hand, paramet
of RSW and NLO are rather close to those predicted
a nonaxisymmetric oscillatory mode in Newtonian flui
[14], which is purely inertial. ForR2yR1 ­ 0.708, as in
our case, the latter mode hasm ­ 1, kc ø 3.175, and
v ø 0.43V, but it cannot be realized in Newtonian fluid
because its critical Re is a few percent larger than Re
TVF. Thus, DO is obviously an essentially elastic mod
while RSW and NLO can be identified as an inert
mode modified by elastic effects. A detailed study
competition between these two modes will be publish
elsewhere [9].

This work was partially supported by the Minerv
Center for Nonlinear Physics of Complex Systems.
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