VOLUME 77, NUMBER 8 PHYSICAL REVIEW LETTERS 19 AcusT 1996

Gutzwiller’'s Trace Formula and Spectral Statistics: Beyond the Diagonal Approximation
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We calculate the 2-point spectral correlation function for classically chaotic systems in the
semiclassical limit using Gutzwiller's trace formula. The off-diagonal contributions from pairs
of nonidentical periodic orbits are evaluated by relating them to the diagonal terms. The
behavior we find is similar to that recently discovered to hold for disordered systems using
nonperturbative supersymmetric methods. Our analysis generalizes immediately to include parametric
statistics and higher-order correlations and to the study of the semiclassical distribution of matrix
elements. [S0031-9007(96)00955-6]
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Gutzwiller’s trace formula [1] leads to a semiclassicalfrom pairs of orbits that are identical modulo symmetries.

representation for the density of staté%) = >, 8(E —  These diagonal terms may be evaluated using the Han-
E,) of a quantum system in terms of the periodic orbits ofnay—Ozorio de Almeida sum rule for ergodic flows [5],
the underlying classical dynamics: and whenl' < Ty = 2w hd the results coincide with the

- 1 corresponding RMT expressions. Unfortunately, to cal-

d(E) = d(E) + h Z Z TpAp.ncosnSy/h), (1) culate K(T') outside this range necessarily involves the
ror evaluation of the off-diagonal terms associated with pairs

f nonidentical orbits. The problem is that these are con-
ected with correlations between the actions and stabili-

whered is the mean densityd[= O(4~/) if the system
hasf degrees of freedom], and the periodic orbits, labele

p, have actionS, (defined here to include the Maslov ties of different orbits, about which we have agpriori

index), period 7, = dS,/dE, and stability amplitude knowledge [6], except in a few nongeneric examples [7],

_ _ —-1/2 H . . .
Apn = |de(My — 1712, M, being the monodromy o in the case of the Riemann zeta function [8].
matrix that describes the local flow linearized about the Our aim here is to outline a method for evaluating

pth orbit. This expression provides a natural tool withyne off-diagonal contributions indirectly, but explicitly,
which to investigate the conjectured link [2,3] between theyy relating them to the diagonal terms. Specifically,
statistical distribution of the energy levels of classically\ e derive expressions for them in terms of a classical
chaotic systems and the eigenvalue correlations of randogya function whose analytic structure, associated with the

matrix theory (RMT). For example, one easily obtainsyyannay—0Ozorio de Almeida sum rule, determines their
from it a semiclassical approximation for the 2-pointym in the semiclassical limit.

spectral correlation function The results we obtain are very closely related to ones
Ry(x) = (d(E + x1)d(E + x2)), (2)  found recently for ensembles of disordered systems us-
wherex = x; — x; and(--) denotes an energy average, ing nonperturbative supersymmetric methods [9]. Indeed,
in the form of a sum over all pairs of periodic orbits. The making certain simplifying approximations we recover
main questions to be answered are then: Which propertiafose precisely. This then represents further strong evi-
of chaotic orbits are related to the universal featuregience of the deep connections between the quantum prop-
exhibited by complex spectra, such as level repulsion andrties of individual deterministically chaotic systems and
rigidity, and how can the precise form of the results forof ensembles of randomly disordered systems. Further-
the three symmetry-related RMT ensembles—the unitarynore, it also emphasizes the close formal relationship
ensemble (GUE), the orthogonal ensemble (GOE), and thgetween the semiclassical approach, based on the trace

symplectic ensemble (GSE)—be recovered? formula, and the supersymmetric techniques associated
The principal development in this direction was Berry’s with nonlinearc models.
theory [4] for the form factor We now outline the basic ideas behind our calculation.
_ ” . We begin with the trace formula (1), truncated (smoothly if
K(T) f_m Ro(x) explixT /) dx 3) necessary) so as to include only orbits with periggs<

His analysis was based largely on the diagonal approxiF*, whereT™ is a parameter whose value will be fixed later
mation, which involves keeping only the contributionsin the analysis. Denoting the resulting densitydyy(E),
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one can then define corresponding approximations to thand
eigenvalues via the quantization condition [10,11]

(osc) (osc)

In A(_Xl,xz) = 47T2<NT* (E + xl)NT* (E + X2)>.

where Because only orbits witll’, < T* ~ Ty (that is, in the
E _ (05¢) range where the diagonal approximation is known to hold)
Nr+(E) = ] dr-(E"YdE' = N(E) + Nr- (E) contribute, we assume that the resulting sum over orbit
) ) 0 ) ] ) pairs may be replaced by the diagonal terms, for which
is the associated staircase (counting function), the pairing involves orbits with exactly the same action
(0s¢) 1 =1 ) and stability [4]. The result can then be expressed in the
Nr-(E) = P Z Z ;Ap,n sinnS,),  (®)  form A(x) = |Z,(ix)|?, where
T,<T* n=1 "
. L. _ — g_/’ 2 nTys
and for simplicity we have sei = 1. (Henceforth, the Zs) =exg > > =LA, (11)
semiclassical limit will correspond td — «.) Clearly r,=1* n=1 "

dr-(E) represents a semiclassical approximation to thgq g, is the number of orbits with period”, and
exact density of states smoothed on the energy ScalgnpiitudeA,. In generic systems the multiplicity, is
~h/T"; thusifT" ~ Ty itcan be used to calculate faithful the same for almost all orbits and so, if its value is denoted
appr(1X|mat|ons to the true eigenvalues [|@(T_ ) = E, g, Zg = [Z(s)]?, where Z(s) is defined by (11) with
for 7" = Ty] and to study theaveragebehavior of the o | For systems without time-reversal invariance
spectral correlations over ranges> d~'. However, it = 1, and for systems whose dynamics is time-reversal
misses the correlation information related to the S'ngmaéymmetrng = 2 [4]. Furthermore, using the Hannay—
structure of the exact density of states on scales smafh;rio de Almeida sum rule, it is easy to demonstrate that
compared to the mean level separation. To OVErcomg 7+ _, o [so that the sum in (11) is effectively infinite],
this difficulty, we define a newbootstrapped density nen Z(s) — y/s as s — 0, and, hence, one obtains
Dr-(E) =3, 8(E = E"(T*))’ which may, in principle, the appropriate RMT expression‘éﬁdiag) — —1/Q7x?)

also be calculated using only those orbits with = T, (diag) 5 5

but which does not involve any energy smoothing. weWheng = 1 (GUE) andRr; ™™ — —1/(7"x*) wheng =

call it a bootstrapped density because its Fourier transforr (GOE). Since we anticipate takig® ~ 7j, this result
clearly has structure for all imeg, not just forT < 7*,  effectively emerges in the limit — 0, xd — «. We

the role of theeffective orbitsntroduced beyond™ being ~ NOté in passing that there are nongeneric examples of
to generate the correct analytic properties associated witf{rongly chaotic systems for whicli(s) has a simple

the discreteness of the quantum spectrum. Rewritipg PCI€ ats = 0, but the multiplicities are not constant [7].
in the form In these cases it is known that the level statistics do

not obey the RMT conjecture. Clearly this then implies
Dy-(E) = dT*(E)Z(S(NT*(E) —n—1/2) that it is not only the analytic properties &f, but the
P multiplicity structure as well, that determine the behavior
2 . . of the spectral statistics.
= dr(E) Y (—D*ex2mikNs-(E)],  (6) Since in our approach thé, = k, = 0 term corre-

k= sponds to the usual diagonal approximation, we identify
and substituting into (2) then gives the other terms as representing the off-diagonal contribu-
. off)
B P tions, and so denote them (x). To evaluate these
Ro(x) =(dr-(E + x)dr-(E + x2) D (=) we note first that the Taylor expansion in powersraf
. kiky the mean counting function leads to a teim — k»)N(E)
X exp2milkiNr-(E + x1) = koNr+(E + x2)]} ). in the phase which i® (/). Hence the energy average
(7)  renders negligible any contributions with # k>, and so
I : . o o a2 1
which is the equation upon which our analysis will be g™ () — > -
based. dx10x2 20 (27Tk)
Consider first the&k; = k, = 0 term, which we write in X exg2midk(x; — x2) P (x1, x2), (12)
the form H
_ di where
(dr-(E + x)dr(E + ) = & + R“P(),  (8) o N
= j . +
where k(x1,x2) = (exp2mik[Nr (Egc) x1)
. 2 = N (E + x)Ip). (13)
Ry — L % AL ()
2 472 9x,0x) 142 We now make the key assumption that in generic systems

the orbits up to period7T* can be treated as being

1473



VOLUME 77, NUMBER 8 PHYSICAL REVIEW LETTERS 19 AcusT 1996

statistically independent modulo exact degeneracies, arttiat the x — 0 behavior cannot be recovered. In this
hence that the energy average of any smooth functionase the value ofC was, for the present, chosen to
of expliS,(E)], (f) = (f(e™®),. . . eSnE)) can be match the corresponding GOE constanidas» «. That
calculated using we obtain the exact result for the GUE, but not for the
27 2r Mg GOE, is obviously related to the fact that the diagonal
(f) = f f(e"/’l,...,e’¢M)l_[ —7L . (14)  approximation itself is exact for times up @y when
0 0 j-1 2w g = 1, but not wheng = 2. The reasons for this are,
This is essentially equivalent to a random phase or stridiowever, still to be explained. _ .
diagonal approximation. The justification is that the It is also worth noting that, as already discussed in
diagonal approximation itself is known to be valid for [12], Z(s) may be approximately related to a classical
timesT < Ty [4]. zeta functloanl(_s), since, if the eigenvalues of the
Using the trace formula fov;- (5) one can thus Monodromy matrixM, are A, (IA,| > 1) and A, (for
perform the energy average in (13) by evaluating thesimplicity we specialize here to two degree-of-freedom
integral in (14). We shall give exact results for certainHamiltonian systems), and ignoring the repetitions [i.e.,
cases later. First, for clarity, we discuss a simple leadingtakingn = 1in (1)], Z(s) = Z(s) where
order approximation to®,(x) based on the relation 1 *© o7\
(exdiG(E)]) = exd —(GX(E))/2]. This is an identity if - 11 ]‘[(1 - W) N )
G is a Gaussian random function with zero mean, and a1(5) p k=0 pP=p
so, since the exponent in (13) behaves like a sum of a We are now in a position to consider the statistics of
large number of independent random terms [cf. (14)], it ishe third RME: the GSE. The way in which our method
expected to be a good approximation for generic systemss constructed allows us to make use of a remarkable

From it one obtains theorem of Mehta and Dyson [13], which states that if
Oy (xy,x0) = exp{—27r2k2<[N§(18C)(E + x1) every alterngte level is removed from a spectrum in WhiCh
(0sc) 5 the correlations are GOE, then the correlations in the
— Np (E + x2)]9) resulting sequence are the same as those of the GSE.
A\ This can be implemented in our semiclassical scheme
= <7> ; (15)  py first taking D7-(E) = dr-(E) Y., 8(N7-(E) — 2n —
] ) 1/2), second by replacing in the above formula byd
where A(x) was defined in (10) and L = (pecause the original spectrum has twice the density of

eXp{2772<[N(Tgsc)(E)]2>}- ‘Using the Hannay—Ozorio the new one), and finally by assuming, as in the GOE
de Almeida sum rule, it may be seen thiat~ (7%)¢.  calculation, that the orbits come in time symmetric pairs.
Since we anticipate takingi* ~ Ty, it then follows that  The result whenrd — = is that

the terms in thek sum decrease rapidly, ag) 2%

Hence to leading semiclassical order xa@s— %, we may Rgdiag)(x) _ 1L In|Z(ix)l, (18)
retain just thek = *_f;l contributions. If now we choose 4 ax?
T* so thatL = CTy (which essentially corresponds to off _co2mwdx), _._..
taking 7* = Ty), we then haveb.(x) = A(x)/(Cd)*, Ré )(x) =d ! 4 )|7’ 'Z@ix)l, (19)
whereC is a constant. Thus finally taking = 2! 8ys, i i . .
and ignoring terms of higher order in powersaf', whereZ(s) is defined by (11) withg, = 1 or (approxi-

- mately) by (17). Again, the simple pole at= 0 gives

Réof”(x) ~ Mw—lz(,-xﬂk, (16) the leading order GSE asymptotics.
2728d%s 2 The method and results described above generalize in

which is directly equivalent to the relationship that wasa number of different directions (for a more complete
shown by Andreev and Altshuler [9] to hold betweendiscussion, see [14]). First they extend directly to para-
the perturbative and nonperturbative parts ®f for  metric correlations. Consider, for example, the correla-
disordered systems in the limit of large conductance usingion function R»(x, ¢) = (d(E + x/2,¢ + ¢/2)d(E —

the supersymmetric approach. The contribution from ther/2, ¢ — ¢/2)), where ¢ is a parameter in the Hamil-
pole of Z(s) at s = 0 gives immediately the exact GUE tonian and the average extends over bbtland ¢. In
expression wheg = 1, and the leading-order GOE result this case the diagonal terms may be evaluated by assum-
as xd — » when g = 2. Clearly the structure ofZ  ing that the action derivativesS,/d¢ are Gaussian dis-
around the pole determines the semiclassical approadhibuted with varianceaT for orbits with 7, = T [15].

to the RMT limit. The value of the constar@ is, in  Applying the result exactly as above it follows that for
principle, fixed by the requirement tha,(x) — 0 as all three ensembles the semiclassical approximation to
x — 0 for a discrete spectrum. This may be appliedR;(x, ¢) is obtained from the result faR,(x) by replac-
directly wheng = 1, but wheng = 2 the fact that we ingxbyy = x + ia¢?/2in Z, but not in the co@7dx)
have only the leading order — <« asymptotics means factor. Whend — « this agrees with the largé limit of
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the exact expressions given in [16]. The importance of The second generalization is to higher orders of correla-
the off-diagonal contribution in this case illustrated by thetion. For example, the irreducible off-diagonal contribu-
fact that whenv = 0 it coincides exactly with the diago- tions to the 3-point correlation function when= 1 are

nal term. | given in terms of the same functidfi

Z'(i(x2 — x1)) n Z'(i(x1 — x3))
Z(i(x2 — x1)) Z(i(x; — x3))

where (1 — 2,3) denotes a sum of two terms, each theof the Riemann zeta functioti(s) [8] the corresponding
same as the first, but with, interchanged with; andxs, result
respectively. Asx; — 0 this expression is dominated by
the pole 0fZ~(s) ats = 0, and we recover the exact GUE R(Off)(x) - LI{(] + ix)|?
formula for R3, as above. It is worth noting that in this 272
case the diagonal contributions are all zero. omid (1 — pi)?

Our method also applies to correlations involving den- X Re| "™ l_[<1 - W)
sities weighted by, for example, diagonal matrix elements. P P
The diagonal contributions from the corresponding trace
formula can again be evaluated and applied, using a dire
extension of the method outlined above, to calculate th
off-diagonal terms [14]. In this case the fact$r2 in (16)
is replaced byd¢/(d(A, E))?, and so if the microcanoni-
cal average ofi is zero, and thu&(d(A, E))) = 0, these
off-diagonal terms vanish at the leading order, thus justi
fying the previous use of the diagonal approximation [17].

Up to now we have based our discussion on the
approximate formula (15). Perhaps the most impor-
tant extension of the method outlined above is that
the calculation can also be performed exactly, with  *Unit¢ de Recherche Universités Paris 11 et Paris 6,

R3(x1,x2,x3) = — #Sirﬂﬂa(xz — x3)]ly ' Z(i(x2 — x3))1*Im |: :| + (1 —2,3),

n be shown [14] to be exactly equivalent to the Hardy-
ittlewood conjecture for the pairwise distribution of the
prime numbers [8].
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