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Gutzwiller’s Trace Formula and Spectral Statistics: Beyond the Diagonal Approximation
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We calculate the 2-point spectral correlation function for classically chaotic systems in the
semiclassical limit using Gutzwiller’s trace formula. The off-diagonal contributions from pairs
of nonidentical periodic orbits are evaluated by relating them to the diagonal terms. The
behavior we find is similar to that recently discovered to hold for disordered systems using
nonperturbative supersymmetric methods. Our analysis generalizes immediately to include parametric
statistics and higher-order correlations and to the study of the semiclassical distribution of matrix
elements. [S0031-9007(96)00955-6]
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Gutzwiller’s trace formula [1] leads to a semiclassic
representation for the density of statesdsEd ­

P
n dsE 2

End of a quantum system in terms of the periodic orbits
the underlying classical dynamics:

dsEd ­ d̄sEd 1
1

p h̄

X
p

X̀
n­1

TpAp,n cossnSpyh̄d , (1)

where d̄ is the mean density [d̄ ­ Osh̄2f d if the system
hasf degrees of freedom], and the periodic orbits, labe
p, have actionSp (defined here to include the Maslo
index), period Tp ­ dSpydE, and stability amplitude
Ap,n ­ j detsMn

p 2 Idj21y2, Mp being the monodromy
matrix that describes the local flow linearized about
pth orbit. This expression provides a natural tool w
which to investigate the conjectured link [2,3] between
statistical distribution of the energy levels of classica
chaotic systems and the eigenvalue correlations of ran
matrix theory (RMT). For example, one easily obta
from it a semiclassical approximation for the 2-po
spectral correlation function

R2sxd ­ kdsE 1 x1ddsE 1 x2dl , (2)
wherex ­ x1 2 x2 and k· · ·l denotes an energy averag
in the form of a sum over all pairs of periodic orbits. T
main questions to be answered are then: Which prope
of chaotic orbits are related to the universal featu
exhibited by complex spectra, such as level repulsion
rigidity, and how can the precise form of the results
the three symmetry-related RMT ensembles—the uni
ensemble (GUE), the orthogonal ensemble (GOE), and
symplectic ensemble (GSE)—be recovered?

The principal development in this direction was Berry
theory [4] for the form factor

KsT d ­
Z `

2`
R2sxd expsixTyh̄ddx . (3)

His analysis was based largely on the diagonal appr
mation, which involves keeping only the contributio
72 0031-9007y96y77(8)y1472(4)$10.00
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from pairs of orbits that are identical modulo symmetri
These diagonal terms may be evaluated using the H
nay–Ozorio de Almeida sum rule for ergodic flows [5
and whenT ø TH ­ 2p h̄d̄ the results coincide with th
corresponding RMT expressions. Unfortunately, to c
culate KsTd outside this range necessarily involves t
evaluation of the off-diagonal terms associated with p
of nonidentical orbits. The problem is that these are c
nected with correlations between the actions and sta
ties of different orbits, about which we have noa priori
knowledge [6], except in a few nongeneric examples
or in the case of the Riemann zeta function [8].

Our aim here is to outline a method for evaluati
the off-diagonal contributions indirectly, but explicitly
by relating them to the diagonal terms. Specifica
we derive expressions for them in terms of a class
zeta function whose analytic structure, associated with
Hannay–Ozorio de Almeida sum rule, determines th
form in the semiclassical limit.

The results we obtain are very closely related to o
found recently for ensembles of disordered systems
ing nonperturbative supersymmetric methods [9]. Inde
making certain simplifying approximations we recov
those precisely. This then represents further strong
dence of the deep connections between the quantum p
erties of individual deterministically chaotic systems a
of ensembles of randomly disordered systems. Furt
more, it also emphasizes the close formal relations
between the semiclassical approach, based on the
formula, and the supersymmetric techniques associ
with nonlinears models.

We now outline the basic ideas behind our calculati
We begin with the trace formula (1), truncated (smoothl
necessary) so as to include only orbits with periodsTp ,

T p, whereTp is a parameter whose value will be fixed la
in the analysis. Denoting the resulting density bydT p sEd,
© 1996 The American Physical Society
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one can then define corresponding approximations to
eigenvalues via the quantization condition [10,11]

NT p sssEnsTpdddd ­ n 1 1y2 , (4)

where

NTp sEd ­
Z E

0
dTp sE0ddE0 ­ N̄sEd 1 N

soscd
Tp sEd

is the associated staircase (counting function),

N
soscd
Tp sEd ­

1
p

X
Tp,Tp

X̀
n­1

1
n

Ap,n sinsnSpd , (5)

and for simplicity we have set̄h ­ 1. (Henceforth, the
semiclassical limit will correspond tōd ! `.) Clearly
dT p sEd represents a semiclassical approximation to
exact density of states smoothed on the energy s
,hyTp; thus ifTp , TH it can be used to calculate faithfu
approximations to the true eigenvalues [i.e.,EnsTpd . En

for T p $ TH ] and to study theaveragebehavior of the
spectral correlations over rangesx ¿ d̄21. However, it
misses the correlation information related to the singu
structure of the exact density of states on scales sm
compared to the mean level separation. To overco
this difficulty, we define a newbootstrapped density
DTp sEd ­

P
n dsssE 2 EnsTpdddd, which may, in principle,

also be calculated using only those orbits withTp # T p,
but which does not involve any energy smoothing. W
call it a bootstrapped density because its Fourier transf
clearly has structure for all timesT , not just forT , Tp,
the role of theeffective orbitsintroduced beyondTp being
to generate the correct analytic properties associated
the discreteness of the quantum spectrum. RewritingDTp

in the form

DTp sEd ­ dTp sEd
X
n

dsssNTp sEd 2 n 2 1y2ddd

­ dTp sEd
X̀

k­2`

s21dk expf2pikNTpsEdg , (6)

and substituting into (2) then gives

R2sxd ­

ø
dTp sE 1 x1ddTpsE 1 x2d

X
k1,k2

s21dk12k2

3 exph2pifk1NTp sE 1 x1d 2 k2NTp sE 1 x2dgj
¿

,

(7)

which is the equation upon which our analysis will b
based.

Consider first thek1 ­ k2 ­ 0 term, which we write in
the form

kdTp sE 1 x1ddTpsE 1 x2dl ­ d̄2 1 R
sdiagd
2 sxd , (8)

where

R
sdiagd
2 sxd ­

1
4p2

≠2

≠x1≠x2
ln Dsx1, x2d (9)
g

e

e
le

r
ll
e

m

ith

and

ln Dsx1, x2d ­ 4p2kN soscd
Tp sE 1 x1dN soscd

Tp sE 1 x2dl .

(10)
Because only orbits withTp , Tp , TH (that is, in the
range where the diagonal approximation is known to ho
contribute, we assume that the resulting sum over o
pairs may be replaced by the diagonal terms, for wh
the pairing involves orbits with exactly the same acti
and stability [4]. The result can then be expressed in
form Dsxd ­ jZgsixdj2, where

Zgssd ­ exp

√ X
Tp#T p

X̀
n­1

gp

n2
jAp,nj2enTps

!
(11)

and gp is the number of orbits with periodTp and
amplitudeAp . In generic systems the multiplicitygp is
the same for almost all orbits and so, if its value is deno
g, Zg ­ fZssdgg, where Zssd is defined by (11) with
gp ­ 1. For systems without time-reversal invarian
g ­ 1, and for systems whose dynamics is time-rever
symmetricg ­ 2 [4]. Furthermore, using the Hannay
Ozorio de Almeida sum rule, it is easy to demonstrate t
if sTp ! ` [so that the sum in (11) is effectively infinite]
then Zssd ! gys as s ! 0, and, hence, one obtain
the appropriate RMT expressions:R

sdiagd
2 ! 21ys2p2x2d

wheng ­ 1 (GUE) andR
sdiagd
2 ! 21ysp2x2d wheng ­

2 (G0E). Since we anticipate takingT p , TH , this result
effectively emerges in the limitx ! 0, xd̄ ! `. We
note in passing that there are nongeneric example
strongly chaotic systems for whichZssd has a simple
pole ats ­ 0, but the multiplicities are not constant [7
In these cases it is known that the level statistics
not obey the RMT conjecture. Clearly this then impli
that it is not only the analytic properties ofZ, but the
multiplicity structure as well, that determine the behav
of the spectral statistics.

Since in our approach thek1 ­ k2 ­ 0 term corre-
sponds to the usual diagonal approximation, we iden
the other terms as representing the off-diagonal contr
tions, and so denote them byR

soffd
2 sxd. To evaluate these

we note first that the Taylor expansion in powers ofx of
the mean counting function leads to a termsk1 2 k2dN̄sEd
in the phase which isOsh̄2f d. Hence the energy averag
renders negligible any contributions withk1 fi k2, and so

R
soffd
2 sxd ­

≠2

≠x1≠x2

X
kfi0

1
s2pkd2

3 expf2pid̄ksx1 2 x2dgFksx1, x2d , (12)

where

Fksx1, x2d ­ kexph2pikfN soscd
Tp sE 1 x1d

2 N
soscd
Tp sE 1 x2dgjl . (13)

We now make the key assumption that in generic syste
the orbits up to periodT p can be treated as bein
1473
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statistically independent modulo exact degeneracies,
hence that the energy average of any smooth func
of exp

£
iSpsEd

§
, k fl ­ k fseiS1sEd, . . . , eiSM sEddl, can be

calculated using

k fl ­
Z 2p

0
· · ·

Z 2p

0
fseif1 , . . . , eifM d

MY
j­1

dfj

2p
. (14)

This is essentially equivalent to a random phase or s
diagonal approximation. The justification is that th
diagonal approximation itself is known to be valid fo
timesT ø TH [4].

Using the trace formula forNT p (5) one can thus
perform the energy average in (13) by evaluating
integral in (14). We shall give exact results for certa
cases later. First, for clarity, we discuss a simple leadi
order approximation toFksxd based on the relation
kexpfiGsEdgl . expf2kG2sEdly2g. This is an identity if
G is a Gaussian random function with zero mean, a
so, since the exponent in (13) behaves like a sum o
large number of independent random terms [cf. (14)], i
expected to be a good approximation for generic syste
From it one obtains

Fksx1, x2d ­ exph22p2k2kfN soscd
T p sE 1 x1d

2 N
soscd
Tp sE 1 x2dg2l

­

µ
Dsxd
L2

∂k2

, (15)

where Dsxd was defined in (10) and L ­
exph2p2kfN soscd

Tp sEdg2lj. Using the Hannay–Ozorio
de Almeida sum rule, it may be seen thatL , sTpdg.
Since we anticipate takingTp , TH , it then follows that
the terms in thek sum decrease rapidly, assd̄d22gk2

.
Hence to leading semiclassical order, asxd̄ ! `, we may
retain just thek ­ 61 contributions. If now we choose
Tp so that L ­ CT

g
H (which essentially corresponds t

taking Tp ­ TH ), we then haveF61sxd . DsxdysCd̄d2g,
whereC is a constant. Thus finally takingC ­ 212ggg,
and ignoring terms of higher order in powers ofd̄21,

R
soffd
2 sxd .

coss2p d̄xd
2p2gd̄2g22 jg21Zsixdj2g , (16)

which is directly equivalent to the relationship that w
shown by Andreev and Altshuler [9] to hold betwee
the perturbative and nonperturbative parts ofR2 for
disordered systems in the limit of large conductance us
the supersymmetric approach. The contribution from
pole of Zssd at s ­ 0 gives immediately the exact GUE
expression wheng ­ 1, and the leading-order GOE resu
as xd̄ ! ` when g ­ 2. Clearly the structure ofZ
around the pole determines the semiclassical appro
to the RMT limit. The value of the constantC is, in
principle, fixed by the requirement thatR2sxd ! 0 as
x ! 0 for a discrete spectrum. This may be appli
directly wheng ­ 1, but wheng ­ 2 the fact that we
have only the leading orderx ! ` asymptotics means
1474
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that the x ! 0 behavior cannot be recovered. In th
case the value ofC was, for the present, chosen
match the corresponding GOE constant asd̄ ! `. That
we obtain the exact result for the GUE, but not for t
GOE, is obviously related to the fact that the diago
approximation itself is exact for times up toTH when
g ­ 1, but not wheng ­ 2. The reasons for this are
however, still to be explained.

It is also worth noting that, as already discussed
[12], Zssd may be approximately related to a classi
zeta function Zclssd, since, if the eigenvalues of th
monodromy matrixMp areLp (jLp j . 1) andL21

p (for
simplicity we specialize here to two degree-of-freed
Hamiltonian systems), and ignoring the repetitions [i
takingn ­ 1 in (1)], Zssd . Zclssd where

1
Zclssd

­
Y

p

Ỳ
k­0

√
1 2

esTp

jLpjLk
p

!k11

. (17)

We are now in a position to consider the statistics
the third RME: the GSE. The way in which our meth
is constructed allows us to make use of a remarka
theorem of Mehta and Dyson [13], which states tha
every alternate level is removed from a spectrum in wh
the correlations are GOE, then the correlations in
resulting sequence are the same as those of the G
This can be implemented in our semiclassical sche
by first taking DTp sEd ­ dTp sEd

P
n dsssNTp sEd 2 2n 2

1y2ddd, second by replacinḡd in the above formula by2d̄
(because the original spectrum has twice the densit
the new one), and finally by assuming, as in the G
calculation, that the orbits come in time symmetric pa
The result whenxd̄ ! ` is that

R
sdiagd
2 sxd ­

1
4p2

≠2

≠x2
ln jZsixdj , (18)

R
soffd
2 sxd ­ d̄

coss2p d̄xd
4

jg21Zsixdj , (19)

whereZssd is defined by (11) withgp ­ 1 or (approxi-
mately) by (17). Again, the simple pole ats ­ 0 gives
the leading order GSE asymptotics.

The method and results described above generaliz
a number of different directions (for a more comple
discussion, see [14]). First they extend directly to pa
metric correlations. Consider, for example, the corre
tion function R2sx, fd ­ kdsE 1 xy2, f̄ 1 fy2ddsE 2

xy2, f̄ 2 fy2dl, where f is a parameter in the Hami
tonian and the average extends over bothE and f̄. In
this case the diagonal terms may be evaluated by as
ing that the action derivatives≠Spy≠f are Gaussian dis
tributed with varianceaT for orbits with Tp . T [15].
Applying the result exactly as above it follows that f
all three ensembles the semiclassical approximation
R2sx, fd is obtained from the result forR2sxd by replac-
ing x by y ­ x 1 iaf2y2 in Z, but not in the coss2pd̄xd
factor. Whend̄ ! ` this agrees with the largef limit of
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fact that whenx ­ 0 it coincides exactly with the diago
nal term.
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f The second generalization is to higher orders of corr
tion. For example, the irreducible off-diagonal contrib
tions to the 3-point correlation function wheng ­ 1 are
given in terms of the same functionZ:
R̃3sx1, x2, x3d ­ 2
1

2p3
sinf2pd̄sx2 2 x3dgjg21Zsssisx2 2 x3ddddj2Im

"
Z0sssisx2 2 x1dddd
Zsssisx2 2 x1dddd

1
Z0sssisx1 2 x3dddd
Zsssisx1 2 x3dddd

#
1 s1 ! 2, 3d,
dy-
e

ing
so
ous

6,

ev.

h.

,

ys.

,
r-
ng,

v.
where s1 ! 2, 3d denotes a sum of two terms, each
same as the first, but withx1 interchanged withx2 andx3,
respectively. Asxj ! 0 this expression is dominated b
the pole ofZssd at s ­ 0, and we recover the exact GU
formula for R̃3, as above. It is worth noting that in th
case the diagonal contributions are all zero.

Our method also applies to correlations involving d
sities weighted by, for example, diagonal matrix eleme
The diagonal contributions from the corresponding tr
formula can again be evaluated and applied, using a d
extension of the method outlined above, to calculate
off-diagonal terms [14]. In this case the factord̄g22 in (16)
is replaced byd̄gykdsÂ, Edl2, and so if the microcanon
cal average of̂A is zero, and thuskkkkdsÂ, Edllll ­ 0, these
off-diagonal terms vanish at the leading order, thus ju
fying the previous use of the diagonal approximation [1

Up to now we have based our discussion on
approximate formula (15). Perhaps the most imp
tant extension of the method outlined above is t
the calculation can also be performed exactly, w
the correlations between orbit repetitionsn in (1) in-
cluded correctly. This may be achieved by noting t
N

soscd
Tp sEd ­ 2Im ln ZTp

sEdyp, whereZTp sEd is the semi-
classical Selberg-type zeta function with its Euler prod
truncated atTp. Substituting this into (13), the integr
in (14) can be performed exactly. For example, the re
for non-time-reversal-symmetric systems may be writ
in the form

R
soffd
2 ­

1
2p2 jg21Zclsixdj2Re

"
exps2p id̄xd

Y
p

fpsxd

#
,

(20)
with

fpsxd ­ 2f1sap, bp; cp; qp, zpd
jZps0dj2

jZpsixdj2
, (21)

where ap ­ bp ­ exps2iTpxd, cp ­ qp ­ L21
p , zp ­

jLp j21 expsiTpxd, 2f1sa, b; c; q, zd is the q-hypergeo-
metric series, andZclssd ­

Q
p Zpssd is the classical zet

function defined in (17) (for details see [14]). The prod
in (20) converges whenx is real and takes the value
whenx ­ 0. This result appears to represent a refinem
of the expressions presented in [9] and [12] and reder
above by ignoring correlations between orbit repetiti
in the trace formula. Evidence that such corrections
meaningful is that for the 2-point correlations of the ze
-
s.
e
ct
e

i-
].
e
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h
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of the Riemann zeta functionz ssd [8] the corresponding
result

R
soffd
2 sxd ­

1
2p2 jz s1 1 ixdj2

3 Re

24e2pid̄x
Y
p

√
1 2

s1 2 pixd2

sp 2 1d2

!35
can be shown [14] to be exactly equivalent to the Har
Littlewood conjecture for the pairwise distribution of th
prime numbers [8].
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