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We present shell model Monte Carlo calculations for nuclei in the full major shell 50-82 for
both protons and neutrons. For the interaction we use a pairing plus quadrupole derived from a
surface-peaked separable force. The methods are illustratéd'$or, 12°Te, and'*Xe. We calculate
shape distributions, moments of inertia, and pairing correlations as functions of temperature and
angular velocity. Our calculations are the first microscopic evidence-sbftness of nuclei in this
region. [S0031-9007(96)00894-0]

PACS numbers: 21.60.Ka, 21.10.Gv, 21.60.Cs, 27.60.4j

Nuclei with mass number00 = A = 140 are believed #’), whereV(r) is the mean-field potential. The angular
to have large shape fluctuations in their ground states. Asdelta function is expanded in multipoles, and only its
sociated with this softness are spectra with an approximaiguadrupole component is retained. Thus,

0O(5) symmetry and bands with energy spacings interme-

diate between rotational and vibrational. The geometrical H, = — Z % PLLPML

model describes these nuclei by potential energy surfaces /\1#

with aminimum at3 # 0, butindependent of [1]. Some — =y Y . 1
of these nuclei have been described in terms of a quartic 2 X g( V' OuQ-u = @)

five-dimensional oscillator [2]. In the interacting boson

model (IBM), they are described by an O(6) dynamicalwhere :: denotes normal ordering aﬁc}wQ# are pair

symmetry [3]. and quadrupole operators given by
Nuclei with 100 = A = 140 fill the major shell be-

tween 50 and 82 for both protons and neutrons, and P:{# = Z(—)€'I(ja||y||jb)[a2 X a;rb],w,

conventional shell model calculations in the full space ab

are impossible for many of these nuclei. However, with 1 . ) 1 - @)
the introduction of shell model Monte Carlo techniques Qu = 5 Z<Ja JC>[aju X j hoy -
(SMMC) [4], it has become possible to do exact calcula- “
tions (up to a statistical error) in much larger model space# (2) a = n€j denotes a single particle orbit aag, =
[5] at zero and finite temperatures. This Letter presenté—) *"a;—,,. The strength of the quadrupole interaction
the first fully microscopic calculations for soft nuclei with is determined by self-consistency. A change in the
100 = A = 140 and compares them with the results of mean-field potential is related to a change in the one-
more phenomenological models. body densityp(r) through8V(r) = [ dr'v(r,r')Sp(x’').

An important problem is the choice of the interaction. Using the invariance of the one-body potential under a
It was recently shown that the realistic residual nucleadisplacement of the nucleus, and the separable form of
force is dominated by a pairing plus quadrupole interacthe two-body interaction, we obtain
tion [6]. We have used such an interaction, where the o dv dp
pairing contains both monopole and quadrupole [7] terms x ' = f drr? ar dr
whose strengths are determined by odd-even mass dif- 0 roar
ferences. The quadrupole interaction is derived from &he spherical nuclear density in (3) is calculated from
surface-peaked separable force [8]. Such an interaction js(r) = 47)~'>, fuR2(r)/r?, wheref, andR, are the
expected to be a reasonable way of describing deformaccupation number and the radial wave function of orbit
tion and pairing phenomena. A major advantage of this, respectively, and the sum goes over both the core
interaction is that it has a “good” Monte Carlo sign, andand valence shells. In general we find that< A~!/3
accurate calculations are feasible without using the ex{6]. For 1%’Xe, Eq. (3) givesy = 0.018 MeV~! fm?, but
trapolation techniques developed to circumvent the “sigrihis value must be renormalized since the interaction

dav
dr Vou

©)

problem” [9]. (1) is taken only in the valence shell. We find that a
The (isoscalar) surface-peaked interaction is assumeagnormalization factor of~3 is required to reproduce
to be of the formu(r,r’) = —x(dV /dr)(dV /dr')6(? —  correctly the variation of the excitation energy of the first
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2" state in this region. We note that the value of thethe prescriptionP(q) « >, [1, 6((Qu)s — g,), Which
renormalization factor is expected to be larger than thés valid provided(Q;), = (Q.);. We improve upon
standard value of 2 [10] since there ak& = 0 matrix  this prescription by explicitly forcing the quadratic mo-
elements that are not included in the model space, iment to be correct. To that end, we calcul(amé,)w =
addition to the usuah N = 2 elements [11]. (0u0v)oe — {Qu)s{Qy)s for each sample and assume

The single-particle energies are determined from ahat higher cumulants vanish. Then (in matrix notation)
Woods-Saxon plus spin-orbit potential using the

parametrization of Ref. [12]. For!*Xe, the re- P(q) #ex;{ _ l(<Q>o’ "
sulting  single-particle  energies  of 0g7/2, 1ds)2, - detA, 2

Ohii/a, 25172, and lds, are —3.05, —3.35, —1.07, w L _ }
—1.04, and -—0.615MeV for protons and A2 (@07 —a) ] &)

—11.79, —12.08, —9.53, —10.21, and — 9.94 MeV for
neutrons. The Coulomb potential has the effect of placin
the 11/, proton orbit below theds;, and s;/, orbits.

When the central Woods-Saxon potential is usedV) 1 + * ) we calculate its quadrupole moment
in (2), we find that the corresponding matrix elements 0bg(expagginoéﬂityszéze’nsitp(r) = polr ﬂ R) (V\E)herepo is

the quadrupole interaction in the proton single-particlehe gpherical density) to first order in deformation. We
basis differ by only a few percent from those in the,qn find

neutron single-particle basis. We can therefore choose
either set. *
For the pairing interaction we include only monopole (Qulo = 4R0<]0 r3p°(r)dr>a2#’ (5)
(A = 0) and quadrupolgA = 2) terms with gg = g».
To determineg, we first extract the pairing ga@d  wherep, is calculated as below Eqg. (3), but only within
from the experimental masses of neighboring nuclei [13]the valence shell. The,, are then transformed by ro-
We then use a particle-projected BCS calculation fortation to the intrinsic frame wherex,) = Bcosy and
the Hamiltonian (1) to find the value of, that will ay = ay—p = ,BSiny/\/Z and (4) is used in the intrin-
reproduce the experimental gap for a spherical nucleusic frame to findP (B3, y).
with the same mass numbek. For '**Xe we find Typical shapes and their standard deviation are shown in
go = 0.15 MeV. The inclusion of quadrupole pairing the inset of Fig. 1. Rather than showing directly the shape
is important in order to lower the excitation energy of thedistributionP (83, y), we convert it to a free energy surface
2! state in the tin isotopes to about 1.3 MeV (which isthroughF (8, y;T) = —TIn[P(B, y)/B*| sin3y|], where
2A ~ 2 MeV when only monopole pairing is included). the unitary metrid [, da,, = B* sin3yldBdydQ) has
Since both the monopole pairing and the quadrupolebeen assumed [14]. Such free energy surfaces are shown
quadrupole interaction are attractive, they satisfy the sigin Fig. 1 for ?®Te and **Xe at different temperatures.
rule in the density decomposition and have a good Montdhese nuclei are clearly-soft, with energy minima at
Carlo sign. The quadrupole pairing has components tha8, ~ 0.06 and 8, ~ 0.15, respectively. Energy surfaces
violate the sign rule, but they are all very small in calculated with Strutinsky-BCS using deformed Woods-
comparison with the good sign components. Setting alSaxon potential [15] also indicatgssoftness with values
the bad components to zero has no more than a 5% effeof 8o comparable to the SMMC values. These calculations
on the spectrum. In identifying the bad components ofredict for'2*Xe a prolate minimum witi8, =~ 0.20 which
the interaction, one should use the modified sign rule [9]s lower than the spherical configuration by 1.7 MeV, but
since orbits of both parities are present in the 50—82 shells only 0.3 MeV below the oblate saddle point, and for
We begin discussion of our results with the prob-**Te a shallow oblate minimum witg, =~ 0.03. These
ability distribution of the quadrupole momer@, =  vy-soft surfaces are similar to those obtained in the O(6)
> r*VY,,. This probability distribution is defined as symmetry of the IBM, or more generally, in cases where
P(q) = {1, 6(Qu — g.)) (Whereq = {g,}) and is non-  the Hamiltonian has mixed U(5) and O(6) symmetries but
vanishing forg # 0 even if the ground state has= 0 a common O(5) symmetry. In the Bohr Hamiltonian, an
and thus(Q,) = 0. The expectation value of an observ- O(5) symmetry occurs when the collective potential energy
able Q in the SMMC is calculated by a weighted integra- depends only o8 [1]. Our results are consistent with a
tion over its values for noninteracting nucleons moving inpotential energy/(8) that has a quartic anharmonicity [2]
a fluctuating auxiliary field{(Q), = Tr(QU,)/Tr(U,), but a negative quadratic term that leads to a minimum at
where the single-particle evolution operator associatefinite 3.
with an auxiliary fieldo is U,. In particular, P(g) « We have also estimated totBR strengths from(Q?)
o1, 6(Qu — gu))e, but this is difficult to calculate where Q0 = ¢,0, + €,0, is the electric quadrupole
since it requires all moment"),. The method used operator with effective charges ef, = 1.5¢ ande, =
in a recent SMMC study of deformed nuclei [5] follows 0.7¢, and extractedB(E2;0 — 2,), assuming that most

In order for (4) to define a shape distribution, we
%nust associate a deformatien, with each quadrupole
moment(Q,.),. Starting from a deformed nucleus, =
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FIG. 1.
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Free energy surfaces fo®Te and !2*Xe in the

and 0.354 MeV for?4Sn, 128Te, and*?*Xe, respectively.
The discrepancy fot?®Te and'?*Xe is due to contribu-
tions from the excited states at the finite temperature used
in the calculationg$T = 0.2 MeV).

Another signature of softness is the response of the
nucleus to rotations. We add a cranking field/, to
the Hamiltonian and examine the moment of inertia as a
function of the cranking frequenay. For a soft nucleus
we expect a behavior intermediate between a deformed
nucleus, where the inertia is independent of the cranking
frequency, and the harmonic oscillator, where the inertia
becomes singular. This is confirmed in Fig. 2 which
shows the moment of inerti = d(J.)/dw = ((J2) —
(J.)?)/T for ?Xe and '?®Te as a function ofw, and
indicates that'?®Te has a more harmonic character. The
moment of inertia fow = 0 in both nuclei is significantly
lower than the rigid body value~43 /%/MeV for A =
124) as a result of pairing correlations.

Also shown in Fig. 2 argQ?) whereQ is the mass
quadrupole, the BCS-like pairing correlatidatA) for
the protons, andJ/,). Notice that the increase il as
a function of w is strongly correlated with the rapid
decrease of pairing correlations, and that the peals in

B-y plane at several temperatures. The contour lines argre associated with the onset of a decrease in collectivity

separated by 0.3 MeV and the lighter shades correspond
Notice the softness of the surfaces.
surfaces are deduced from microscopically calculated sha

lower energies.

[(hs measured b§Q?)). This suggests band crossing along
p@e yrast line associated with pair breaking and alignment

distributions (see text). The inset illustrates a few typicalOf the quasiparticle spins ab ~ 0.2 MeV ({J;) = 7h)
shapes sampled in the SMMC and their standard deviation (fofor *2Te andw =~ 0.3 MeV ((J,) = 115) for 1?*Xe. Our
12%e atT = 1/3 MeV).

results are consistent with experimental evidence of band
crossing in the yrast sequence &fXe around a spin

of the strength is in the] state. We findB(E2;0 — 2}) 60 ——————— 45
values of1314 = 10, 2856 = 15, and7248 =+ 36 ¢Zfm?* <50} I ] 40 I
to be compared with the experimental values [16] of 240! I 1 35 | & {
1660, 3830, and14900 ¢2fm* for 12‘Sn, %%Te, and E ook Xe ] 0% “Te
124¢e respectively. The effective charges used are the ™ oo [ty 25 ,
theoretical estimates of [11] and are larger than their o 3% = ) e
standard values because of a low-lyidgw peak in the o 7500 T R 2000 T
isoscalar strength function which is outside our model A 7000 ; ‘ % 4 2500
space. The SMMC calculations reproduce the qualitative ¥ 6500 Ltttk 2000 de+—t——b ot
trend; the quantitative discrepancy would be reduced - oo T=1/2MeV | Cm wea T-12MeV
had we used a renormalization factor similar to the faol TR PTERMY 20 g e TetaMeV
potential field renormalization discussed above. A better %‘ 2'0 ‘j""'"*~~»-»~-_f_jfj;n.,__: 1 10T ~.‘,_:
gquantitative agreement might be achieved by including ' g ' '
additional subshells [17] and an isovector quadrupole 1.0 e o 00
interaction. Sl ' 10 |

Information on excited states in SMMC can be obtained A0 5|
from strength functions. The energy centroid is given V57 _
by E = S1/So, wheres, is the nth moment of the rele- 00«76""(‘)"’:’1 02 0.3 04 05 050 0102 03 04 05
vant strength function, and can be calculated from the o (MeV/n) ® (MeV/A)

first logarithmic derivative of the imaginary time response
function. We calculated the@; excitation energy this
way from theE2 response function. The values found of
1.12 = 0.02, 0.96 * 0.02, and0.52 * 0.01 MeV should

FIG. 2. Observables for?’Xe and '*®Te as a function of
cranking frequencyw and for two temperatures.l, is the
moment of inertia,Q is the mass quadrupole momem, is
the J = 0 pairing operator, and, is the angular momentum

be compared with the experimental values of 1.131, 0.743long the cranking axis.
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of 104 [18]. The alignment effect is clearly seen in region, using the SMMC for the full 50—82 major shell.
the behavior of(J,) at the lower temperature, which Future work will include an isovector quadrupole force.
shows a rapid increase after an initial moderate changéiowever, such calculations are more time consuming as
Deformation and pairing decrease as a function of botlthis interaction violates the Monte Carlo sign rule.
temperature and. This work was supported in part by the U.S. De-
We have analyzed the number of correlated pairs opartment of Energy, Contracts No. DE-FG-0291-ER-
these nuclei in their ground state. For a ?iven angulad0608, No. DE-FG0690-ER40561, and No. DE-ACO05-
momentumJ, we define the pair operatom]M(ab) = 960R22464, and by the National Science Foundation,

1/JT ¥ 845 [a}‘“ % a;rb]JM- These operators are boson- Granf[s No. PHY90-13248 anc_i No. PHY91-15574. Com-
like in the sense that they satisfy the expected commutatioputational cycles were provided on the IBM SP2 at
relations in the limit where the number of valence nucleondh® Maui High Performance Computing Center. We
is small compared with the total number of single-particle@cknowledge useful discussions with F. lachello, H.
states in the shell. In the SMMC we compute the pair corNa@kada, and A. Ansari. Y. A. acknowledges the hospital-
relation matrix in the ground staj <AT (ab)A s (cd)) ity of the Institute for Nuclear Theory at the University of
o the g =M G IM IMAS)7  Washington where part of this work was completed.
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