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Low Frequency Admittance of a Quantum Point Contact
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We present a current and charge conserving theory for the low frequency admittance of a quantum
point contact. We derive expressions for the electrochemical capacitance and the displacement curren
The latter is determined by theemittancewhich equals the capacitance only in the limit of vanishing
transmission. With the opening of channels the capacitance and the emittance decrease in a steplik
manner in synchronism with the conductance steps. For vanishing reflection, the capacitance vanishe
and the emittance is negative. [S0031-9007(96)00603-5]

PACS numbers: 73.23.Ps, 72.10.Bg, 73.40.Gk
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There is growing interest in transport properties
electric nanostructures such as quantum point conta
quantum wires, and quantum dots, to mention but a
[1,2]. These mesoscopic conductors can be so small
transport at low temperatures is phase coherent or e
mainly ballistic including only a few elastic scatterin
events. The scattering approach to electrical conduc
[1–4] has successfully been used to describe m
experiments. For a phase coherent conductor with
probes this theory relates the transmission probabil
T s jd of the occupied one-dimensional subbands to the
conductanceGs0d ­ s2e2yhd

P
T s jd. The validity of this

conductance formula was experimentally confirmed fi
by van Weeset al. [5] and Wharamet al. [6] who found
a stepwise increase of the conductance by success
opening conduction channels of a quantum point conta

A more novel concept concerns the notion of t
mesoscopic capacitance. Besides the definition of the ca
pacitanceC by the static charge response to an elec
chemical voltage drop, there exists also adynamicpoint
of view which is important for practical use. The c
pacitance is then associated with the phase shift betw
a current and a voltage oscillation at small frequenc
v, i.e., with the imaginary part of the low frequency a
mittanceGsvd of a resistor and capacitor in parallel.
dynamical derivation of a mesoscopic capacitance
given by Büttiker, Thomas, and Prêtre [7]. To ma
a clear distinction between the static and the dyna
concepts, we callE ­ isdGydvdv­0 the emittanceof
a conductor. For a purely capacitive structure the st
and dynamical derivations lead to identical results, i
E ­ C. This case is characterized by a displacem
current entering the sample through the leads which
equal to the change of the charge on a capacitor p
We mention that in a mesoscopic sample the relev
density of states (DOS),dN1ydE and dN2ydE, of the
“mesoscopic capacitor plates” can be so small thatC is
no longer equal to the geometric capacitanceC0 but de-
pends on the DOS [7]:C21 ­ C21

0 1 D21
1 1 D21

2 with
Dk ­ e2dNkydE. This is due to the fact that the vol
age drop between the reservoirs can differ significa
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from the drop of the electrostatic potential at the plat
On the other hand, for conductors which permit transm
sionE ­ C is not valid. In this Letter, we derive expres
sions for E and C of a quantum point contact (Fig. 1
We emphasize the dipolar structure of the charge
tribution. The model which we develop also describ
a mesoscopic capacitor with tunneling between the
capacitor plates (leakage), which is of great interest
e.g., tunneling microscopy [8].

First, we present our results for a single-channel cond
tor. Subsequently, we present the derivation of the res
using the scattering approach to low-frequency transp
developed in Refs. [9,10]. Finally, the results are gene
ized to the many channel case of a quantum point con

C and E for a single channel.—The single-channe
case is described by a one-dimensional scattering prob
with a localized potential region describing a constricti
or a tunneling barrier. It turns out thatC andE decrease
for increasing transmission probabilityT ­ 1 2 R of this

FIG. 1. Quantum point contact connected to reservoirs w
electrochemical potentialsma ­ m0 1 dma, and for the par-
ticular case of one transmitted and two backscattered chan
insideVk (dark regions) with electric potentialsdUk.
© 1996 The American Physical Society 143
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region. In particular, we find that the capacitance
proportional to the reflection probabilityR

C ­
R

C21
0 1 D21

1 1 D21
2

. (1)

In general, also the geometric capacitanceC0 depends
on R. For example,C21

0 decreases for two capacito
plates approaching each other. However, since theDk are
nearly independent ofT and remain finite forR °! 0 one
concludes from Eq. (1) thatC vanishes forR °! 0 even
when C21

0 vanishes. This is reasonable since for ide
transmission (no barrier) a charge accumulation (dip
moment) does not occur. ForR ­ 1, on the other hand
we recover from Eq. (1) the above mentioned express
for the electrochemical capacitance of a mesosco
capacitor.

Below we will also show that in the single channel ca
the emittance is given by

E ­ CR 2
D
4

T2, (2)

where D ­ D1 1 D2 is the total (relevant) DOS. As
expected,R ­ 1 implies E ­ C. On the other hand
for total transmission (R ­ 0) the emittance is negative
E ­ 2Dy4. For the particular case where the geom
ric capacitance is sufficiently large and where the sa
ple is spatially symmetric, i.e.,C0 ¿ D1 ­ D2, we find
E ­ sDy4d sR 2 T d. This illustrates a crossover be
tween positive and negative emittance. Negative em
tances are characteristic for conductors with nearly per
transmission. For resonant tunnel junctions an inducti
like kinetic response is discussed in Refs. [11–13].
Ref. [9] it is shown that the emittance remains negat
even when the charge in the well is totally screen
It is interesting that the emittance for the symmet
tunnel resonance barrier in this limit can also be w
ten asE ­ sDy4d sR 2 Td. A similar relation has been
found by Mikhailov and Volkov [14] who calculated with
a Boltzmann approach the low frequency plasma-w
spectrum for a tunnel junction. Introducing a timetT ,
they found a tunneling contributionCT to the capacitance
proportional totT sR 2 T d. Although their result is not
in full accordance with Eq. (2), it holdsE ­ CT if the
barrier is symmetric and if one replacestT by a dwell
time hDy2e2. Furthermore, we show in Ref. [15] tha
positive and negative emittances exist in quantized H
samples, depending on whether edge states provide
fect transmission or perfect reflection channels.

Derivation of C and E.—Consider now a quantum
point contact (Fig. 1) connected on either side to res
voirs a (­ 1, 2). A variation of the voltagedVa ­
dmaye in reservoira changes the electrochemical pote
tial dma of the incoming particles which are partly sca
tered back and partly transmitted. The admittance ma
Gabsvd ­ dIaydVb represents the linear response of t
currentdIa through contacta for a small voltage oscil-
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lation dVb ~ exps2ivtd in reservoirhbj. For low fre-
quencies one can write

Gabsvd ­ G
s0d
ab 2 ivEab , (3)

where Eab is the emittance matrix. A microscopi
calculation of the emittance is a complicated task since
electrostatic potential is a complicated function of spa
The aim of this work is to develop a simple model th
captures the essential physical features.

First, we mention that an applied voltage can pol
ize the conductor but leaves the total charge unaffec
Hence, for a conductor in electrical isolation (with n
other nearby conductors or gates) charge and cur
are conserved, meaningG11 ­ G22 ­ 2G12 ­ 2G21 ;
G ; Gs0d 2 ivE. The nonequilibrium charge distribu
tion with the form of a dipole has a chargedq1 to the
left and a chargedq2 ­ 2dq1 to the right of the barrier.
Consider for a moment a voltage shiftdV1 ­ dm1ye only
in the left reservoir. On the far left side of the point co
tact one has complete screening, so the shift of the
cal electric potential follows the electrochemical potent
dm1ye. For the same reason, the electrostatic poten
shift vanishes on the far right side. The drop of the vo
age shift fromdm1ye to zero is strongly localized within
a screening length near the center of the quantum p
contact. Instead of treating the entire potential landsc
realistically, we discretize it [16]. We introduce two po
tentialsdU1,2 for the regionsV1,2 (dark regions in Fig. 1)
which are characterized by an incomplete screening of
excess charge. We emphasize that within the framew
of the general approach provided by Ref. [10] the comp
cated full quantum mechanical and space dependent p
lem can be treated analogously.

In the basis of eigenchannels the transmission prob
through a quantum point contact can be represented
a sum of single-channel transmission problems [17,1
The potential of a quantum point contact has the sh
of a saddle [18] with a valueeU0 at the saddle point.
Near the saddle the potential can also be separa
into a longitudinal parteUsxd and a transverse par
eUs yd. Thus in a first step we consider a singl
channel transmission problem in a potentialeUsxd. The
variation of this potential is slow compared to the Fer
wavelength which allows us to use the semiclassical W
approximation for the local density of statesdnsxdydE
and for the transmission probabilityT [19,20]. The
regions Vk to the left and to the right of the barrie
in which the potentials are not screened areV1 ­
f2l1, 2x1g andV2 ­ fx2, l2g, respectively, where the siz
of the Vk is of the order of the screening length. Th
xk are determined by the WKB turning points ifEF ,

eU0, and they are given byxk ­ 0 (the location of the
barrier peak) forEF $ eU0. We express the DOS in
the region Vk in the form of a quantum capacitanc
Dk ­ e2

R
Vk

dx dnsxdydE.
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For the following we need the nonequilibrium state, i.
the chargedqk which resides inVk as a consequenc
of a voltage variationdVa ­ dmaye at contacta. This
charge can be found with the help of thepartial densities
of states(PDOS) Dakb which are defined as the DO
associated with carriers inVk scattered from contactb
to contacta [15]. For example,D211 is given by the
transmission probability times the DOS ofV1 associated
with carriers with positive velocity, henceD211 ­ TD1y2.
Since there are no states inV1 associated with scatterin
from contact2 back to contact2 one concludesD212 ­ 0.
With similar arguments one finds in the semiclassical c
for the PDOS

Dakb ­ DkfTy2 1 dabsRdak 2 Ty2dg , (4)

where dij is the Kronecker delta. Note thatDk ­P
ab Dakb. The injected charges lead to induced ele

trostatic potentialsdUk which counteract the buildup o
charge in the regionsVk ; i.e., the shiftsdUk of the band
bottoms induce a charge response. For a spatially slo
varying potential this response is local and is determin
by the DOS,dqind

k ­ 2DkdUk. The charge inVk is then
given by

dqk ­
X
ab

DakbsdVb 2 dUkd ;
X
b

DkbsdVb 2 dUkd ,

(5)

where we introduced theinjectivity [10] Dkb ­
P

a Dakb

which is the PDOS of regionVk associated with carrier
injected at contactb.

To determine the electrochemical capacitance, we
troduce first the geometrical capacitance matrixC0,kl ­
s21dk1lC0 associated with the regionsVk and which can
be obtained from the Poisson equation. The electros
and electrochemical capacitances,C0,kl and Ckb, respec-
tively, relate the charge to the potentials via

dqk ­
X

l

C0,kldUl ­
X
b

CkbdVb. (6)

Charge conservation impliesCkb ­ s21dk1bC. The
result (1) follows now immediately from Eqs. (4)–(6).

To calculate the emittance we remark thatEabdVb

corresponds to the displacement chargedQa, which passes
contacta due to a variationdVb of the voltage in reservoir
b. Note thatdqk ­ dQa­k is only valid if R ­ 1 but
does not hold ifR , 1. Since we restrict ourselves to th
first-order frequency term, it is sufficient to calculate t
quasistatic displacement charge. We take the Coulo
interaction into account self-consistently by consider
two contributions todQa. A first part which neglects
screening is given by the kinetic contributionDabdVb,
where Dab ­

P
k Dakb is the global PDOS of carrier

scattered from contactb to contacta at fixed electrostatic
potentials. A second part corresponds to a screen
,

e

-
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charge which is due to the shiftsdUk of the band bottoms
The part of the screening charge which is eventua
scattered to contacta is then given by2

P
kg DakgdUk ;

2
P

k DakukbdVb, where we defined theemissivity[10]
Dak ­

P
g Dakg associated with the states scattered fr

the regionVk to contacta. Furthermore, we introduce
the characteristic potentials[10] ukb ­ ≠Uky≠Vb which
give the response of the electrostatic potential in reg
k due to a variation of the voltage in reservoirb. The
negative sign of the screening charge is due to the fact
a positive shift of the band bottom at fixed electrochemi
potential diminishes the number of charge carriers. O
finds from Eqs. (5) and (6)ukb ­ sDkb 2 CkbdyDk . The
emittance matrix is obtained from the sum of kinetic a
screening charges scattered to contacta [10]: Eab ­
Dab 2

P
k Dakukb. Using the total density of state

D ­ D1 1 D2 ­
P

ak Dak ­
P

ab Dab of both regions
V1 and V2, the expression (4) for the PDOS, and t
characteristic potentials given above, we find Eq. (2)
the emittance of a single-channel mesoscopic conduct

The quantum point contact.—In order to generalize
the results (1) and (2) toM channelsj ­ 1, . . . , M with
channel thresholdsE

s jd
b we use the fact that the tota

PDOS is the sum of the PDOS of the single chann
i.e., Dakb ­

P
j D

s jd
akb . If EF , E

s jd
b , the PDOS for

the channelj vanish,D
s jd
akbsEFd ; 0. If EF $ E

s jd
b , the

PDOSD
s jd
akbsEFd are given by the single-channel PDO

(4) taken at an energyEF 2 E
s jd
b . Proceeding the sam

way as above, we find an electrochemical capacitanc
the form of (1) withR ­ 1 2 T1y2 2 T2y2, whereTk ­
D21

k
P

j T s jdD
s jd
k is an average transmission probabili

weighted by the density of states ofVk. For the emittance
we find

E ­ CR 2
1
4

sD1T 2
1 1 D2T 2

2 d . (7)

Let us now apply this result to the quantum point cont
of Fig. 1. One expects a steplike behavior of the cap
itance and the emittance as the number of open chan
increases. As a specific example we consider a symm
ric barrier with the quadratic potentialUsxd ­ U0sb2 2

x2dyb2 if jxj # b, andUsxd ­ 0 if b , jxj # l. In this
case,T1 ­ T2 and the PDOS and the transmission pro
ability can be calculated analytically from the WKB e
pressions [19,20]. For simplicity, we assume a const
electrostatic capacitanceC0 ­ 1 fF betweenV1 and V2

and a fixed number of occupied channels in these
gions. The only parameter to be varied is the poten
heightU0. We assume that no additional channels en
into the regionsVk during the variation ofU0. In Fig. 2
we show the result for a constriction withb ­ 500 nm,
l ­ 550 nm, and with three equidistant channels se
rated by EFy3 ­ 7y3 meV. The dotted, dashed, an
solid curves correspond to the dc conductance, the e
trochemical capacitance, and the emittance, respectiv
145
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For smallU0 where all channels are open, the capacitan
vanishes and the emittance is negative. At each cond
tance step, the capacitance and the emittance increase
eventually merge when all channels are closed. Beca
of a weak logarithmic divergence of the WKB density
states at particle energiesE ­ eU0 (where WKB is not
appropriate), the WKB emittance shows steep edges
tween the steps. A more accurate quantum mechan
calculation of the PDOS from the scattering matrix [9,1
should yield a suppression of these divergencies.

In conclusion, a theory has been presented for
capacitance and the low frequency admittance of qu
one-dimensional mesoscopic two-terminal conductors
electrical isolation. The generalization to conducto
which are not in electrical isolation will be publishe
elsewhere. We only mention that metallic gates used
form the point contact couple with a purely capacitiv
emittance which exhibits peaks as new channels
opened. Furthermore, the presence of gates causes
zero in the emittance of the point contact to be shifted
larger values ofT (,1). The theory presented here

FIG. 2. Dependence of the conductance (in units2e2yh;
dotted curve), capacitance, and emittance (in units of fF; das
and full curves, respectively) on the barrier heighteU0 for a
quantum point contact with three relevant channels (see Fig
146
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also a starting point for a treatment of the finite-frequen
noise of quantum point contacts including Coulom
interactions [21].

This work has been supported by the Swiss Natio
Science Foundation.
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