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Low Frequency Admittance of a Quantum Point Contact
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We present a current and charge conserving theory for the low frequency admittance of a quantum
point contact. We derive expressions for the electrochemical capacitance and the displacement current.
The latter is determined by themittancewhich equals the capacitance only in the limit of vanishing
transmission. With the opening of channels the capacitance and the emittance decrease in a steplike
manner in synchronism with the conductance steps. For vanishing reflection, the capacitance vanishes
and the emittance is negative. [S0031-9007(96)00603-5]

PACS numbers: 73.23.Ps, 72.10.Bg, 73.40.Gk

There is growing interest in transport properties offrom the drop of the electrostatic potential at the plates.
electric nanostructures such as quantum point contact®n the other hand, for conductors which permit transmis-
quantum wires, and quantum dots, to mention but a fevgionE = C is notvalid. In this Letter, we derive expres-
[1,2]. These mesoscopic conductors can be so small thatons for E and C of a quantum point contact (Fig. 1).
transport at low temperatures is phase coherent or evafVe emphasize the dipolar structure of the charge dis-
mainly ballistic including only a few elastic scattering tribution. The model which we develop also describes
events. The scattering approach to electrical conductioa mesoscopic capacitor with tunneling between the two
[L-4] has successfully been used to describe mangapacitor plates (leakage), which is of great interest in,
experiments. For a phase coherent conductor with twe.g., tunneling microscopy [8].
probes this theory relates the transmission probabilities First, we present our results for a single-channel conduc-
T of the occupied one-dimensional subbands to the dtor. Subsequently, we present the derivation of the results
conductanca&s© = (2¢2/h) Y. T(/). The validity of this  using the scattering approach to low-frequency transport
conductance formula was experimentally confirmed firstdeveloped in Refs. [9,10]. Finally, the results are general-
by van Wee<t al. [5] and Wharamet al. [6] who found ized to the many channel case of a quantum point contact.
a stepwise increase of the conductance by successivelyC and E for a single channel—The single-channel
opening conduction channels of a quantum point contactcase is described by a one-dimensional scattering problem

A more novel concept concerns the notion of thewith a localized potential region describing a constriction
mesoscopic capacitancd®esides the definition of the ca- or a tunneling barrier. It turns out thé&tandE decrease
pacitanceC by the static charge response to an electrofor increasing transmission probabilify= 1 — R of this
chemical voltage drop, there exists alsalymamicpoint
of view which is important for practical use. The ca-
pacitance is then associated with the phase shift between
a current and a voltage oscillation at small frequencies
w, i.e., with the imaginary part of the low frequency ad-
mittanceG(w) of a resistor and capacitor in parallel. A
dynamical derivation of a mesoscopic capacitance was
given by Bittiker, Thomas, and Prétre [7]. To make
a clear distinction between the static and the dynamic
concepts, we calE = i(dG/dw),—o the emittanceof
a conductor. For a purely capacitive structure the static
and dynamical derivations lead to identical results, i.e.,
E = C. This case is characterized by a displacement
current entering the sample through the leads which is
equal to the change of the charge on a capacitor plate.
We mention that in a mesoscopic sample the relevant
density of states (DOSYN,/dE and dN,/dE, of the
“mesoscopic capacitor plates” can be so small tias

no Ignger tﬁquglotg t;] %Q?OT?U? iaff‘_‘i'ti“ff?? t (.jtﬁ- FIG. 1. Quantum point contact connected to reservoirs with
pends on the [7] - >0 1 2 W electrochemical potentialg, = w1y + S u., and for the par-

Dy = ¢*dNy/dE. This is due to the fact that the volt- ticular case of one transmitted and two backscattered channels
age drop between the reservoirs can differ significantlyinside Q, (dark regions) with electric potentiaU,.
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region. In particular, we find that the capacitance islation 6V = exp(—iwt) in reservoir{8}. For low fre-
proportional to the reflection probabiliy guencies one can write

R

C = ) 1 _ ~0 _ .
C()_l + Dl—l _|_ D2—1 ( ) GOZ,B(w) GO{B lea,B’ (3)

In general, also the geometric capacitar@e depends Where E,p is the emittance matrix. A microscopic
on R. For example,C;' decreases for two capacitor calculation of the emittance is a complicated task since the
plates approaching each other. However, sincéxhare €lectrostatic potential is a complicated function of space.
nearly independent &f and remain finite foR — 0 one The aim of this work is to develop a simple model that
concludes from Eq. (1) thaf vanishes foR — 0 even  captures the essential physical features.

when C, ! vanishes. This is reasonable since for ideal First, we mention that an applied voltage can polar-
transmission (no barrier) a Charge accumulation (d|p0|éze the conductor but leaves the total Charge unaffected.
moment) does not occur. F& = 1, on the other hand, Hence, for a conductor in electrical isolation (with no
we recover from Eq. (1) the above mentioned expressiofither nearby conductors or gates) charge and current

for the electrochemical capacitance of a mesoscopi@l® conserved, meanin@ = G» = —Gip = —Gy =
capacitor. G =G — iwE. The nonequilibrium charge distribu-
Below we will also show that in the single channel casetion with the form of a dipole has a chargg;, to the
the emittance is given by left and a charg&g, = — ¢ to the right of the barrier.
D Consider for a moment a voltage shif'; = du;/e only
E = CR — 1 T2, (2) inthe left reservoir. On the far left side of the point con-

tact one has complete screening, so the shift of the lo-
where D = D, + D, is the total (relevant) DOS. As cal electric potential follows the electrochemical potential
expected,R = 1 implies E = C. On the other hand, &u;/e. For the same reason, the electrostatic potential
for total transmissionK = 0) the emittance is negative, shift vanishes on the far right side. The drop of the volt-
E = —D/4. For the particular case where the geomet-age shift fromé u,/e to zero is strongly localized within
ric capacitance is sufficiently large and where the sama screening length near the center of the quantum point
ple is spatially symmetric, i.e(y > D; = D,, we find contact. Instead of treating the entire potential landscape
E = (D/4)(R — T). This illustrates a crossover be- realistically, we discretize it [16]. We introduce two po-
tween positive and negative emittance. Negative emittentialsé U, , for the regiond}, , (dark regions in Fig. 1)
tances are characteristic for conductors with nearly perfeavhich are characterized by an incomplete screening of the
transmission. For resonant tunnel junctions an inductiveexcess charge. We emphasize that within the framework
like kinetic response is discussed in Refs. [11-13]. Inof the general approach provided by Ref. [10] the compli-
Ref. [9] it is shown that the emittance remains negativecated full quantum mechanical and space dependent prob-
even when the charge in the well is totally screenedlem can be treated analogously.
It is interesting that the emittance for the symmetric In the basis of eigenchannels the transmission problem
tunnel resonance barrier in this limit can also be writ-through a quantum point contact can be represented as
ten ast = (D/4)(R — T). A similar relation has been a sum of single-channel transmission problems [17,18].
found by Mikhailov and Volkov [14] who calculated with The potential of a quantum point contact has the shape
a Boltzmann approach the low frequency plasma-wavef a saddle [18] with a valueU, at the saddle point.
spectrum for a tunnel junction. Introducing a time, Near the saddle the potential can also be separated
they found a tunneling contributiofi; to the capacitance into a longitudinal parteU(x) and a transverse part
proportional tor7(R — T). Although their result is not eU(y). Thus in a first step we consider a single-
in full accordance with Eq. (2), it hold& = C7 if the  channel transmission problem in a poten#aél(x). The
barrier is symmetric and if one replaces by a dwell  variation of this potential is slow compared to the Fermi
time hD/2e¢*. Furthermore, we show in Ref. [15] that wavelength which allows us to use the semiclassical WKB
positive and negative emittances exist in quantized Halépproximation for the local density of statéda(x)/dE
samples, depending on whether edge states provide peand for the transmission probability’ [19,20]. The
fect transmission or perfect reflection channels. regions (), to the left and to the right of the barrier
Derivation of C and E.—Consider now a quantum in which the potentials are not screened dg =
point contact (Fig. 1) connected on either side to resert—1;, —x;] andQ, = [x, l»], respectively, where the size
voirs a (= 1,2). A variation of the voltagedV, =  of the Q) is of the order of the screening length. The
S uq /e in reservoira changes the electrochemical poten-x; are determined by the WKB turning points #y <
tial 6 u, of the incoming particles which are partly scat- eUp, and they are given by, = 0 (the location of the
tered back and partly transmitted. The admittance matrikarrier peak) forEr = e¢Uy. We express the DOS in
Gup(w) = 81,/6Vg represents the linear response of thethe region (), in the form of a quantum capacitance
currents1,, through contactr for a small voltage oscil- Dy = e* [ dx dn(x)/dE.
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For the following we need the nonequilibrium state, i.e.,charge which is due to the shiffd/; of the band bottoms.
the chargedq; which resides in{); as a consequence The part of the screening charge which is eventually
of a voltage variatio®V, = du./e at contacte. This  scattered to contaet is then given by—Zky DaiyoUx =
charge can be found with the help of thartial densities —>', D, ux8Vg, where we defined themissivity[10]
of states(PDOS) D,z which are defined as the DOS D, = Z D, associated with the states scattered from
associated with carriers if; scattered from contag8  the regioan to contacta. Furthermore, we introduced
to contacta [15]. For example,Dy;; is given by the thecharacteristic potential§l0] uxz = dUi/9Vg which
transmission probability times the DOS 8f; associated give the response of the electrostatic potential in region
with carriers with positive velocity, hend®,;; = TD,/2.  k due to a variation of the voltage in reservgit The
Since there are no states @ly associated with scattering negative sign of the screening charge is due to the fact that
from contact2 back to contac? one conclude®,;, = 0. a positive shift of the band bottom at fixed electrochemical
With similar arguments one finds in the semiclassical caspotential diminishes the number of charge carriers. One
for the PDOS finds from Egs. (5) and (6)xs = (Dxg — Cip)/Dk. The

emittance matrix is obtained from the sum of kinetic and
Darg = Di[T/2 + 845(R8ak — T/2)], 4) screening charges scattered to contacfl0]: E,g =
— > Dup. Using the total density of states
where §;; is the Kronecker delta. Note thab, = D Dl + D=3, Dy = Y o Dap of both regions
2ap Dakp- The injected charges lead to induced elec-, and Q,, the expression (4) for the PDOS, and the
trostatic potentialss Uy which counteract the buildup of characteristic potentials given above, we find Eq. (2) for
charge in the region&;; i.e., the shiftssU; of the band  the emittance of a single-channel mesoscopic conductor.
bottoms induce a charge response. For a spatially slowly The guantum point contaet-In order to generalize

varying potent|al this response is local and is determineghe results (1) and (2) td/ channelsj = 1,..., M with
by the DOS3¢("" = —D¢8Us. The charge i), isthen  cpannel threshold€,” we use the fact that the total
given by PDOS is the sum of the PDOS of the single channels,

()
— i.e., D, Da If E <E , the PDOS for
8qr = D Darp(8Vg — 8U) = > Dyp(8Vg — 8Uy), k8 = 2 Dakp- i h )
aB B the channelj vanlsh,Dak (EF) =0. If Ep = E;”, the
(5) ) e .
PDOS D,z (Er) are given by the single-channel PDOS

where we introduced thiejectivity [10] _51(/3 =2oDarp  (4) taken at an energgr — Ei,'f). Proceeding the same
which is the PDOS of regiofi); associated with carriers way as above, we find an electrochemical capacitance of

injected at contacg. the form of (12 WithR = 1 — T,/2 — T»/2, whereT, =
To determine the electrochemical capacitance, we mD > T(’)Dk is an average transmission probability
troduce first the geometrical capacitance mattiy = Welghted by the density of states@f,. For the emittance

(—=1)**'c, associated with the regio3; and which can e fing
be obtained from the Poisson equation. The electrostatic 1
and electrochemical capacitanc€y,; and Cyg, respec- E =CR - 1 (D1T12 + D2T22). (7

tively, relate the charge to the potentials via ) ]
Let us now apply this result to the quantum point contact

- - of Fig. 1. One expects a steplike behavior of the capac-
Oak ;CO’M(SUI Z CrpdV- ©) itance and the emittance as the number of open channels
increases. As a specific example we consider a symmet-
Charge conservation implie€;g = (=1)¥*AC.  The ric barrier with the quadratic potentidl(x) = Uy(b*> —
result (1) follows now immediately from Eqgs. (4)—(6).  x2)/b?if |x| = b, andU(x) = 0if b < |x| = . In this
To calculate the emittance we remark thigtzdoVyg case, T, = T, and the PDOS and the transmission prob-
corresponds to the displacement chadgk,, which passes ability can be calculated analytically from the WKB ex-
contacta due to a variatiod V3 of the voltage in reservoir  pressions [19,20]. For simplicity, we assume a constant
B. Note thatdg, = 6Q.—« is only valid if R = 1 but electrostatic capacitanag, = 1 fF between(); and (),
does not hold iR < 1. Since we restrict ourselves to the and a fixed number of occupied channels in these re-
first-order frequency term, it is sufficient to calculate thegions. The only parameter to be varied is the potential
quasistatic displacement charge. We take the CoulombeightUy. We assume that no additional channels enter
interaction into account self-consistently by consideringinto the regiond}, during the variation ot/y. In Fig. 2
two contributions to6Q,. A first part which neglects we show the result for a constriction with = 500 nm,
screening is given by the kinetic contributidh,g6Vg, | = 550 nm, and with three equidistant channels sepa-
where D,z = >, Doip is the global PDOS of carriers rated by Er/3 = 7/3 meV. The dotted, dashed, and
scattered from conta@ to contacta at fixed electrostatic solid curves correspond to the dc conductance, the elec-
potentials. A second part corresponds to a screeninfgjochemical capacitance, and the emittance, respectively.
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For smallU, where all channels are open, the capacitancalso a starting point for a treatment of the finite-frequency

vanishes and the emittance is negative. At each conducoise of quantum point contacts including Coulomb

tance step, the capacitance and the emittance increase @nteractions [21].

eventually merge when all channels are closed. Because This work has been supported by the Swiss National

of a weak logarithmic divergence of the WKB density of Science Foundation.

states at particle energids = ¢U, (where WKB is not

appropriate), the WKB emittance shows steep edges be-
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