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Superfluidity in b-Stable Neutron Star Matter
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In this work we present results for pairing gaps inb-stable neutron star matter with electro
and muons using a Dirac-Brueckner-Hartree-Fock approach, starting with modern meson-ex
models for the nucleon-nucleon interaction. Results are given for superconducting1S0 protons and
superfluid3P2 and 1D2 neutrons. A comparison is made with recent nonrelativistic calculations
the implications for neutron star cooling are discussed. [S0031-9007(96)00970-2]
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Superfluidity and superconductivity of matter in neutr
stars are expected to have a number of consequence
rectly related to observation; see Refs. [1–5]. Among
processes that will be affected is the emission of neutri
Neutrino emission from, e.g., various URCA processe
expected to be the dominant cooling mechanism in neu
stars less than1052106 yr old. Typically, proton super
conductivity reduces considerably the energy losses in
called modified URCA processes and may have impor
consequences for the cooling of young neutron stars.
other possible manifestation of superfluid phenomen
neutron stars is glitches in rotational frequencies obse
in a number of pulsars. Moreover, the estimation of
perfluid gaps and studies of pairing are not only import
issues in neutron star matter, but also in the rapidly
veloping field of neutron-rich systems such as heavy
clei close to the neutron drip line [6] or the study of lig
halo nuclei [7]. Therefore theoretical studies of pairing
neutron-rich assemblies form currently a central issu
nuclear physics and nuclear astrophysics.

The aim of this Letter is to present results from se
consistent calculations for neutron and proton pair
gaps in b-stable matter relevant for neutron star stu
ies. Relativistic effects for pairing in the partial wav
1S0, 3P2, and 1D2 will be studied using the Dirac
Brueckner-Hartree-Fock (DBHF) approach with mod
meson-exchange potential models to describe the nuc
nucleon (NN) potential [8]. A comparison with the co
responding nonrelativistic approach is also made. To
knowledge, this is the first estimate of pairing gaps wit
the framework of the DBHF approach. The only para
eters which enter our approach are those which define
freeNN potential [8].

Our computational scheme is as follows.
The first ingredient in our calculation is the se

consistent evaluation of single-particle energies inb-
stable matter starting from the meson-exchange pote
models of the Bonn group [8]. These single-particle
ergies are obtained within the framework of the DBH
scheme [9–11], using a medium renormalizedNN po-
tential G defined through the solution of theG-matrix
equation
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Gsvd ­ V 1 VQ
1

v 2 QH0Q
QGsvd , (1)

where v is the unperturbed energy of the interactin
nucleons,V is the freeNN potential,H0 is the unperturbed
energy of the intermediate scattering states, andQ is
the Pauli operator preventing scattering into occup
states. Only ladder diagrams with two-particle states
included in Eq. (1). In this work we solve Eq. (1) usin
the Bonn A potential defined in Table A.2 of Ref. [8
This potential model employs the Thompson [10,1
reduction of the Bethe-Salpeter equation, and is tailo
for relativistic nuclear structure calculations. For furth
details; see Refs. [8,10,11].

The DBHF is a variational procedure where th
single-particle energies are obtained through an itera
self-consistency scheme. To obtain the relativis
single-particle energies we solve the Dirac equation fo
nucleon in the nuclear medium, withc ­ h̄ ­ 1,

fpy 2 m 1 Sspdgũsp, sd ­ 0 , (2)

wherem is the free nucleon mass andũsp, sd is the Dirac
spinor for positive energy solutions,p ­ sp0, pd being
a four momentum ands the spin projection. The self
energySspd for nucleons can be written as

Sspd ­ SSspd 2 g0S0spd 1 g ? pSV spd . (3)

Since SV ø 1 [10,13], we approximate the self-energ
by

S ø SS 2 g0S0 ­ US 1 UV , (4)

where US is an attractive scalar field andUV is the
timelike component of a repulsive vector field. The Dir
spinor reads then

ũsp, sd ­

s
Ẽp 1 m̃

2m̃

√
xs

s?p
Ẽp1m̃ xs

!
, (5)

where xs is the Pauli spinor and terms with tilde lik
Ẽp ­

p
p2 1 m̃2 represent medium modified quantitie
© 1996 The American Physical Society
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Here we have defined [10,13]̃m ­ m 1 US. In all
equations below, a momentump refers to the three
momentump. The single-particle energieś̃p can then
be written as

˜́ p ­ kpjg ? p 1 mjpl 1 up ­ Ẽp 1 UV , (6)

where the single-particle potentialup is given by up ­
USm̃yẼp 1 UV and can in turn be defined in terms of t
G matrix

up ­
X

h#kF

m̃2

ẼhẼp
kph

Ä
Gsv ­ ˜́ p 1 ˜́ hd

Ä
phl , (7)

where p, h represent quantum numbers like mome
tum, spin, isospin projection, etc. of the different sing
particle states andkF is the Fermi momentum. Eqs. (6
and (7) are solved self-consistently starting with a
quate values for the scalar and vector componentsUS

and UV . The proton fraction inb equilibrium is deter-
mined by imposing the relevant equilibrium conditio
on the processese2 1 p ! n 1 ne and e2 ! m2 1

nm 1 ne. The conditions forb equilibrium require tha
mn ­ mp 1 me, where mi is the chemical potential o
particle speciesi, and that charge is conservednp ­ ne,
whereni is the particle number density for particle spec
i. We also include muons and the condition for cha
conservation becomesnp ­ ne 1 nm, and chemical equi
librium gives me ­ mm. Throughout we have assum
that neutrinos escape freely from the neutron star.
proton and neutron chemical potentials are determ
from the energy per baryon, calculated self-consiste
in the above DBHF approach.

The next step in our calculations is to evaluate
pairing gaps for various partial waves. To evaluate
pairing gap we follow the scheme of Baldoet al. [14],
originally proposed by Anderson and Morel [15]. The
authors introduced an effective interactioñVk,k0 . This
effective interaction sums up all two-particle excitatio
above a cutoff momentumkM , kM ­ 3 fm21 in this work.
It is defined according to

Ṽk,k0 ­ Vk,k0 2
X

k00.kM

Vk,k00

1
2Ek00

Ṽk00 ,k0 , (8)

where the energy Ek is given by Ek ­q
s ˜́k 2 ˜́ Fd2 1 D

2
k, ˜́F being the single-particle energ

at the Fermi surface,Vk,k0 is the free nucleon-nucleon po
tential in momentum space, defined by the three-mom
k, k0. The renormalized potential̃Vk,k0 and the freeNN
potential Vk,k0 carry a factorm̃2yẼkẼk0 , due to the nor-
malization chosen for the Dirac spinors in nuclear mat
These constants are also included in the evaluation o
G matrix, as discussed in [10,11]. For the1S0 channel,
the pairing gapDk is [14–16]

Dk ­ 2
X

k0#kM

Ṽk,k0

Dk0

2Ek0

. (9)

For the3P2 partial wave, we employ the expressions giv
in Ref. [17], modified as well by the above normalizati
-

e
d
y

constants. For further details; see, e.g., Refs. [14,17,
In summary, first we obtain the self-consistent DBH
single-particle spectrum̃́ k for protons and neutrons in
b-stable matter using the method detailed in Ref. [1
Thereafter, we solve self-consistently Eqs. (8) and (9)
order to obtain the pairing gapD for protons and neutron
for different partial waves.

Our results for the pairing gaps, scalar and vector
tentials for neutrons and protons, proton and neutron f
tions, and the chemical potential for electrons (and mu
for total baryonic densities greater thanr ­ 0.15 fm23)
are displayed in Tables I and II as functions of the to
baryonic density. The results of these tables can in turn
used in relativistic equations for various modified URC
processes, in a similar way as done in the nonrelativi
approach of Friman and Maxwell [19]. In Fig. 1 we pl
as function of the total baryonic density the pairing gap
protons in the1S0 state, together with the results from th
nonrelativistic approach discussed in Refs. [18,20]. T
results in the latter references were also obtained with
Bonn A potential of Ref. [8]. These results are all for ma
ter in b equilibrium. In Fig. 2 we plot the correspondin
relativistic results for the neutron energy gap in the3P2
channel. For the1D2 channel we found both the nonrela
tivistic and the relativistic energy gaps to vanish. The n
relativistic results for the Bonn A potential are taken fro
Ref. [17]. We have omitted a discussion on neutron p
ing gaps in the1S0 channel, since these appear at densi
corresponding to the crust of the neutron star. The ga
the crustal material is unlikely to have any significant
fect on cooling processes [2], though it is expected to
important in the explanation of glitch phenomena.

As can be seen from Fig. 1, there are only sm
differences (except for higher densities) between
nonrelativistic and relativistic proton gaps in the1S0
ta

r.
e

TABLE I. Proton fractions xp , scalar and vector single
particle potentialsU

p
S and U

p
V , respectively, for protons, th

proton pairing gapDp for protons in the1S0 state and the elec
tron (and muon) chemical potentialme as functions of total
baryonic densityr. Densities are in units of fm23, U

p
S , U

p
V ,

Dp , andme in units of MeV.

r xp U
p
S U

p
V Dp me

0.0013 0.0032 27.8479 3.2471 0.0121 11.7231
0.0068 0.0050 277.7002 61.7252 0.0483 20.3904
0.0281 0.0096 2172.0541 135.3744 0.2024 38.9884
0.0583 0.0156 2236.5725 181.5207 0.4386 58.5459
0.0944 0.0229 2285.0128 213.1141 0.7036 78.1881
0.1377 0.0307 2329.1642 242.7944 0.9107 98.3550
0.1811 0.0403 2365.8355 270.4411 1.0160 115.8907
0.2007 0.0462 2381.3338 283.5829 1.0173 123.0215
0.2212 0.0524 2396.7707 297.3635 0.9742 130.1985
0.2627 0.0658 2424.5634 325.2710 0.7712 143.9456
0.3072 0.0801 2451.9637 357.1098 0.4490 158.2441
0.3304 0.0877 2464.7640 373.9551 0.2638 165.5386
0.3544 0.0953 2476.8407 391.2967 0.1826 172.9228
0.3594 0.0968 2479.2122 394.8924 0.0856 174.4599
1429
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TABLE II. Proton fraction xp, neutron scalar and vecto
single-particle potentialsUn

S and Un
V , respectively, and the

neutron pairing gapDs3P2d as functions of total baryonic
density r. Densities are in units of fm23, Un

S , Un
V , and D

in units of MeV.

r xp Un
S Un

V Ds3P2d

0.0756 0.0191 2118.4076 90.1259 0.009
0.0811 0.0202 2127.8562 97.9057 0.013
0.0849 0.0210 2134.2159 103.1913 0.014
0.0949 0.0230 2150.7538 116.9925 0.017
0.1012 0.0243 2161.1272 125.6867 0.017
0.1056 0.0252 2167.9521 131.2468 0.017
0.1125 0.0266 2179.0345 140.6626 0.015
0.1172 0.0275 2186.6448 147.1867 0.013
0.1196 0.0279 2190.5106 150.5173 0.011

wave. (Even smaller differences are obtained for neutr
in the 1S0 channel.) This is expected since the prot
fractions (and their respective Fermi momenta) are ra
small; see Table I.

For neutrons, however, see Table II, the Fermi m
menta are larger, and we would expect relativistic effe
to be important. At Fermi momenta which correspond
the saturation point of nuclear matter,kF ­ 1.36 fm21,
the lowest relativistic correction to the kinetic energy p
particle is of the order of 2 MeV. At densities high
than the saturation point, relativistic effects should
even more important, as can clearly be seen in the
culations of Ref. [10]. Since we are dealing with ve
FIG. 1. Proton pairing inb-stable matter for the1S0 partial
wave. The nonrelativistic results are taken from Ref. [18].
1430
s
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small proton fractions in Table II, a Fermi momentu
of kF ­ 1.36 fm21 would correspond to a total baryon
density ,0.09 fm23. Thus at larger densities relativis
tic effects for neutrons should be important. This is a
reflected in Fig. 2 for the pairing gap in the3P2 chan-
nel. The relativistic3P2 gap is less than half the corre
sponding nonrelativistic one, and the density region is a
much smaller. This is mainly due to the inclusion of re
tivistic single-particle energies in the energy denom
nator of Eq. (9) and the normalization factors for t
Dirac spinors in theNN potential. As an example, a
a neutron Fermi momentumkF ­ 1.5 fm21, the gap
has a value of 0.17 MeV when one uses free sing
particle energies and a bareNN potential. Including
the normalization factors in theNN potential, but em-
ploying free single-particle energies, reduces the gap
0.08 MeV. If we employ only DBHF single-particle en
ergies and the bareNN potential, the gap drops from
0.17 to 0.04 MeV. Thus the largest effect stems fro
the change in the single-particle energies, although
combined action of both mechanisms reduce the gap f
0.17 MeV to 0.015 atkF ­ 1.5 fm21. The NN poten-
tial in the 3P2 channel depends also strongly on t
spin-orbit force, see, e.g., Fig. 3.3 in Ref. [8], and re
tivistic effects tend to make theNN spin-orbit interaction
from the v meson inP waves more repulsive [8]. Thi
leads to a less attractiveNN potential in the3P2 channel
and a smaller pairing gap.

Even the nonrelativistic energy gaps for neutron s
matter in b equilibrium are small compared with th
FIG. 2. Neutron pairing inb-stable matter for the3P2 partial
wave. The nonrelativistic results are taken from Ref. [17].
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results for pure neutron matter, where the3P2 energy
gap has a maximum around,0.1220.13 MeV; see
Refs. [17,21,22]. The consequences for cooling rates
the interior composition of a neutron star are significa
A recent investigation of various cooling mechanisms
Schaabet al. [23] found that an agreement with observe
surface temperatures was reached if the3P2 energy gaps
were of the order,0.05 MeV. Our nonrelativistic
results for b-stable matter are of this size, while th
relativistic energy gaps result in an almost negligib
suppression of, e.g., various modified URCA processe
the interior of a neutron star. These results, and thos
Schaabet al. [23] as well, differ from those of Page [4]
where, in order to explain the observed temperature
Geminga, baryon pairing has to be present in most, if
all, of the core of the star.

In summary, in this work we have calculated in a se
consistent way single-particle energies and energy g
using a relativistic DBHF approach. Although we ha
focused on pairing in dense matter, our many-body
proach allows also for a consistent treatment of other n
tron star properties. The sameNN force used here has als
been used in Ref. [24] to calculate the equation of state
the total mass and radius for a neutron star. Combin
the results from this work and those of Refs. [20,24], t
following picture emerges: Within the DBHF approac
the direct URCA processes are only allowed for den
ties larger than0.52 fm23; see Ref. [20]. A neutron sta
with total mass1.6MØ would have a central density o
rc ­ 0.4 fm23 in b-stable matter [24]. For such a cen
tral density, various modified URCA processes are p
sible mechanisms for neutrino production in a neutron s
The main suppression of these processes would then c
from protons in the1S0 state. The reader should note th
there are other possible cooling mechanisms than th
discussed here, such as neutrino-pair bremstrahlung [
direct URCA with hyperons or neutrino emissions fro
more exotic states, such as pion and kaon condensate
quark matter; see, e.g., Refs. [4,5,23] for recent revie
However, for a star with central densityrc ­ 0.4 fm 23,
many of these more exotic neutrino emissivities are l
likely. Hyperons appear at densitiesr , 0.3 or greater
[26]. Similar densities are expected for kaons and qu
matter [23,26]. In addition, neutrino-pair bremstrahlu
was recently found [25] to be much less important than p
viously estimated. Thus for a1.6MØ neutron star with cen-
tral density of0.4 fm23 obtained with our DBHF approach
[24], the most likely cooling scenario is through modifie
URCA processes, and the main suppression comes f
superconducting protons in the1S0 state. Finally, it ought
to be noted that we have not included effects from medi
polarization effects, as discussed in Ref. [27]. These
fects are expected to be quite large at densities above
clear matter saturation density and may further change
size of the energy gaps and the neutrino emissivities (
1S0 gap should decrease, while the3P2 gap is expected to
increase). However, the aim here was to get an indica
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of the importance of relativistic effects using an appro
mate relativistic scheme like the DBHF approach and co
pare these results with a nonrelativistic calculation.
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