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Survival Probability of a Gaussian Non-Markovian Process:
Application to the T5 0 Dynamics of the Ising Model
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We study the decay of the probability for anon-Markovianstationary Gaussian walker not to cross
the origin up to timet. This result is then used to evaluate the fraction of spins that do not flip up
to time t in the zero temperature Monte Carlo spin flip dynamics of the Ising model. Our results are
compared to extensive numerical simulations. [S0031-9007(96)00965-9]
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Gaussian processes are among the most widely stu
stochastic processes in various branches of science
However, there are still simple but important questio
associated with a Gaussian process that are nontrivi
compute. One such question is the following: Consi
a stationary Gaussian processXstd with zero mean and
prescribed correlator. What is the probabilityPsbd that
Xstd does not cross the originX ­ 0 betweent ­ 0 and
t ­ b? This quantity, although simple and natural, tu
out to be quite nontrivial to compute [2]. Why is th
so? A little thought shows that this quantity probes h
order correlations in time of the dynamics, and it depe
on the whole history of time evolution of the system.
this Letter, we would like to address this question.
turns out that the solution to this problem has very w
applications in various other problems in physics.
example, a related question arises naturally in the con
of zero temperature Monte Carlo dynamics in any s
system: What is the probability that a spin does not
up to time t [3–8]? Similar questions also arise in t
study of the fraction of lattice sites that remain unvisi
up to timet by a random walker or by chemical spec
in a generic reaction diffusion system [9,10].

In this Letter we restrict ourselves to one such appl
tion, namely, the simple case of the Ising model. In
zero temperature dynamics of the Ising model, domain
opposite spins grow with time. At late times, the syst
is characterized by a single length scale (typical size
a growing domain)Lstd , t1y2 [11]. The fractionPstd
of spins that remain unflipped up to timet decays as
Pstd , Lstd2u for large timet [3], whereu is a universal,
dimension dependent, nonequilibrium exponent. Anal
cal computation ofu seems to be extremely nontrivia
Even in d ­ 1, where the Glauber dynamics is exac
solvable, the calculation ofu turned out to be a real tou
de force, achieved recently by Derridaet al. [3]. They
found u1d ­ 3y4. However, their technique is special
d ­ 1 and seems impossible to extend to higher dim
sions, where only numerical estimates ofu are available
[4–6]. Therefore it is highly desirable to obtain an a
0 0031-9007y96y77(8)y1420(4)$10.00
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proximate analytical method to determineu, which we
now present.

Let us start with a stationary Gaussian proce
Xstd, with zero mean and a correlatorkXst1dXst2dl ­
fst1 2 t2d. The probabilityPsbd of not crossing the
origin up tot ­ b is expected to decay as exps2ubd for
largeb [at least whenfstd decays exponentially for larg
t]. We would like to calculateu since, as we will see
later, u is related to the exponentu of the Ising model.
If the Gaussian process is Markovian, for whichf is
necessarily of the formfstd ­ exps2ljtjdy2l [13], it is
possible to show by various methods [12–14] thatu ­ l

exactly (see below also). For any other form off, the
process is non-Markovian (i.e., history dependent) anu

is hard to compute. In fact,u depends very sensitivel
on the full functionfstd and not just on its asymptoti
properties. Keeping the Ising problem in mind, we w
restrict ourselves only to the class of non-Markovi
processes for which (i)f 0s06d fi 0 and (ii) fstd ,
exps2ltd for large t. For convenience, we will then
normalize f, setting f 0s06d ­ 71y2 after a proper
rescaling ofX, such that its Fourier transform satisfie
v2fsvd ! 1, for largev.

To illustrate the explicit history dependent nature of t
non-Markovian process, it is useful to write its associa
Langevin equation:

dX
dt

­ 2lX 1 h 1
Z t

2`
Jst 2 t0dhst0d dt0, (1)

wherehstd is a Gaussian white noise withkhstdhst0dl ­
dst 2 t0d, and J is a causal [Jstd ­ 0, for t , 0] and
integrable function. The history dependence is exp
itly encoded in the kernelJ. For J ­ 0, Eq. (1) de-
scribes a Markov process withfstd ­ exps2ljtjdy2l

as stated above. In Fourier space, Eq. (1) amount
Xv ­ hvf1 1 Jsvdgysiv 1 ld, which allows us to re-
late the Fourier transform off to that of J: fsvd ­
j1 1 Jsvdj2ysv2 1 l

2d, with the correct largev behav-
ior, sinceJsvd ! 0 in this limit.
© 1996 The American Physical Society
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We now proceed to a variational and perturbat
calculation of u, which will be tested by simulating
Eq. (1), before applying these results to the spin
problem.

Psbd can be written as the ratio of two path integra
the first oneZ1 over, say, positive trajectoriesXstd, the
second oneZ0 over unrestricted trajectories:

Psbd ­
2

R
X.0 D Xstd expf2S gR
D Xstd expf2S g

­
Z1

Z0
, (2)

whereS ­
1
2

Rb

0

Rb

0 Xst1dGst1 2 t2dXst2d dt1dt2, and
Gst1 2 t2d is the inverse matrix offst1 2 t2d. u is
then calculated fromPsbd by taking the limit, u ­
2limb°!` b21 ln Psbd. We impose periodic boundar
conditions, Xs0d ­ Xsbd, for the paths, which should
not affect the value ofu in the limit of large b.
We notice that the Gaussian weight in Eq. (1) th
becomesS ­

1
2b

P
n GsvndjXsvndj2, where Gsvnd ­

1yfsvnd and vn ­ 2pnyb are Matsubara frequencie
First consider a Markov process for whichGsvd ­ v2 1

l
2. We recognize the action in imaginary time (b is

then the inverse temperature) of a harmonic oscilla
of frequency l, S ­

Rb

0 L sssXstdddd dt, with L sXd ­
1
2 fs dX

dt d2 1 l
2
X2g. Thus Psbd is the ratio between the

partition function of an oscillator with a infinite wall a
X ­ 0 and that of the same oscillator without the wa
For largeb, it goes as expf2bsE1 2 E0dg, whereE1 (E0)
is the ground state energy of the oscillator with (without
wall. ThusE0 ­ ly2, andE1 ­ 3ly2, as the eigenstate
of the problem with a hard wall at the origin are th
odd states of the unrestricted oscillator. This gives
Markovian resultu ­ l.

For non-Markovian processes, unfortunately,S is no
longer a classical action with an associated quan
problem. The denominatorZ0 can, however, still be
computed exactly, and we find after takingb ! `,

E0 ­
1

2p

Z `

0
ln

µ
Gsvd

v2

∂
dv . (3)

As a check, one can verify that for an oscillator, f
which Gsvd ­ v2 1 l

2, one recoversE0 ­ ly2. The
most difficult part is to evaluate the “ground state energ
E1 ­ 2 limb!` ln Z1yb of the problem with a wall at
the origin. One way of computingZ1 will be to perturb
around a classical action, for instance, that of harmo
oscillator of frequencyv0 (or that of a particle in a box
as we also did in [14]). We adopt a variational metho
by choosing a trial inverse correlatorG0svd ­ v2 1 v

2
0 ,

corresponding to that of an oscillator (with a hard w
at the origin), whose frequencyv0 is going to be our
variational parameter. We have the general variatio
inequality, E1 # 3v0y2 1 limb!`

1
b kS 2 S0lw, where

the average is performed using the action of the h
wall oscillator. The second term of the inequality requir
evaluating the propagatorkjXsvndj2lw of the hard wall
e

p

,

n
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oscillator, leading finally to

E
s2d
1 ­ v0

"
3
2

1
2
p

√
Gs0d
v

2
0

2 1

!

1
2
p

Z `

0
dx

√
Gsxv0d

v
2
0

2 x2 2 1

!

3
X

`

n­1

ncn

x2 1 4n2

#
, (4)

where the numberscn can be evaluated using propertie
of Hermite polynomials and are given by

cn ­
4

p22ns2n 1 1d!

∑
s2nd!

n!s2n 2 1d

∏2

. (5)

One can then differentiate Eq. (4) with respect tov0

to obtain an equation forv0, which minimizes E
s2d
1 .

This equation can then be easily solved numerically.
principle, the value ofE1 can be improved by summing
higher terms of the cumulant expansion around the t
action [14]. The superscript (2) denotes that we have k
only the first two terms of this expansion. To perform
systematic order by order cumulant expansion, one sho
also keep only the first two terms inE0 [even thoughE0
can be evaluated exactly to all orders from Eq. (3)]. Th
gives

E
s2d
0 ­ v0

"
1
2

1
1

2p

Z `

0
dx

√
Gsxv0d

v
2
0sx2 1 1d

2 1

!#
.

(6)
We can then defineus2d asu

s2d
­ minv0 sE

s2d
1 2 E

s2d
0 d, re-

membering thatuy ­ minv0 E
s2d
1 2 E0 is an exact (pre-

sumably bad) bound ofu.
When Jsvd is small [see Eq. (1) and below], an

using Eqs. (4)–(6), one can perform a straightforwa
perturbative calculation around the Markov processJ ­ 0
to first order inKsvd ­ Jsvd 1 Js2vd,

u ­ l

∑
1 2

2
p

Ks0d 2
1

2p

Z `

0
KsxldV sxd dx

∏
, (7)

whereV sxd ­ 4sx2 1 1dSsxd 2 1, andSsxd is the same
series that appears in Eq. (4). In fact, an infinite num
of terms of the perturbation theory can be resummed
using a novel technique (for details, see [14]), leading

u ­
4
p

q
Gs0d 1

1
2p

Z `

0
W fGsvdyv2g dv , (8)

Wsxd ­
X̀
n­1

cn

n
lnf1 1 4n2sx 2 1dg 2 lnsxd . (9)

This expression is valid providedGsvdyv2 $ 1, which
is always the case for (and close to) a Markovian proce
We have tested Eq. (8), by comparing its prediction to
direct simulation of Eq. (1), withfstd ­ ´ exps2tdy2 1

s1 2 ´d exps22tdy4, interpolating between two Markov
ian processes withl ­ 2 andl ­ 1. Note that́ must be
positive to ensuref . 0, and that for´ . 4y3, one can
1421
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find v such thatGsvdyv2 , 1, and Eq. (8) is not reli-
able any more. The results for some representative va
of ´ fi 0, 1 (for which u ­ 2 andu ­ 1) are displayed in
Table I, showing a very good agreement between Eq.
and numerical simulations.

We now turn to theT ­ 0 dynamics of the Ising
model starting from a random (high temperature) ini
configuration. We would like to show that calculatin
the fraction of unflipped spins up to timet in the Ising
model reduces to calculating the survival probabi
of a Gaussian process in the framework of Gauss
closure approximation (GCA), introduced by Mazen
[15,16]. But before we make this connection, a few fa
about theT ­ 0 dynamics of the Ising model would b
relevant.

Following a quench toT ­ 0, interpenetrating domain
of 61 phases grow with time. A scaling theory has be
developed to characterize the morphology of the grow
domains [11]. According to this theory, at late times, t
system is characterized solely by the linear length o
growing domainLstd. For the Ising model,Lstd , t1y2 in
all dimensions [however, ind ­ 3 cubic lattice atT ­ 0,
it seems thatLstd , t1y3 due to lattice effects [14,17],
fact which was underestimated in [5]]. Another predicti
of the scaling theory relevant for us is that the on-s
autocorrelation satisfieskSstdSst 0dl ­ FsssLstdyLst0dddd for
t $ t0 ¿ 0, whereFsxd , x2l for largex [11,18]. The
exponentl is exactly 1 in d ­ 1, is close to1.25 in
d ­ 2 (from both simulations [18] and direct experime
[19]), is and close to 1.67 ind ­ 3 [11]. GCA has
been particularly successful in calculating this expon
as it predictsl1d ­ 1, l2d ­ 1.289, and l3d ­ 1.673,
this approach becoming asymptotically exact for larged.
Recently, we have extended GCA to theq-state Potts
model and calculated theq-dependentl [20].

Without entering into the details of GCA, we simp
mention that this method assumes that the spin at pos
x and time t is essentially the sign of a continuou
Gaussianstochastic variablemsx, td, which is physically
interpreted as the distance to the nearest interface to
point x [15]. We thus see that in the framework of GC
the probability that a spin does not change sign up to ti
t is equal to the probability that the associated Gauss
s
,
f

tha
1).
it.

r-

0
o-
for

-
er

d-
TABLE I. uNS obtained from direct numerical simulation
(NS) of Eq. (1) (tmax , 1000, Dt , 1023, 100 samples
uncertainties areDu ­ 60.015) is compared to the result o
Eq. (8) as a function of́ , for fstd ­ ´ exps2tdy2 1 s1 2
´d exps22tdy4. We have reported the point́ ­ 4y3 [beyond
which Eq. (8) must be regularized (see text)], which shows
u can belessthan the smallest inverse relaxation time (here
Note the remarkable accuracy of Eq. (8), up to its validity lim

´ 0.10 0.25 0.5 0.75 1.33
uNS 1.72 1.47 1.22 1.09 0.91

uTheory 1.74 1.48 1.24 1.09 0.91
1422
s

)

n

t

n

e

t

processmstd does not cross the originm ­ 0 (for now
we forget the labelx, as this probability does not depen
on the considered site). The processmstd at a given site is
Gaussian whose correlatorkmstdmst0dl can be calculated
using the GCA scheme. However,mstd is not stationary
since its correlation function depends explicitly on bo
t and t0, and we need to use the following trick befo
using the results of Eqs. (4)–(9). We define the varia
Xstd ­ mstdy

p
km2stdl, which is also Gaussian. Its co

relator turns out to satisfykXstdXst0dl ­ gsssLstdyLst0dddd,
where once againgsxd , x2l for large x. If we now
set t ­ lnfLstdg, we are left to study the survival proba
bility of a stationary Gaussian process, with correlat
kXstdXst0dl ­ fst 2 t0d, with fstd ­ gsexpjtjd. This
completes the relation to the general problem studied
the first part of this Letter. For the Gaussian proce
the survival probability Pstd , exps2utd , Lstd2u .
Thus we getu ­ u in the framework of GCA. Note
that for an ordinary Brownian walkergsxd ­ x21y2, or
fstd ­ exps2jtjy2d, which leads to the well-known resu
Pstd , t21y2.

By means of GCA (see [14] as these calculations
not the subject of this Letter), we have computed
functionsf for d ­ 1, 2, 3. For instance, ind ­ 1, we
got the (exact) resultfstd ­

p
2ys1 1 expj2tjd. We see

thatf is not a pure exponential and is thus non-Markovia
Knowing fstd, we have computed the variationalu

s2d, and
the associated frequencyv0. In Table II, these results ar
compared touNS, extracted from numerical simulations o
Eq. (1) (in Fourier space, then using an inverse fast Fou
transform), with the associatedf. We also performed
Ising simulations ind ­ 2 (800 3 800 lattice, 30 samples)
confirming the results of [4–6], and ind ­ 3 (100 3

100 3 100 lattice, 60 samples). Note that the scaling
Pstd is found to be much better as a function ofLstd than
as function oft [6,20].

We note that the variational results are in good agr
ment with the simulations of Eq. (1), and with the Isin
results ind ­ 1. However, the agreement ind ­ 2, 3 is
not as good. To understand this, we have to remember
there are two possible sources of errors between the s
lations of Eq. (1) and the Ising simulations: (i) the re
variableXstd , mstd is not truly Gaussian, and (ii) du
to the use of GCA, the correlatorf is not exact (except in
d ­ 1, by accident). To illustrate the importance of the e
ror due to (i), notice that althoughf is exact ind ­ 1, the
Ising exact resultu ­ 3y4 is bigger than the value 0.7
obtained by simulating Eq. (1), which is perfectly repr
duced by our theory. Note that we got the exact bound
u, uy ­ 0.736 in d ­ 1, whereasuy is a bad bound for
d . 1. In d ­ 2, 3, the main cause of error is presum
ably (ii), asf given by GCA is found to decrease fast
than in the Ising simulations fort , 2 [14]. To check
this, we computedu from Eq. (1) andu

s2d using forf a
fit of the correlator obtained in the Ising simulations, lea
ing to a clear improvement (see Table II). Ind ­ 3, the
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TABLE II. The four columns contain, respectively, (1)uIsing obtained in our Ising model
numerical simulations ford ­ 2, 3; (2) uNS obtained by simulating Eq. (1) (tmax , 1000,
Dt , 1023, 500 samples); (3)u

s2d
from Eqs. (7) and (8); (4) the optimal frequencyv0 ­ u

s1d
,

which can be interpreted as the first term in the cumulant expansion. Ford ­ 2, 3, we also
give the same results using a fit off taken from the Ising simulations, instead of GCA. I
d ­ 3, u depends on the nature of the fit (see text), and we only give typically obtained va
(estimated uncertainty of order 0.05).

uIsing uNS u
s2d

u
s1d

d ­ 1 3y4 0.70 6 0.01 0.70 0.61
d ­ 2 (GCA) 0.45 6 0.01 0.66 6 0.01 0.58 0.43
d ­ 2 (fit of f) · · · 0.49 6 0.02 0.38 0.27

d ­ 3 (GCA) 0.52 6 0.01 0.70 6 0.02 0.47 0.30
d ­ 3 (fit of f) · · · ,0.55 ,0.4 ,0.2
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numerical fstd can be computed only up to a qui
short time st , 1.5d, and u is quite dependent on th
way fstd is extended to larget. Indeed, for such shor
times, the known asymptoticsfstd , exps2ltd is not
reached yet. Finally, one can easily understand w
the theoretical estimates ind ­ 2, 3 seem less accurat
than in d ­ 1 or in Table I. It is possible to show
[14] that for the Ising modelf becomesless and less
Markovian as d increases. An illustration of this is th
fact that, asd increases, the relative difference betwe
u and l strongly increases. In addition, the region f
whichGsvdyv2 , 1 becomes wider asd increases, which
is also a sign of strong “non-Markovianity,” and whic
prevented us from using Eq. (8) to evaluateu. However,
for larged, an alternate approach has been derived [14,
which gives u in excellent agreement with numeric
simulations.

In summary, we have implemented variational and p
turbative approaches to compute the survival probab
of a Gaussian non-Markovian process, close enoug
the Markovian limit associated to a quantum proble
These results were then used to calculate the fractio
unflipped spins in the zero temperature Monte Carlo
namics of the Ising model within the framework of GC
Further details of these calculations, the application
the calculation of theq-dependentu for the q-state Potts
model [4,6,20], numerics, and other approaches will
presented elsewhere [14]. Finally the related questio
the probability that thetotal magnetization never flips af
ter a quench atT ­ Tc [22] or at T ­ 0 [14] is also the
subject of further studies.
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