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Survival Probability of a Gaussian Non-Markovian Process:
Application to the T= 0 Dynamics of the Ising Model
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We study the decay of the probability forrmn-Markovianstationary Gaussian walker not to cross
the origin up to timer. This result is then used to evaluate the fraction of spins that do not flip up
to time ¢ in the zero temperature Monte Carlo spin flip dynamics of the Ising model. Our results are
compared to extensive numerical simulations. [S0031-9007(96)00965-9]
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Gaussian processes are among the most widely studiguioximate analytical method to determime which we
stochastic processes in various branches of science [Ijow present.

However, there are still simple but important questions Let us start with a stationary Gaussian process
associated with a Gaussian process that are nontrivial t&(7), with zero mean and a correlat¢k(7)X(7,)) =
compute. One such question is the following: Considerf(r; — 7). The probability P(8) of not crossing the
a stationary Gaussian procesér) with zero mean and a origin up tor = S is expected to decay as éxpd 3) for
prescribed correlator. What is the probabilyB) that large B [at least whery (7) decays exponentially for large
X(7) does not cross the origiki = 0 betweenr = 0 and  7]. We would like to calculated since, as we will see
T = B? This quantity, although simple and natural, turnslater,  is related to the exponert of the Ising model.
out to be quite nontrivial to compute [2]. Why is this If the Gaussian process is Markovian, for whighis
so? A little thought shows that this quantity probes highnecessarily of the fornf(7) = exp(—Al7])/2A [13], it is
order correlations in time of the dynamics, and it dependgossible to show by various methods [12—14] that A

on the whole history of time evolution of the system. Inexactly (see below also). For any other form fof the
this Letter, we would like to address this question. Itprocess is non-Markovian (i.e., history dependent) and
turns out that the solution to this problem has very wideis hard to compute. In fac depends very sensitively
applications in various other problems in physics. Foron the full functionf(r) and not just on its asymptotic
example, a related question arises naturally in the contextroperties. Keeping the Ising problem in mind, we will
of zero temperature Monte Carlo dynamics in any spirrestrict ourselves only to the class of non-Markovian
system: What is the probability that a spin does not flipprocesses for which (i)f’(0*) # 0 and (i) f(r) ~

up to timer [3—8]? Similar questions also arise in the exp(— A7) for large 7. For convenience, we will then
study of the fraction of lattice sites that remain unvisitednormalize f, setting f/(0*) = ¥1/2 after a proper
up to timer by a random walker or by chemical speciesrescaling ofX, such that its Fourier transform satisfies
in a generic reaction diffusion system [9,10]. w’f(w) — 1, for largew.

In this Letter we restrict ourselves to one such applica- To illustrate the explicit history dependent nature of the
tion, namely, the simple case of the Ising model. In thenon-Markovian process, it is useful to write its associated
zero temperature dynamics of the Ising model, domains dfangevin equation:
opposite spins grow with time. At late times, the system
is characterized by a single length scale (typical size of dX -

a growing domain)L(r) ~ ¢'/2 [11]. The fractionP() dr —AX g+ /1
of spins that remain unflipped up to timedecays as

P(1) ~ L(t)~? for large timer [3], where# is a universal, wheren(r) is a Gaussian white noise withy(7)n(7')) =
dimension dependent, nonequilibrium exponent. Analyti-6(r — 7’), andJ is a causal J(7) = 0, for 7 < 0] and

cal computation of¢ seems to be extremely nontrivial. integrable function. The history dependence is explic-
Even ind = 1, where the Glauber dynamics is exactly itly encoded in the kernel. For J =0, Eq. (1) de-
solvable, the calculation of turned out to be a real tour scribes a Markov process withi(7) = exp(—A|7])/2A

de force, achieved recently by Derridd al. [3]. They as stated above. In Fourier space, Eq. (1) amounts to
found 6,, = 3/4. However, their technique is special to X, = n,[1 + J(@)]/(iw + A), which allows us to re-

d = 1 and seems impossible to extend to higher dimenlate the Fourier transform of to that of J: f(w) =
sions, where only numerical estimateséfre available |1 + J(w)*/(w? + X2), with the correct largeo behav-
[4—-6]. Therefore it is highly desirable to obtain an ap-ior, sinceJ(w) — 0 in this limit.

T

J(r — p(edr', (@)
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We now proceed to a variational and perturbativeoscillator, leading finally to

calculation of §, which will be tested by simulating ® 3 G(0)
Eqg. (1), before applying these results to the spin flip E;" = w0|:5 —(—2 - 1)
problem. T\ @0
P(B) can be written as the ratio of two path integrals, G(xwo )
the first oneZ, over, say, positive trajectorie¥(7), the + _f —x” =1

second on&Z, over unrestricted trajectories:

_ _ncp,
2f}(>D0)1()(i()(;3(s[X_dS]S] = %, (2) X Zn 132 + 452 j|’ 4)

P(B) =

LB B where the numbers, can be evaluated using properties
where S = 5 [i [o X(71)G(r1 — m)X(3)d7idTs, and  of Hermite polynomials and are given by
G(ry — m) is the inverse matrix off(7; — 7). 6 is 4 2n)! 5
then calculated fromP(B) by taking the limit, 8 = = —; [ - } . (5)
—limg— B~ 'INnP(B). We impose periodic boundary 722 Q2n + D! Lal2n — 1)
conditions, X(0) = X(B), for the paths, which should One can then differentiate Eq. (4) with respect dg
not affect the value of¢ in the limit of large 8. to obtain an equation fow,, which m|n|m|zesE(1).
We notice that the Gaussian weight in Eq. (1) thenThis equation can then be easily solved numerically. In
becomes S = 2/3 >, G(w,)|X(w,)|>, where G(w,) =  principle, the value ofz; can be improved by summing
1/f(w,) and w, = 27n/B are Matsubara frequencies. higher terms of the cumulant expansion around the trial
First consider a Markov process for whicew) = w? + action [14]. The superscript (2) denotes that we have kept
. We recognize the action in imaginary timg (s  only the first two terms of this expansion. To perform a
then the inverse temperature) of a harmonic oscillatopystematic order by order cumulant expansion, one should
of frequency A S = fo L (X(r))dr, with L£(Xx)=  also keep only the first two terms ify, [even thoughE,
2[(2)7()2 iy X2] Thus P(B) is the ratio between the can be evaluated exactly to all orders from Eq. (3)]. This

partition function of an oscillator with a infinite wall at gives

X = 0 and that of the same oscillator without the wall. _©) 1 1 * G(xwg)

For largeg, it goes as exp- B(E, — Ey)], whereE; (Eo) Eo" = wo 2T o w2+ 1) 1

is the ground state energy of the oscillator with (without) a

wall. ThusEy = A/2, andE; = 31/2, as the eigenstates (6)
We can then defind” as@® = min (E; 0 ), re-

of the problem with a hard wall at the origin are the 2 @o

odd states of the unrestricted oscillator. This gives thénembering tha#, = min,, E;~ — Eq is an exact (pre-

Markovian resulg = A. sumably bad) bound df.

For non-Markovian processes, unfortunate$y,is no When J(w) is small [see Eq. (1) and below], and
longer a classical action with an associated quanturdsing Egs. (4)—(6), one can perform a straightforward
problem. The denominatoZ, can, however, still be perturbative calculation around the Markov procéss 0

@ _ -2

computed exactly, and we find after takigg— o, to first order inK (0) = J(w) + J(—w),
1 [* (G(w) %01 - 2r - L f R }
B-ae | |n<7>dw‘ (3) 0 )t[l 7TK(O) 7 | KGDv@ax |, (@)

— 2 _ i
As a check, one can, verify that for an oscillator, for WhereV(x) =4(x* + 1)S(x) — 1, andS(x) is the same
which G(w) = w? + 22, one recoverss, = 2/2. The Series that appears in Eq. (4). In fact, an infinite number

most difficult part is to evaluate the ' ‘ground state energy™©! terms of the perturbation theory can be resummed by
E; = —limg_xInZ;/B of the problem with a wall at using a novel technique (for details, see [14]), leading to

the origin. One way of computing; will be to perturb — 4

around a classical action, for instance, that of harmonic ¢ = VOGO + _[ WiG(w)/w*lde, (8
oscillator of frequencyw, (or that of a particle in a box -

as we also did in [14]). We adopt a variational method, W(x) = Z &n In[1 + 4n*(x — )] — In(x). (9)
by choosing a trial inverse correlati(w) = w? + g, n=1"

corresponding to that of an oscillator (with a hard wall This expression is valid provide@(w)/w? = 1, which

at the origin), whose frequency, is going to be our is always the case for (and close to) a Markovian process.
variational parameter. We have the general variationalve have tested Eq. (8), by comparing its prediction to the
inequality, £, =< 3wo/2 + I|m,gﬁw (S So)w, where direct simulation of Eq. (1), withf(7) = eexp(—7)/2 +

the average is performed using the action of the hardl — &) exp(—27)/4, interpolating between two Markov-
wall oscillator. The second term of the inequality requiresian processes with = 2 andA = 1. Note thats must be
evaluating the propagatdiX(w,)|?), of the hard wall positive to ensurg’ > 0, and that fore > 4/3, one can

1421



VOLUME 77, NUMBER 8 PHYSICAL REVIEW LETTERS 19 AcusT 1996

find w such thatG(w)/w? < 1, and Eq. (8) is not reli- processm(t) does not cross the origim = 0 (for now
able any more. The results for some representative valuege forget the labek, as this probability does not depend
of ¢ # 0,1 (for which® = 2 andd = 1) are displayed in on the considered site). The process) at a given site is
Table I, showing a very good agreement between Eq. (8Baussian whose correlaton(z)m(¢')) can be calculated
and numerical simulations. using the GCA scheme. However(r) is not stationary
We now turn to theT = 0 dynamics of the Ising since its correlation function depends explicitly on both
model starting from a random (high temperature) initialz and #/, and we need to use the following trick before
configuration. We would like to show that calculating using the results of Egs. (4)—(9). We define the variable
the fraction of unflipped spins up to timein the Ising  X(¢) = m(t)/+/(m?(¢)), which is also Gaussian. Its cor-
model reduces to calculating the survival probabilityrelator turns out to satisfyX(:)X(¢')) = g(L(r)/L(t")),
of a Gaussian process in the framework of Gaussiawhere once agaig(x) ~ x~* for large x. If we now
closure approximation (GCA), introduced by Mazenkosetr = In[L(r)], we are left to study the survival proba-
[15,16]. But before we make this connection, a few factsbility of a stationary Gaussian process, with correlator
about theT = 0 dynamics of the Ising model would be (X(7)X(7')) = f(r — 7'), with f(7) = g(exp|r|). This
relevant. completes the relation to the general problem studied in
Following a quench t@ = 0, interpenetrating domains the first part of this Letter. For the Gaussian process,
of +1 phases grow with time. A scaling theory has beerthe survival probability P(7) ~ exp(—67) ~ L(z)?.
developed to characterize the morphology of the growingrhus we getd = 6 in the framework of GCA. Note
domains [11]. According to this theory, at late times, thethat for an ordinary Brownian walkeg(x) = x~'/2, or
system is characterized solely by the linear length of & (7) = exp(—|7|/2), which leads to the well-known result
growing domainL(z). For the Ising modelL(z) ~ t'/2in  P(r) ~ +~'/2
all dimensions [however, id = 3 cubic lattice atl” = 0, By means of GCA (see [14] as these calculations are
it seems that.(r) ~ !/ due to lattice effects [14,17], a not the subject of this Letter), we have computed the
fact which was underestimated in [5]]. Another predictionfunctions f for d = 1,2,3. For instance, id = 1, we
of the scaling theory relevant for us is that the on-sitegot the (exact) result(r) = /2/(1 + expl27]). We see
autocorrelation satisfie$S(z)S(¢+')) = F(L(¢x)/L(¢')) for  thatf is not a pure exponential and is thus non-Markovian.
t =t > 0, whereF(x) ~ x~* for largex [11,18]. The Knowing f(7), we have computed the variatiort_a(F), and
exponentA is exactly 1 in d = 1, is close t01.25 in  the associated frequenay. In Table Il, these results are
d = 2 (from both simulations [18] and direct experiment compared t@ys, extracted from numerical simulations of
[19]), is and close to 1.67 ini = 3 [11]. GCA has Eg. (1) (in Fourier space, then using an inverse fast Fourier
been particularly successful in calculating this exponentransform), with the associatefl. We also performed
as it predictsAy = 1, Ay = 1.289, and A3y = 1.673, Ising simulations i = 2 (800 X 800 lattice, 30 samples)
this approach becoming asymptotically exact for laige confirming the results of [4—6], and id = 3 (100 X
Recently, we have extended GCA to thestate Potts 100 X 100 lattice, 60 samples). Note that the scaling of
model and calculated thg-dependeni [20]. P(¢) is found to be much better as a functionidf) than
Without entering into the details of GCA, we simply as function oft [6,20].
mention that this method assumes that the spin at position We note that the variational results are in good agree-
x and time is essentially the sign of a continuous ment with the simulations of Eq. (1), and with the Ising
Gaussianstochastic variablen(x, r), which is physically results ind = 1. However, the agreement ih= 2,3 is
interpreted as the distance to the nearest interface to thet as good. To understand this, we have to remember that
pointx [15]. We thus see that in the framework of GCA, there are two possible sources of errors between the simu-
the probability that a spin does not change sign up to timdations of Eq. (1) and the Ising simulations: (i) the real
t is equal to the probability that the associated Gaussiarvariable X(¢) ~ m(¢) is not truly Gaussian, and (ii) due
to the use of GCA, the correlatgris not exact (except in

— . . , _ . d = 1, by accident). Toillustrate the importance of the er-
(TI\'?SB)L%]; l'Eq_Hé“ls) o@l_)témsdl(f)rgom g';eit {‘O“,”Qe”fg(') sgrt:]lgltlec;ns ror due to (i), notice that althoughis exact ind = 1, the
uncertainties are\g = +0.015) is compared to the result of SiNg exact result = 3/4 is bigger than the value 0.70
Eqg. (8) as a function of, for f(r) = eexpg—7)/2 + (1 —  obtained by simulating Eq. (1), which is perfectly repro-
e)exp(—27)/4. We have reported the poiet= 4/3 [beyond  duced by our theory. Note that we got the exact bound for

which Eq. (8) must be regularized (see text)], which shows thag g  —"0736 in d = 1. whereasd,, is a bad bound for
0 can belessthan the smallest inverse relaxation time (here 1).d’>”1 In' d =123 thé main cau;e of error is presum-

Note the remarkable accuracy of Eq. (8), up to its validity limit. L . :
y ofEq. (8). up Y ably (ii), asf given by GCA is found to decrease faster

> 0.10 0.25 0.5 0.75 1.33 than in the Ising simulations for < 2_&14]. To check
Ons 172 1.47 1.22 1.09 0.91 this, we computed from Eq. (1) andd ) using forf a
Trneory 1.74 1.48 1.24 1.09 091 [itofthe correlator obtained in the Ising simulations, lead-

ing to a clear improvement (see Table Il). dn= 3, the
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TABLE Il. The four columns contain, respectively, ()., obtained in our Ising model
numerical simulations fod = 233; (2) Ons obtained by simulating Eq. (1)rf.x ~ 1000,

A7 ~ 1073, 500 samples); (3> from Egs. (7) and (8); (4) the optimal frequeney = 6 b,

which can be interpreted as the first term in the cumulant expansion.d Foe, 3, we also

give the same results using a fit gftaken from the Ising simulations, instead of GCA. In

d = 3, 6 depends on the nature of the fit (see text), and we only give typically obtained values
(estimated uncertainty of order 0.05).

alsing §NS 5(2) 5(1)
d=1 3/4 0.70 = 0.01 0.70 0.61
d = 2 (GCA) 0.45 + 0.01 0.66 + 0.01 0.58 0.43
d = 2 (fit of f) 0.49 + 0.02 0.38 0.27
d = 3 (GCA) 0.52 + 0.01 0.70 + 0.02 0.47 0.30
d =3 (fit of f) ~0.55 ~0.4 ~0.2
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