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Stochastic Analysis of Limit Cycle Behavior in Spatially Extended Systems
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The statistical properties of a one-dimensional reaction-diffusion system undergoing a Hopf
bifurcation are studied using the master equation approach. The analysis reveals nontrivial interferences
between macroscopic dynamics and mesoscopic local fluctuations that eventually wipe out any trace of
homogeneous oscillations, even though the latter are asymptotically stable solutions of the deterministic
equations. [S0031-9007(96)00867-8]
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There is ample experimental evidence of sustaine@round the unstable fixed point assumes the explicit form
oscillations in reaction diffusion systems [1]. Most of [10]
the reported experimental observations, however, are 0z b—b
restricted to well stirred systems. In the absence of — =< + ia)z
stirring, small spatial desynchronizations start to appear o1t 2
that eventually invade the reaction volume as a whole, (a*t2 + E 4a* — 7a’> + 4 122
long before the reactants are exhausted. As we will show 2a? 2 3a3 e
in this paper, the desyncronization mechanism is closely 1 0%z
related to the anomalous behavior of local fluctuations, in + —[(Dy + Dy) + ia(D, — D1)]—2, @
conjunction with the spatial dimensionality of the system. 2 or

In the absence of fluctuations, the dynamics of spatiallyvherea, b denote the control parameters abg, D, are
distributed systems with local diffusion coupling and the diffusion coefficients of the two intermediate variables
evolving near a supercritical Hopf bifurcation can be casPf the original model. The complex order parameter
into a complex Ginzburg-Landau equation (CGLE) whichz(r, ) accounts for both the (local) amplitude and phase
represents the associated normal form [2]. Ordinarilyof the oscillation, andb — by is the distance from
the effect of fluctuations is accounted for at the levelcriticality. The thresholdb,, for the Hopf bifurcation is
of Langevin equations, where local random white noisediven by linear stability analysis [11]
terms (in both time and space) are added heuristically by = (a> + 1) + ¢> (D) + D,), (2a)
to the macroscopic evolution equation [3]. The validity . .
of such a Langevin formulation rests on the fundamentaYVhere dm 1S the wave num_ber of the inhomogeneous
assumption that the nonlocal diffusional noise terms ar erturbation aro“r!d .the uniform steady state. In what
negligible near a bifurcation point. From a theoretical QIIOWS’. we shall limit ourselves to_the study of a one-
foreground, this hypothesis can be justified only if thedlmensmnal system of Iength subjected to zero flux
system behaves in a perfectly coherent manner [4]boundary COﬂdI"[IOﬂS. In this case, the wave numpgr
which is precisely what we want to check. For this ¢an only take discrete values given by
reason, we resort here to a description based on the _mm .
master equation (ME) [5], in which information on the dm = 7 m=012.... (2b)
glementary processes gqing on at the molecular Ieve_l s In addition to a homogeneous limit cycle, correspond-
introduced, without referring explicitly to the macroscoplcing to the uniform mode: = 0, Eq. (1) can lead to a vari-

_t)ehaviO( of the system. It has be_en shown in the past th%tty of secondary and higher order instabilities culminating
in a variety of situations, including the case of a Hopf

bifurcation in OD [6], results based on ME are in excellenttO spatiotemporal chaos [12]. Analysis of the numerical

reement with th btained from the more fundament olutions of the CGLE has been carried out to character-
agreeme 0S€ obtained iro € more TUNdamentq o ihe various spatiotemporal chaotic regimes (phase and
molecular dynamic simulations of reactive fluids (for ag

efect turbulence) [13—15]. The threshold at the onset of

review, see [7] .andl references the_rein). Furthermore,.th{ahese phenomena is given by the Benjamin-Feir condition
ME can be easily simulated on digital computers, runnmgﬁlt

veral orders of magnitude faster than th - ndi 6]. Using the explicit values of the normal form coef-
several orders of magnitude faster than the correspo ients in Eq. (1), we easily verify that the homogeneous
molecular dynamic simulation [8]. |

As stated above, the ME approach requires the explicitjl;;ultoﬁécges |[51§]table toward inhomogeneous perturbations

knowledge of each elementary step. We choose the A )
so-called “Brusselator’ model which has been studied Dy~ Dyda” —Ta” +4 3)
extensively in the past [9]. The normal form equation Dy + D>, 3(a% +2)
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In this range the uniform mode: = 0 in Eq. (2) bi- modem = 0, five inhomogeneous modes are also excited,
furcates as a stable (supercritical) solution, whereas thiee.,bs < b < bg.
modesm # 0 lead to unstable branches as they bifurcate As can be seen, in case (a) the system oscillates syn-
for valuesb,, of the control parametes higher thanby.  chronously in a spatially coherent fashion, whereas in case
In what follows, we choos®, = D, = D,a = 2,b =  (b) different parts of the system oscillate with markedly
5.2. Condition (3) is then always satisfied: The uniform different phases. The statistical properties of the system
limit cycle is stable and, a®/L? is decreased, an in- follow the above observations. For instance, the density
creasing number of linearly unstable spatial modes beof states in phase space in case (a) remains practically
comes excited. the same as in a OD case (craterlike distribution), whereas
In an unstirred reactor, the evolution of the system ain case (b) it takes the form of a broad one humped
the stochastic level can be described through the so-calladistribution centered on the unstable state. This can be
“multivariate master equation,” where, in addition to thefurther quantified through the analysis of the space-time
local chemical contributions, treated as a birth and deathutocorrelation function((r, r) = {(6c(r,)5¢(0,0)), of a
process, the transport of the reactants is also includecbncentration variable. In Fig. 2 we show the real part of
through a random walk process [11]. The theoreticathe (discrete) spatial Fourier transfoid, () of this func-
analysis of this equation proves to be extremely involvedion, for both case (a) and (b). Besides the uniform mode
for the case of interest, i.e., above the bifurcation poin{m = 0), two nonuniform modesn{ = 1 and m = 2)
[17]. We thus resort to the numerical simulation of theare also depicted. For each modg,(s) is normalized
ME, using the technique described in Ref. [8]. A uniformto unity att = 0. For the case (a), shown in Fig. 2(a),
initial state, corresponding to the unstable reference statéhe inhomogeneous modes become rapidly uncorrelated,
is chosen in all reported simulation. The average humbewrhereas the homogeneous one shows high persistence,
of particles per cell is about 500, leading to a relativelyindicating the robustness of the macroscopic limit
small noise amplitude of about 5% [18]. cycle toward inhomogeneous fluctuations. The situa-
The space-time plots of Fig. 1 represent the resultion is completely different for the case (b), shown in
of such a stochastic simulation for two different valuesFig. 2(b). Not only does the persistence time of the
of the ratio D/L? in Eq. (2): (a) The system length uniform mode decrease dramatically, but this mode
L is small enoughD/L?> = 2.56 X 1072) so that only behaves essentially the same as the inhomogeneous ones.
the modem = 0 is excited, i.eby < b < by. (b) The These results clearly indicate that in a one-dimensional
system length is 8 times larger than in the previous cassystem the homogeneous limit cycle is wiped out through
(D/L?> = 4 X 107%) so that, in addition to the uniform the interference with inhomogeneous fluctuations, when a
sufficient number of inhomogeneous modes are excited
[five in the case of Fig. 2(b)]. For a given system
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FIG. 1. Space-time plot of a concentration variable for the
one-dimensional Brusselator. Dark and bright regions indicaté-1G. 2. Time dependence of the autocorrelation function of

high and low concentrations, respectively, with= 2,b = the homogeneous (dashed line) and the first two inhomogeneous
5.2,D/L* =256 X 1072 for the case (a) and/L?> = 4 X modes in the one-dimensional Brusselator (dotted and full
10~* for the case (b). lines). Parameter values are as in Fig. 1.
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size the onset of this phenomenon depends on the locaksociated to diffusion is “nonlocal,” i.e., it appears as
noise amplitude as determined by the average number ¢ifie gradient of a white noise process [4]. A correct
particles per cell. Detailed numerical studies show thatangevin formation of reaction diffusion equations thus
for the choice of 500 particles per cell, made above, thigequires the presence of nonlocal diffusional noise terms,
conclusion remains valid even if a single inhomogeneoug addition to local noise terms associated to reactions.
mode is excited, except that, as the system length The thermodynamic formulation of the problem, based
is decreased, the spatial size of coherent oscillation isn Landau-Lifshitz fluctuations theory, leads precisely to
increased. For instance, in a situation where only théhe same result [26,27]. It is in such nonlocal diffusion
modesm = 0 andm = 1 are excited, we first observe terms that the origin of the behavior discovered in our
that the opposite ends of the medium start to oscillatsimulations is to be sought.

out of phase. This is then followed by the spontaneous The above results clearly imply that the validity of a
emergence of large phase domain patterns. As times goeangevin CGLE, with strictly local additive noise terms,
on, however, both the size and location of these domainsan only be guaranteed under conditions for which the
change in an apparently chaotic manner so that, upon diffusional noise terms can be neglected. On intuitive
scaling factor, the situation remains basically the same agrounds, one expects that this will be the case if, on av-
in case (b). erage, the gradient of fluctuations remains small, i.e., if

One possible mechanism at the origin of this behavionearby regions of the system fluctuate in a “coherent” fash-
is suggested by the observation that a well chosen strorign. In other words, diffusional noise terms become neg-
local perturbation, larger than macroscopic compositiorigible if the system exhibits markedly coherent behavior,
variables, can destabilize the homogeneous limit cycle ande., if the correlation functions are macroscopically long
drive the system into a triggering wave propagation beranged. So far, such a result has been established only for
havior [19]. Such a condition, however, is impossible tosystems evolving in the close vicinity of a cusp bifurcation
realize in a stochastic dynamics based on the master equaeint, where it has been shown that the stationary solution
tion since, in this case, the noise is acting continuously omf the ME can be cast into the exponential of a “stochas-
the system, and its amplitude barely exceeds 5% of that dfc potential,” identical to the Ginzburg-Landau functional
macroscopic variables. Another possibility is provided by[28]. The extension of the above analytic calculations to
the Benjamin-Feir instability for parameter values leadingthe case of a Hopf bifurcation seems extremely difficult. In
to a “defect chaos” regime, observed in detailed numerifact, the very existence of a stochastic potential has been
cal studies of a CGLE [13] (see also [20]). Not only is questioned in this case [29,30].
the CGLE used in these studies equivalent to Eq. (1), but In conclusion, our simulations show that, as the number
their space-time plot of the defect chaos regime (Fig. Dof linearly unstable spatial modes is increased, the corre-
of Ref. [13]) is surprisingly similar to our space-time plot lation length gradually becomes smaller and the uniform
(Fig. 1). The parameter values which we have chosefimit cycle is wiped out by local fluctuations, even though
to simulate the master equation, however, manifestly preit is macroscopically stable. This indicates that small
clude the above observations (recall tiat = D;). Fi-  wavelength processes remain strongly coupled to the large
nally, the spontaneous breakdown of synchronization hawavelength behavior of the system. We have here a clear
also been noted in the context of the 1D CGLE with globalindication of the intrusion of the microscopic dynamics
coupling [21]. Again, in this case, the nature of the phe4nto the macroscopic behavior, at least for the class of
nomenon is different since the global coupling indicates amne-dimensional reaction-diffusion systems evolving in an
instability of the phase-locked stationary solution. ideal medium.

In short, there seems to be no purely macroscopic We are grateful to P. Borckmans, M. Malek Mansour,
analog of the behavior discovered in our simulations. Theé. Metens, G. Nicolis, and P. Peeters for pertinent com-
situation is all the more intriguing since results basedments and fruitful discussions. This research is supported
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local additive noise terms, have always agreed with theal Affairs.
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