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Stochastic Analysis of Limit Cycle Behavior in Spatially Extended Systems
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The statistical properties of a one-dimensional reaction-diffusion system undergoing a Hopf
bifurcation are studied using the master equation approach. The analysis reveals nontrivial interferences
between macroscopic dynamics and mesoscopic local fluctuations that eventually wipe out any trace of
homogeneous oscillations, even though the latter are asymptotically stable solutions of the deterministic
equations. [S0031-9007(96)00867-8]
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There is ample experimental evidence of sustai
oscillations in reaction diffusion systems [1]. Most
the reported experimental observations, however,
restricted to well stirred systems. In the absence
stirring, small spatial desynchronizations start to app
that eventually invade the reaction volume as a wh
long before the reactants are exhausted. As we will s
in this paper, the desyncronization mechanism is clo
related to the anomalous behavior of local fluctuations
conjunction with the spatial dimensionality of the syste

In the absence of fluctuations, the dynamics of spati
distributed systems with local diffusion coupling a
evolving near a supercritical Hopf bifurcation can be c
into a complex Ginzburg-Landau equation (CGLE) wh
represents the associated normal form [2]. Ordina
the effect of fluctuations is accounted for at the le
of Langevin equations, where local random white no
terms (in both time and space) are added heuristic
to the macroscopic evolution equation [3]. The valid
of such a Langevin formulation rests on the fundame
assumption that the nonlocal diffusional noise terms
negligible near a bifurcation point. From a theoreti
foreground, this hypothesis can be justified only if
system behaves in a perfectly coherent manner
which is precisely what we want to check. For th
reason, we resort here to a description based on
master equation (ME) [5], in which information on th
elementary processes going on at the molecular lev
introduced, without referring explicitly to the macroscop
behavior of the system. It has been shown in the past
in a variety of situations, including the case of a Ho
bifurcation in 0D [6], results based on ME are in excell
agreement with those obtained from the more fundame
molecular dynamic simulations of reactive fluids (for
review, see [7] and references therein). Furthermore
ME can be easily simulated on digital computers, runn
several orders of magnitude faster than the correspon
molecular dynamic simulation [8].

As stated above, the ME approach requires the exp
knowledge of each elementary step. We choose
so-called “Brusselator” model which has been stud
extensively in the past [9]. The normal form equat
8 0031-9007y96y77(7)y1398(4)$10.00
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around the unstable fixed point assumes the explicit f
[10]
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wherea, b denote the control parameters andD1, D2 are
the diffusion coefficients of the two intermediate variab
of the original model. The complex order parame
zsr, td accounts for both the (local) amplitude and pha
of the oscillation, andb 2 b0 is the distance from
criticality. The thresholdbm for the Hopf bifurcation is
given by linear stability analysis [11]

bm ­ sa2 1 1d 1 q2
msD1 1 D2d , (2a)

where qm is the wave number of the inhomogeneo
perturbation around the uniform steady state. In w
follows, we shall limit ourselves to the study of a on
dimensional system of lengthL subjected to zero flux
boundary conditions. In this case, the wave numberqm

can only take discrete values given by

qm ­
mp

L
, m ­ 0, 1, 2, . . . . (2b)

In addition to a homogeneous limit cycle, correspon
ing to the uniform modem ­ 0, Eq. (1) can lead to a vari
ety of secondary and higher order instabilities culminat
to spatiotemporal chaos [12]. Analysis of the numeri
solutions of the CGLE has been carried out to charac
ize the various spatiotemporal chaotic regimes (phase
defect turbulence) [13–15]. The threshold at the onse
these phenomena is given by the Benjamin-Feir condi
[16]. Using the explicit values of the normal form coe
ficients in Eq. (1), we easily verify that the homogeneo
limit cycle is stable toward inhomogeneous perturbati
as long as [12]

D1 2 D2

D1 1 D2

4a4 2 7a2 1 4
3sa2 1 2d

, 1 . (3)
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In this range the uniform modem ­ 0 in Eq. (2) bi-
furcates as a stable (supercritical) solution, whereas
modesm fi 0 lead to unstable branches as they bifurc
for valuesbm of the control parameterb higher thanb0.
In what follows, we chooseD1 ­ D2 ­ D, a ­ 2, b ­
5.2. Condition (3) is then always satisfied: The unifor
limit cycle is stable and, asDyL2 is decreased, an in
creasing number of linearly unstable spatial modes
comes excited.

In an unstirred reactor, the evolution of the system
the stochastic level can be described through the so-c
“multivariate master equation,” where, in addition to t
local chemical contributions, treated as a birth and de
process, the transport of the reactants is also inclu
through a random walk process [11]. The theoreti
analysis of this equation proves to be extremely involv
for the case of interest, i.e., above the bifurcation po
[17]. We thus resort to the numerical simulation of t
ME, using the technique described in Ref. [8]. A unifor
initial state, corresponding to the unstable reference s
is chosen in all reported simulation. The average num
of particles per cell is about 500, leading to a relativ
small noise amplitude of about 5% [18].

The space-time plots of Fig. 1 represent the re
of such a stochastic simulation for two different valu
of the ratio DyL2 in Eq. (2): (a) The system lengt
L is small enoughsDyL2 ­ 2.56 3 1022d so that only
the modem ­ 0 is excited, i.e.b0 , b , b1. (b) The
system length is 8 times larger than in the previous c
sDyL2 ­ 4 3 1024d so that, in addition to the uniform
h
a

ited
m

of
ous

full
FIG. 1. Space-time plot of a concentration variable for t
one-dimensional Brusselator. Dark and bright regions indic
high and low concentrations, respectively, witha ­ 2, b ­
5.2, DyL2 ­ 256 3 1022 for the case (a) andDyL2 ­ 4 3
1024 for the case (b).
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modem ­ 0, five inhomogeneous modes are also excit
i.e., b5 , b , b6.

As can be seen, in case (a) the system oscillates
chronously in a spatially coherent fashion, whereas in c
(b) different parts of the system oscillate with marked
different phases. The statistical properties of the sys
follow the above observations. For instance, the den
of states in phase space in case (a) remains practi
the same as in a 0D case (craterlike distribution), whe
in case (b) it takes the form of a broad one hump
distribution centered on the unstable state. This can
further quantified through the analysis of the space-t
autocorrelation function,Csr , td ­ kdcsr, tddcs0, 0dl, of a
concentration variable. In Fig. 2 we show the real par
the (discrete) spatial Fourier transformCmstd of this func-
tion, for both case (a) and (b). Besides the uniform m
sm ­ 0d, two nonuniform modes (m ­ 1 and m ­ 2)
are also depicted. For each mode,Cmstd is normalized
to unity at t ­ 0. For the case (a), shown in Fig. 2(a
the inhomogeneous modes become rapidly uncorrela
whereas the homogeneous one shows high persiste
indicating the robustness of the macroscopic lim
cycle toward inhomogeneous fluctuations. The sit
tion is completely different for the case (b), shown
Fig. 2(b). Not only does the persistence time of
uniform mode decrease dramatically, but this mo
behaves essentially the same as the inhomogeneous

These results clearly indicate that in a one-dimensio
system the homogeneous limit cycle is wiped out throu
the interference with inhomogeneous fluctuations, whe
sufficient number of inhomogeneous modes are exc
[five in the case of Fig. 2(b)]. For a given syste
e
teFIG. 2. Time dependence of the autocorrelation function
the homogeneous (dashed line) and the first two inhomogene
modes in the one-dimensional Brusselator (dotted and
lines). Parameter values are as in Fig. 1.
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size the onset of this phenomenon depends on the l
noise amplitude as determined by the average numbe
particles per cell. Detailed numerical studies show t
for the choice of 500 particles per cell, made above, t
conclusion remains valid even if a single inhomogene
mode is excited, except that, as the system lengthL
is decreased, the spatial size of coherent oscillation
increased. For instance, in a situation where only
modesm ­ 0 and m ­ 1 are excited, we first observ
that the opposite ends of the medium start to oscill
out of phase. This is then followed by the spontane
emergence of large phase domain patterns. As times
on, however, both the size and location of these doma
change in an apparently chaotic manner so that, upo
scaling factor, the situation remains basically the same
in case (b).

One possible mechanism at the origin of this behav
is suggested by the observation that a well chosen str
local perturbation, larger than macroscopic composit
variables, can destabilize the homogeneous limit cycle
drive the system into a triggering wave propagation
havior [19]. Such a condition, however, is impossible
realize in a stochastic dynamics based on the master e
tion since, in this case, the noise is acting continuously
the system, and its amplitude barely exceeds 5% of tha
macroscopic variables. Another possibility is provided
the Benjamin-Feir instability for parameter values lead
to a “defect chaos” regime, observed in detailed num
cal studies of a CGLE [13] (see also [20]). Not only
the CGLE used in these studies equivalent to Eq. (1),
their space-time plot of the defect chaos regime (Fig
of Ref. [13]) is surprisingly similar to our space-time pl
(Fig. 1). The parameter values which we have cho
to simulate the master equation, however, manifestly p
clude the above observations (recall thatD1 ­ D2). Fi-
nally, the spontaneous breakdown of synchronization
also been noted in the context of the 1D CGLE with glob
coupling [21]. Again, in this case, the nature of the ph
nomenon is different since the global coupling indicates
instability of the phase-locked stationary solution.

In short, there seems to be no purely macrosco
analog of the behavior discovered in our simulations. T
situation is all the more intriguing since results bas
on phenomenological Langevin equations, with stric
local additive noise terms, have always agreed with
predictions of purely macroscopic equations, at le
in the presence of single attractors. Such a Lange
approach was first proposed by Dewelet al. [22,23]
to emphasize the analogy between nonequilibrium c
bifurcations and equilibrium critical phenomena. La
on, these authors extended the theory to the case
Hopf bifurcation [3], and, since then, many others ha
used similar approaches to analyze specific feature
nonequilibrium transitions [24].

Now, a Langevin equation can also be derived direc
from the master equation [25], but here the noise te
1400
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associated to diffusion is “nonlocal,” i.e., it appears
the gradient of a white noise process [4]. A corre
Langevin formation of reaction diffusion equations th
requires the presence of nonlocal diffusional noise ter
in addition to local noise terms associated to reactio
The thermodynamic formulation of the problem, bas
on Landau-Lifshitz fluctuations theory, leads precisely
the same result [26,27]. It is in such nonlocal diffusi
terms that the origin of the behavior discovered in o
simulations is to be sought.

The above results clearly imply that the validity of
Langevin CGLE, with strictly local additive noise term
can only be guaranteed under conditions for which
diffusional noise terms can be neglected. On intuit
grounds, one expects that this will be the case if, on
erage, the gradient of fluctuations remains small, i.e.
nearby regions of the system fluctuate in a “coherent” fa
ion. In other words, diffusional noise terms become n
ligible if the system exhibits markedly coherent behavi
i.e., if the correlation functions are macroscopically lo
ranged. So far, such a result has been established onl
systems evolving in the close vicinity of a cusp bifurcati
point, where it has been shown that the stationary solu
of the ME can be cast into the exponential of a “stoch
tic potential,” identical to the Ginzburg-Landau function
[28]. The extension of the above analytic calculations
the case of a Hopf bifurcation seems extremely difficult.
fact, the very existence of a stochastic potential has b
questioned in this case [29,30].

In conclusion, our simulations show that, as the num
of linearly unstable spatial modes is increased, the co
lation length gradually becomes smaller and the unifo
limit cycle is wiped out by local fluctuations, even thoug
it is macroscopically stable. This indicates that sm
wavelength processes remain strongly coupled to the la
wavelength behavior of the system. We have here a c
indication of the intrusion of the microscopic dynami
into the macroscopic behavior, at least for the class
one-dimensional reaction-diffusion systems evolving in
ideal medium.

We are grateful to P. Borckmans, M. Malek Manso
S. Metens, G. Nicolis, and P. Peeters for pertinent co
ments and fruitful discussions. This research is suppo
by the Belgian Federal Office for Technical and Cult
ral Affairs.
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