VOLUME 77, NUMBER 7 PHYSICAL REVIEW LETTERS 12 AcusT 1996

Shadow Band in the One-Dimensional Infinitely Hubbard Model
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We show that the factorized wave function of Ogata and Shiba can be used to calculdte the
dependent spectral functions of the one-dimensional, infiriitéubbard model, and of some extensions
to finite U. The resulting spectral function is remarkably rich: In addition to low energy features typical
of Luttinger liquids, there is a well defined band, which we identify as the shadow band resulting from
2kr spin fluctuations. This band should be detectable experimentally because its intensity is comparable
to that of the main band for a large range of momenta. [S0031-9007(96)00898-8]

PACS numbers: 79.60.—i, 71.10.Fd, 78.20.Bh

The calculation of the spectral functions of modelscases the eigenstates can be factorized [8—12] as
of correlated electrons is one of the most challenging .
and largely unsolved issues of condensed matter theory. | £,N) = Ly (Q.113) ® 1xw(Q. fo)), 3)
Although a number of numerical techniques can be used, N . . . .
e.g., exact diagonalization of finite clusters [1] or quantumVnere 14z (Q,{1})) is an eigenfunction ofN nonin-

Monte Carlo simulations [2], exact results are availabld€racting spiniess fermions oh sites with momenta
iL=2ml; + Q (I; are integers,j =1,...,N) and

only in very special cases, mostly for one-dimensional spirﬁv . / X . .
models [3]. As far as one-dimensional electron models ar n(Q. fo)) is an eigenfunction of the one-dimensional

concerned, most of the well established results have be&pin- Heisenberg model witv spins (we choosé/ as
obtained in the framework of the Luttinger liquid theory €ven integer, not multiple of four) and momentun=
[4—7], which is believed to be the correct description of27J//N, J integer. This momentum imposes a twisted
the low energy properties of a large class of Hamiltoniansboundary condition with phas€® to the spinless fermi-
However, an accurate determination of the dynamicaPns [8,9,13]. For more details, see Ref. [14]. This wave
properties for all frequencies is so far still lacking. function has already been used by Ogata and Shiba [10]

In this paper we perform such a calculation for thetO calculate the momentum distribution function and by
f0||owing one-dimensional models. (|) The Hubbard Penc, Mila, and Shiba to calculate the local Spectral func-
model defined by the Hamiltonian tion of the infinite/ Hubbard model [14]

In the following, we will determine the full momentum
H = _tZ(CiT,oCi+l,<f + He) + Uznmni,l (1) dependence of the photoemission and inverse photoemis-

i ; sion spectral functions defined by
in the infiniteU limit, which is also equivalent to thé — n 5
0 limit of the standard-J model. (ii) An extension of the Ak, w) = Z I(f, N+ ey o0, M)
t-J model first proposed by Xiang and d’Ambrumenil [8] o
defined by the Hamiltonian X 8(w — E} + EY),
- _ ~T
I = tg(%cl“’” + He) Bk, w) = D [(f,N = lleko |0, M)
: =
a a Qo 1
DD JUSESE — 38azninis )Py (2) X 8(w — EY + EY7Y).
i,j a=x,y,2 X

As a result of the factorized form of the wave functions,

where ¢ are the usual projected operators af; = the spectral functions can be obtained as a convolution:

']’u_:ll(l — n;+;r) in the exchange part of the Hamiltonian,
ensures that two spins interact as long as there is no other gLHB(; ) — Z Co(Q, 0)Apk, 0 — '),
spin between them. The motivation to study this model o 0.0
is that, unlike the infinitea¥ Hubbard model, there is an / /
energyJ associated to spin fluctuations, and this will give Bk, ) = ,Z Ds(Q. 0)Bolk, 0 — ). (4)
us useful indications about tH¢U corrections in the case L0
of the finiteU Hubbard model. A similar expression holds for the spectral function in
Although the Hamiltonians of the two models are the upper Hubbard band [18PHB(k, w =~ U), which we
different, they share the remarkable property that in botlwill not discuss here. In these expressiafig(k, w) and
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Bo(k, w) involve only the spinless fermion part of the J¢.

wave function and are defined as

N.GS
>

Aok, 0) = LS Ky (@ )bl 1y s
{1}

X 8(w — EfN + E)6(k — PP+ PR,

Bo(k, ) = L > Ky~ (Q, {iIDIbolyrr s )
{1}

X 8(w — Ey + EY )8k — Py~ + Py,
(5)

For the infinitet/ Hubbard model, one has to
consider the isotropic case and to take the lichit—

0. In that case, there is no energy associated to spin
excitations, and we can writ€,(Q, w) = C,(0)5(w)
andD,(Q,w) = D,(Q)6(w). The functionC,(Q) and

D, (Q) have already been studied earlier [13,14]. They
can be calculated numerically with exact digonalizations
(up to 26 sites) or with DMRG [17] (up to 130 sites,
keeping 300 states per block). It turns out that there is
a very strong singularitfz/2 — Q)~'/2 for Q < 7/2
and a small contribution coming from the higher order
excitation towers foQ > 7 /2 in the case oD, (0, w).

For C,(0, w) the situation is reversed and both are
where the momentum and energy of the states ar@ymmetric with respect t® = 0.

given byPV' = 3 k; andEN = —2: 3, cosk;, and
whereb andb? are spinless fermion operator€,(Q, )
andD, (Q, w) depend on the spin wave function only and]j
are given by

ColQ,®) = D N xw+1(0, Fo)l 2o Ix S
fo

X 8(w — E}T + EY), I

Dy(Q,®) = D K xn-1(Q, Fo)lZo.s Ix§*P
fo
X 8(w — Ef + E}7Y), (6)
WhereZL, appends a spimr to the beginning of the spin
wave function| yx) making itN + 1 sites long, anc‘Zo,(,
is the Hermitian conjugate (ﬁg’(,.

To evaluate the charge contribution, one needs matri
elements between states with different boundary condi
tions (' for the final state¢'™ for the ground state [14]).
For Q # m the overall phase shiftQ — «)/L due to
momentum transfe@ — 7 to the spin degrees of free-
dom gives rise to Anderson’s orthogonality catastrophe
[16], and the matrix elementRyy+1(Q,{I})Ibd 1w$S)?
can be shown to be equal to

L~ N1 cogV % l_[ sin?

J>i
KK
x [si?t =—=—]]sin?
j>i i,j

2
where k; (k}) are wave vectors with phase shift/L
(m/L). The restriction imposed b§(k — P} ™' + Py)
is then implemented by restricting the sum oy{&f to
states which have the correct momentum.
The calculation of the spin contribution is based on the

spin-% Heisenberg Hamiltonian witlV’ sites
N/

kj — ki

2

ki — k;
2 2

(7)

Using these results, it is straightforward to get the

spectral functions for the infinité- Hubbard model. One

ust has to generate the quantum numbers for the charge

part, calculate the corresponding energy, momentum, and
matrix elements, and perform the convolution@n The

results are presented in Figs. 1 and 2 for a quarter-filled
system. There are several interesting features to notice.

n the low energy region nedrs we can identify three

g
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FIG. 1. One particle spectral functions of th€ — +x

Ja Qo Qo 1
Hopin =2 D TUSISE — 18a2), (®
i=1 a=xy,2
with N’ = N for the ground state an&/ *= 1 for the

final states. The model of Eq. (2) corresponds/to=

Hubbard model foi. = 228 sites andV = 114 electrons with
Fermi momentunk; = /4.
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' T T Let us now turn to the model of Eq. (2). To get the
spectral function, we need,(Q, ») and D, (Q, w) for
k=rt a L the Heisenberg model. This can be done numerically for
the isotropic casdJ** = J) using Lanczos diagonal-
ization of small clusters or DMRG [21]. We find that
k=516 a b C,(Q,w) is zero for w < —JIn2 + u,|sink — 3,
- where u, = 3J is the spin velocity in the squeezed
H system, that it has an inverse square root singularity at
0 = w/2, and that the largest contributions come from
i the lower edge of the excitation spectrum. The main dif-
ka2 5. 18 c b ference with the infinite7 case is that the spin fluctua-
""""""" — tions have an energy of ordér so that the spin velocity
:.’ a e e b us; = uy,L/N does not vanish anymore. The low energy
________ o % k=3 part of the spectrum then has exactly the form predicted
by the Luttinger liquid theory.
a b‘wg e ka6 For the XY case(J*Y = J, J* = 0) one can give a
c
0

e P closed expression faf . (Q, w) andD,(Q, w) after map-

ping the problem onto noninteracting spinless fermions
g e k=0 by a Jordan-Wigner transformation. After some algebra,
' PR the matrix elementg ,\/NH(Q,fQ)IZ(L,IXSS}P of Eg. (6)

t 2 3t can be obtained as

-3t -2t -t

M /
FIG. 2. The same as Fig. 1, but for some selected momenta. -M L0 4dj 0 4j — 4
Some parts of the spectra are multiplied by 10 and are shown [NV + 1)] l_[ sir’ 7 l_[S|n2 D)

with dashed lines. j=1

!/ !/ !
.2 4qj — 4i . 241 — qj
><||sm27||sm _—, 9
2 2 ©

j>i

j>i

structures: There are divergencesvat= u.(k — kr) and

/ -
» = 0 and a lot of spectral weight between them (peakdVhere ¢; and g; are the momenta of thé/ spinless

“b" and “c” in Fig. 2). There is also a small weight fermions representing the o spins on theV and N +
(“e") appearing on the other side of the Fermi energy : i : :
at w = —u.(k — kr). If we remember that the spin e ab |
velocity u; vanishes for the infinitd/ Hubbard model, -
all these features are consistent with the Luttinger liquid
calculations of Meden and Schonhammer [7] and of Voit keS 6 a
[7]. The small peak §” comes from higher harmonics.
The dispersion of the charge pat#)(is given exactly
by E(k) = —2tcod|k| + kr), in agreement with the k=2 /3 ;@ CJ
observation of Preusst al.[2] based on Monte Carlo = |eccseicianm o
results forU /¢ = 4.

However, the Luttinger liquid picture does not exhaust — 8 "//,/bL k=12
the features of the spectral function of Figs. 1 and 2. For p== st

larger energies, or away frofy, there is a well defined
bandlike structure ¢”) with considerable spectral weight Aot e ¢ c]‘t k=m/3
and a dispersion given b¥ (k) = —2rcod—|k| + kFr).
We interpret this feature as a shadow band [18] coming

from the spin fluctuations which diverge akr. The ’\a jj\'{ de _______ =6
scattering of the charges by these fluctuations produces @ [ e
an image of the main spectrum/t+ 2kr. This is very ab ¢ | d e

similar to the mechanism of the shadow bands proposed L _____ k=0
for the two-dimensional model with strong antiferromag- ar 2t 1 0 = ; : ;t """"" at
netic fluctuations. This shadow band is responsible for O-Ep

the Slngullarlty aBkr present in the mqmentum dlstrlb_u- FIG. 3. Spectral function for the model of Xiang and
tion function [10,19,20]. Finally, there is a Van Hove sin- d’Ambrumenil with XY exchange, J = 0.4, L = 228

gularity at=2¢ which gives rise to a clear peak for wave y — 114, and e = —J/7. Some parts of the spectra are
vectors close to the extrema of the bands’\* multiplied by 10 and are shown with dashed lines.
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1 site lattice. They are quantized according ¢gb=  in addition to the Luttinger liquid features, suggesting that
277],’-/(N + 1) and g = 27J;/N, whereJ; and J]’- are U/t = 10 is already large enough to guarantee the pres-
integer quantum numbers, afg = {J;,j = 1,...,M}.  ence of a well defined shadow band.
The total momentum and energy bfx-+1(Q,fo)) are We thank Y. Kuramoto, H. Fukuyama, M. Imada,
given by 0 =3, q} and EN*! = JY; Cosq}_ Details D. Poilblanc, K. Vladar, and A. Zawadowski for useful
will be given elsewhere [15]. A similar expression holdsdiscussions.
in the case ofD,(Q, w). This formulation also allows
one to derive analytical results. For instance, the static
function w(0 — j, o) introduced by Ogata and Shiba
[10] can be shown to have the asymptotic behawior
j>%cog35j + §). Thanks to this mapping, one can  *On leave from Research Institute for Solid State Physics,
calculate the spectral function with the same accuracy as Budapest, Hungary.
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in Fig. 3 for a quarter-filled system. It is essentially [2] R. Preusst al.,Phys. Rev. Lett73, 732 (1994).
the same as that of the Hubbard model, except thatl3] gg%‘;"e;ngngfg-e |Ewc essh;ﬁglr(éir?hfi\l ?VH[a_eaﬁriLé l2:19D "
at low energies an extra _peald accounting for the Haldaﬁe, Phys. Rev. Letf3, 288,7 (1994); B.D. Simons,
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appeared (this peak has nothing to do with pegaln

' .. F.D.M. Haldane and M.R. Zirnbaueibid. 71, 4055
Fig. 2). Because of finite/, both “¢” and “d” follow (1993). b
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see that the shadow bandaz{J and the Van Hove—like [5] F.D.M. Haldane, J. Phys. @4, 2585 (1981).

singularity (“f") are broadened by the spin fluctuations.  [6] H.J. Schulz, Phys. Rev. Let#4, 2831 (1990); Int. J. Mod.
Finally, let us comment on the experimental implica- Phys. B 5, 57 (1991).

tions of the present results. It would be most interesting [7] V. Meden and K. Schénhammer, Phys. Rev4® 15753

to observe the shadow band in angular-resolved photoe- (1992); K. Schonhammer and V. Medehid. 47, 16 205

mission or inverse photoemission experiments on quasi-[s] %1932’] Jé;/dc"“b'g,ﬁrzbfjégéﬁggi)'S Rev. BS. 8150

one-dimensional conductors. The intensity of that band in (1'992) 9 ' > PIYS. T

the previous calculations is certaln_ly big enough for it to 9] F. Woynarovich, J. Phys. @5, 85 (1982).

be detected. What about the gxpfer_lmentally more relevarﬁo] M. Ogata, T. Sugiyama, and H. Shiba, Phys. Rev®

case of the Hubbard model with finité? In that case the 8401 (1991); M. Ogata and H. Shibéid. 41, 2326

factorized wave functions are no longer eigenfunctions of ~ (1990).

the Hubbard model, and there are two typed O cor- [11] A. Parola and S. Sorella, Phys. Rev. Lé#, 1831 (1990).

rections to the spectral functions. The first type is dugl12] T. Prushke and H. Shiba, Phys. Rev4& 205 (1991).

to the energy coming from the spin part with an effective[13] S. Sorella and A. Parola, J. Phys. Condens. Matt&589

couplingJ = %(n _ sinZZ;m). We expect these correc- gggg A. Parola and S. Sorella, Phys. Revd$ 13 156

tions to be very similar to those of the model of Eq. (2),[14] K. Penc, F. Mila, and H. Shiba, Phys. Rev. Lat§ 894
and the main effect is to give a finite velocity to the spin (1'995)' T ' ' ’ ' '
excitations. However, there are alspU corrections en- [15] k. penc, K. Hallberg, F. Mila, and H. Shiba (unpublished).
tering the matrix elements of the spinless part of the waveis] p.w. Anderson, Phys. Rev. Letl8, 1049 (1967); G.
function. We can anticipate that they will have two ef- Yuval and P.W. Anderson, Phys. ReviB1522 (1970).
fects on the spectral function. They will produce a trans{17] S.R. White, Phys. Rev. Let69, 2863 (1992).

fer of spectral weight to the upper Hubbard band which[18] A.P. Kampf and J.R. Schrieffer, Phys. Rev.42, 7967
according to Eskes and OI¢82], will be small, except (1990). For recent developments in 2D, see S. Hdas.,
very close to half filling, and they will modify the power Phys. Rev. Lett74, 310 (1995); R. Preusst al., Phys.
laws of the singularities. So, at least not too close to half E;VRégfoﬁggg;M (1995); A. Chubukov, Phys. Rev. B
Cortaetions. Wheher hi remains rue for smal valies ofiS] K-Penc and J. Sdyom, Phys. Rev.48, 12630 (1991)

. : . . . 20] P.W. Anderson and Y. Ren, ifligh Temperature Su-
U is not clear yet. Let us just mention that, according to perconductivity edited by K.S. Bedelet al. (Addison-
recent numerical results obtained by Maekawa, Tohyama,  \yesley, Redwood City, 1990), p. 3.
and Yunoki [23] in a study of the spectral function of the [21] K. Hallberg, Phys. Rev. B2, R9827 (1995).

Hubbard model forU/r = 10 based on Lanczos diago- [22] H. Eskes and A. M. Olehys. Rev. Lett73, 1279 (1994).
nalization of finite clusters, there seems to be a structurg23] S. Maekawa, T. Tohyama, and S. Yunoki (unpublished).

1393



