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Matrix Treatment of Electrical Current: Current Echoes
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A matrix method has been applied to solve the electron equation of motion in electric and magnetic
fields. The analogy between this problem and that of an ensemble of nuclear spins in a magnetic field,
described by the Bloch equations, leads to transient solutions similar to spin echoes, which we shall
call current echoesa phenomenon not yet observed experimentally. In a configuration of static and
oscillating fields, the components of the Hall current are calculated in the rotating reference frame.
Then we consider transverse pulsed magnetic fields and derive expressions for the transient effects.
[S0031-9007(96)00540-6]

PACS numbers: 72.10.Bg

Spin echo pulse NMR, discovered by Hahn in 1950 [1],with y = —e/m, ando = ne’r/m is the classical elec-
is today one of the most important tools in experimentakrical conductivity atl = 0.
solid state physics. The technique allows the study of Equation (2) has the same structure as the Bloch equa-
magnetic and transport phenomena in solids through thigon for the motion of the nuclear magnetization from a
measurement of NMR spectra, relaxation times, Knighspin ensemble in a magnetic field, with the spin-spin and
and chemical shifts, etc. In 1954, Jaynes developed spin-lattice relaxation times being the same [5]. It can be
very simple and elegant matrix method for the study ofregarded as &8loch equation for the electrical current
the solutions of the Bloch equations [2]. In a subsequenEollowing Jaynes [2], we can write (2) in matrix form by
paper, Bloom applied the method to investigate spin echdefining a matrix3 which performs the cross product as
shapes and amplitudes in the presence of inhomogeneofalows:
magnetic fields [3]. Here we show, by means of the

same formalism, that a similar phenomenon may exist in ~ 0 -B, B,
conducting materials. The idea is to apply Jaynes method B =vBX=vy| B, 0 -—-B)|. 3
to solve the equation of motion of electrons in electric —-B, B, 0

and magnetic fields. First we analyze the case where _
a static magnetic field is applieparallel to the electric  The current equation becomes
field, and another continuous ac magnetic field exists

perpendicularlyto both. The rotating reference frame is aJ + [l + ,@}J — A1), 4)
introduced, and the Hall current is calculated in this system ot T

of coordinates. We then investigate the case where the ac

field is applied as a sequence of pulses. whereA(r) = oE(1)/.

Our starting point is the classical equation of motion for "€ general solution of this equation can be written as
an electron in electricK) and magneticE) fields, which )
in standard units is written as [4] () = U(1.0)J(0) + f U YA dr, 5)

0

P _ P _,E+uvxB), 1)
ot T whereU(z, ') is a time-developing matrix which satisfies
the homogeneous equation (4) of Jaynes [2]. For the case

where p = muv is the electron momentum andis the h h 3 is time ind d ) takes th
relaxation time which takes into account the interactions }’grr‘;ret e matrix3 is time independentJ(z, ') takes the

between the electron and the lattice.
Defining the electric current by 1
U(t,t') = ex;{— + B}(r —1). (6)
ne T
J = —nev = —;p,
We can now check the applicability of these results by
wheren is the conduction electron density, we can rewriteapplying (5) and (6) to some simple situations.

Eq. (1) as () B = (0,0, By) andA(z) = (o/7) (Ep,0,0). Thatis,
P E a static magnetic field along tlzeaxis and a static electric
9 - _ field along thex axis. TakingJ(0) = 0 as the initial
e e x]J) =
at T y(BXJ) =0 ) condition, the second term of (5) can be readily calculated
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J@t) = %(% + B)lE - %ex;{—[% + ,f%:|t> <% + E)lE.

We wish to analyze the first term from this expressibn As before, by applying the inverse of the matrix above
which represents the stationary solution. It is a straightto the vectolE one finds
forward matter to calculate the matrix operator appearing

yielding

in this term: o7E (0 — w)wiT
J(OO) - 2 27+2 @1 2.2
<l+~>_l_; 1+ o] + (0 — 0)*7r TH(w—0)7
T B 2+ @2
S 0 At the resonancep = w. and the components dfin
% y the rotating frame become
w. T 0 ,
-2 + 2
0 0 (7 wl)T J.() = 0.
where w, = yBy is the cyclotron frequency of the T
electron. Applying this matrix to the vectd® defined Jy(®) = T ol oKy,
above, we find the solutions @rT
£ Joer) = — 7B
o gL z - 2 5
Jx(oo) - 1 + ngZ s 1 + T
W.T These expressions can be regarded as the components
Jy() = T+ o2 7Eo (7)  of the Hall current in the rotating framgcompare with
¢ Eq. (7)]. Note that if we switch off the ac field by making
J.(®) =0, w; =0, we findJ, = J, = 0 andJ, = o Eo, which is

the expression for the current on the laboratory frame.
The most interesting results emerge from the above
rmalism when we consider pulsed magnetic fields. As
it happens, in the usual pulse NMR, the observation of
transient effects (FID’s, spin echoes, etc.) is only possible
if the system does not relax too fast. Roughly speaking,
the relaxation times must be long compared to the length of
E = (0,0,E). time of one experiment. In the NMR of magnetic metals,
for instance, the time scale of experiments is of the order
With this form for B the solution (6) is no longer valid, of tens of microseconds, whereas the relaxation times are
since 8 will not be time independent. We can, however, ysyally hundreds of microseconds [6]. The applicability of
follow the usual procedure which consists of analyzingthe following results to metallic systems (and eventually
the problem in a rotating reference frame whdeis  other conducting media) depends upon the electron total
stationary. On such a framB,takes the form [5] scattering rate !, which should be about 20 MHz or less
(corresponding to a relaxation time of 50 ns or more). In
metals, at temperatures well below the Debye temperature,
with the Bloch equation (2) remaining unaltered. Op, the eIe_ctron—phon_on and_limpurities scattering rates
) 2 : are the main contributions te™'. Whereas the former
On the rotating frames is time independent, and the f 3
X . : : -~ follows aT- law and can be reduced by a factor of about
solution (6) can be applied again. The stationary solutlorlos by qoina from 4.2 K to 50 mK. the latter depends on
will be given by y going e R , IN€ latter dep _
the details of the material preparation (its history) and it
is difficult to be predicted. This contribution should be
minimum in high purity single crystals. To the best of our
knowledge, there are no recent reports where relaxation

which are the expected results [4].

(i) Let us now consider a more interesting case wherg,
dc electric and magnetic fields exist along thaxis, and
one ac magnetic field is applied alorgthat is,

B = (2B cowt, 0, By),

B = (BI’O’ w/’y - BO)’

o

M@=—{}+B>E,

where times have been measured in simple metal single crystals
| — (0 — w.) 0 at low temperatures. However, it i§ our belief thg’g, with
—+B=|w - o ! — the modern ultrahigh vacuum techniques of deposition and
T 0 w1 — crystal growing, metallic single crystals can be prepared in
a degree of purity such thatcould be 50 ns or more at,
with w, = yBy andw; = yB;. say, 50 mK.
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Following the description of Jaynes [2], the componentsAt the resonanceAdw = 0, § = 7 /2 and we have
of the current after any sequence of pulses can be written

as Jy =0,
Ey .
A a? =B 207" \ [Js I, = % sin(yB,7,).
Jol = -8 a? —2ap J- |, (8
J a*B aB* lal* —|BIF )\ J: We see that thifree-current decaywill be maximum

when yB;7 = 7 /2. We also see that the current is
wherea and g are the elements of the X 2 unimodular  reversed by the rotating field, whemB, 7 = .
matrix Q given by [7]. (Here the matrix elemeyit is not In order to calculate/_(s) after a sequence of two
to be confused with the time-evolution matik As in  pulses, we follow the same procedure as above. Now we

Jaynes, we keep the same Greek letter but the matrix jgist have to calculate the product of four matrices and use
distinguished by a tilde.) (10) and (11):

o= (% Z) ©) Q - Q:Q:Q:Q:.

) ] whereQ, describes the evolution of the current after the

Thus, if we start withJ = J,, after a pulse sequence gecond pulseQ, between them, an@; and Q; during
the transverse component of the current(s), will be  heir application. The result becomes simpler if we make
proportional to the product2a S. the two pulses as having the same width; this means

Let us first egamine_ the situation where only one pulsqz1 — Q,. With the same initial conditions as before, we
of duration, is applied. We want to calculaté (r)

after the pulse as a function of the applied fields and
pulse width. We consider again static magneticand

B B
electric E, fields along thez axis. A pulsed magnetic J_(¢) = — 2ian[cos<y TP) + ico¥ sin(uﬂ
field of amplitudeB; is applied along thec axis. It is 2 2
easy to show that, during the application of the pulse, the .5 .o YBTp —iAw(t—AT,)
elements ofQ are given by [3] X simo sin ¢ ’ (13)

o« = cos( 787/’) _ icos(ﬁ)sin(ﬁ>, whereAr, is the time interval between the pulses. In this
2 10 expression;s is measured from the second pulse.
yBT (10) The above expression representuiaent echo At the
B = —ising sin( > P), resonance we have
where 6 = tan (w/Aw), ¥B = (0} + Aw?)"/2, and J_ = —icEysin(yBt,) Sln2<%> (14)
Aw = o — w.. After the pulse, these matrix elements 2
will become )
or, in terms of the components,
_ Awt
a = exp —i ) . Jx — O,
(11) 5
— T
Y = oEysin(yB;T,)sin| ——— |.
B =0 J, = oEysin(yBy,) sint( 21 £

The resultantQ matrix will be given by the product
of the individual matrices describing the evolution of theThese expressions are identical to that for the spin

current during each interval of time [3]: echo in the magnetic case, except that héye =
B e/m =~ 17.56 GHz kG ! is much larger than its nuclear
Q=QQ:. counterpart.

Figure 1 shows the current echo components calcu-
lated forr, = 1 ns,B; =10 G, A7, = 100 ns, Aw =
0.0 GHz [Fig. 1(a)], and Aw = 0.1 GHz [Fig. 1(b)].

Performing this matrix product, we find for the trans-
verse component of the current

i o (Here we have simplified our notation; it is implicit that
J-(t) = ) e_lA””[Sln@ sin(yBt,) Aw = 27Av.) The relaxation time was taken as=
100 ns. These curves were obtained under the assump-
— sire Sin2<737p>] (12) tion of a Lorentzian distribution in the magnetic field
2 inhomogeneity.
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FIG. 1. Calculated current echo components for ¢ayF w.
and (b)w — w. = 0.1 GHz. The relaxation time was taken

ast = 100 ns (see text for details).
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method developed by Jaynes [2]. We have shown that
the similarity between this problem and that of the motion
of the nuclear magnetization in a magnetic field leads to
transient solutions which we have calledrrent echoes
(and current FID’s). The observation of current echoes
could, in principle, be made in a similar way to NMR by
detecting the emf in a “pickup” coil, induced by the tran-
sient current, with subsequent demodulation of the signal,
which would then appear as in Fig. 1 [8]. If proved to
exist, current echoes could become a helpful tool in the
investigation of transport properties in various materials
through the measurement of their electron cyclotron reso-
nance spectra and relaxation times. The formalism devel-
oped by Jaynes can easily be generalized to include more
than one relaxation time, and, much like in the magnetic
case, concepts such akectron temperaturshould be in-
troduced. Current echoes could then open new possibili-
ties for the study of electron-electron and electron-lattice
mechanisms of interaction in solids.
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