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Matrix Treatment of Electrical Current: Current Echoes
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A matrix method has been applied to solve the electron equation of motion in electric and ma
fields. The analogy between this problem and that of an ensemble of nuclear spins in a magnet
described by the Bloch equations, leads to transient solutions similar to spin echoes, which w
call current echoes,a phenomenon not yet observed experimentally. In a configuration of static
oscillating fields, the components of the Hall current are calculated in the rotating reference
Then we consider transverse pulsed magnetic fields and derive expressions for the transient
[S0031-9007(96)00540-6]

PACS numbers: 72.10.Bg
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Spin echo pulse NMR, discovered by Hahn in 1950 [
is today one of the most important tools in experimen
solid state physics. The technique allows the study
magnetic and transport phenomena in solids through
measurement of NMR spectra, relaxation times, Kni
and chemical shifts, etc. In 1954, Jaynes develope
very simple and elegant matrix method for the study
the solutions of the Bloch equations [2]. In a subsequ
paper, Bloom applied the method to investigate spin e
shapes and amplitudes in the presence of inhomogen
magnetic fields [3]. Here we show, by means of
same formalism, that a similar phenomenon may exis
conducting materials. The idea is to apply Jaynes met
to solve the equation of motion of electrons in elect
and magnetic fields. First we analyze the case wh
a static magnetic field is appliedparallel to the electric
field, and another continuous ac magnetic field ex
perpendicularlyto both. The rotating reference frame
introduced, and the Hall current is calculated in this sys
of coordinates. We then investigate the case where th
field is applied as a sequence of pulses.

Our starting point is the classical equation of motion
an electron in electric (E) and magnetic (B) fields, which
in standard units is written as [4]

≠p
≠t

­ 2
p
t

2 esE 1 y 3 Bd , (1)

where p ­ my is the electron momentum andt is the
relaxation time,which takes into account the interactio
between the electron and the lattice.

Defining the electric currentJ by

J ­ 2ney ­ 2
ne
m

p ,

wheren is the conduction electron density, we can rewr
Eq. (1) as

≠J
≠t

1
J 2 sE

t
1 gsB3Jd ­ 0 (2)
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with g ; 2eym, ands ­ ne2tym is the classical elec-
trical conductivity atT ­ 0.

Equation (2) has the same structure as the Bloch eq
tion for the motion of the nuclear magnetization from
spin ensemble in a magnetic field, with the spin-spin a
spin-lattice relaxation times being the same [5]. It can
regarded as aBloch equation for the electrical current.
Following Jaynes [2], we can write (2) in matrix form b
defining a matrixb̃ which performs the cross product a
follows:

b̃ ; gB3 ­ g

0B@ 0 2Bz By

Bz 0 2Bx

2By Bx 0

1CA . (3)

The current equation becomes

≠J
≠t

1

∑
1
t

1 b̃

∏
J ­ Astd , (4)

whereAstd ­ sEstdyt.
The general solution of this equation can be written a

Jstd ­ Ust, 0dJs0d 1
Z t

0
Ust, t 0dAst0d dt0, (5)

whereUst, t0d is a time-developing matrix which satisfie
the homogeneous equation (4) of Jaynes [2]. For the c
where the matrixb̃ is time independent,Ust, t0d takes the
form

Ust, t0d ­ exp

∑
1
t

1 b̃

∏
st 2 t0d . (6)

We can now check the applicability of these results
applying (5) and (6) to some simple situations.

(i) B ­ s0, 0, B0d andAstd ­ ssytd sE0, 0, 0d. That is,
a static magnetic field along thez axis and a static electric
field along thex axis. Taking Js0d ­ 0 as the initial
condition, the second term of (5) can be readily calcula
© 1996 The American Physical Society 139
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yielding

Jstd ­
s

t

µ
1
t

1 b̃

∂
21

E 2
s

t
exp

µ
2
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1
t

1 b̃

∏
t

∂ µ
1
t

1 b̃

∂
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We wish to analyze the first term from this expressi
which represents the stationary solution. It is a straig
forward matter to calculate the matrix operator appear
in this term:µ

1
t

1 b̃

∂21

­
1

t22 1 v2
c

3

0B@ t21 2vc 0
vc t21 0
0 0 st22 1 v2

c dt

1CA ,

where vc ­ gB0 is the cyclotron frequency of the
electron. Applying this matrix to the vectorE defined
above, we find the solutions

Jxs`d ­
sE0

1 1 v2
ct2

,

Jys`d ­
vct

1 1 v2
ct2

sE0 , (7)

Jzs`d ­ 0 ,

which are the expected results [4].
(ii) Let us now consider a more interesting case wh

dc electric and magnetic fields exist along thez axis, and
one ac magnetic field is applied alongx, that is,

B ­ s2B1 cosvt, 0, B0d ,

E ­ s0, 0, E0d .

With this form for B the solution (6) is no longer valid
sinceb̃ will not be time independent. We can, howeve
follow the usual procedure which consists of analyzi
the problem in a rotating reference frame whereB is
stationary. On such a frame,B takes the form [5]

B ­ sB1, 0, vyg 2 B0d ,

with the Bloch equation (2) remaining unaltered.
On the rotating framẽb is time independent, and th

solution (6) can be applied again. The stationary solut
will be given by

Js`d ­
s

t

µ
1
t

1 b̃

∂21

E ,

where

1
t

1 b̃ ­

0B@ t21 2sv 2 vcd 0
v 2 vc t21 2v1

0 v1 t21

1CA
with vc ­ gB0 andv1 ­ gB1.
140
n
t-
g

re

,
g

n

As before, by applying the inverse of the matrix abo
to the vectorE one finds

Js`d ­
stE0

1 1 fv2
1 1 sv 2 vcd2gt2

0B@ sv 2 vcdv1t

v1
11sv2vcd2t2

t

1CA .

At the resonance,v ­ vc and the components ofJ in
the rotating frame become

Jxs`d ­ 0 ,

Jys`d ­
v1t

1 1 v
2
1t2

sE0 ,

Jzs`d ­
sE0

1 1 v
2
1t2

.

These expressions can be regarded as the compon
of the Hall current in the rotating frame[compare with
Eq. (7)]. Note that if we switch off the ac field by makin
v1 ­ 0, we find Jx ­ Jy ­ 0 and Jz ­ sE0, which is
the expression for the current on the laboratory frame.

The most interesting results emerge from the abo
formalism when we consider pulsed magnetic fields.
it happens, in the usual pulse NMR, the observation
transient effects (FID’s, spin echoes, etc.) is only possi
if the system does not relax too fast. Roughly speaki
the relaxation times must be long compared to the length
time of one experiment. In the NMR of magnetic meta
for instance, the time scale of experiments is of the ord
of tens of microseconds, whereas the relaxation times
usually hundreds of microseconds [6]. The applicability
the following results to metallic systems (and eventua
other conducting media) depends upon the electron t
scattering ratet21, which should be about 20 MHz or les
(corresponding to a relaxation time of 50 ns or more).
metals, at temperatures well below the Debye temperat
QD , the electron-phonon and impurities scattering ra
are the main contributions tot21. Whereas the former
follows a T 3 law and can be reduced by a factor of abo
105 by going from 4.2 K to 50 mK, the latter depends o
the details of the material preparation (its history) and
is difficult to be predicted. This contribution should b
minimum in high purity single crystals. To the best of ou
knowledge, there are no recent reports where relaxa
times have been measured in simple metal single crys
at low temperatures. However, it is our belief that, wi
the modern ultrahigh vacuum techniques of deposition a
crystal growing, metallic single crystals can be prepared
a degree of purity such thatt could be 50 ns or more at
say, 50 mK.
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Following the description of Jaynes [2], the compone
of the current after any sequence of pulses can be wri
as0B@ J 0

1

J 0
2

J 0
z

1CA ­

0B@ ap2 2bp2 22apbp

2b2 a2 22ab

apb abp jaj2 2 jbj2

1CA
0B@ J1

J2

Jz

1CA , (8)

wherea andb are the elements of the2 3 2 unimodular
matrix Q given by [7]. (Here the matrix elementb is not
to be confused with the time-evolution matrix̃b. As in
Jaynes, we keep the same Greek letter but the matr
distinguished by a tilde.)

Q ­

µ
a b

2bp ap

∂
. (9)

Thus, if we start withJ ­ Jz , after a pulse sequenc
the transverse component of the current,J2std, will be
proportional to the product22ab.

Let us first examine the situation where only one pu
of duration tp is applied. We want to calculateJ2std
after the pulse as a function of the applied fields a
pulse width. We consider again static magneticB0 and
electric E0 fields along thez axis. A pulsed magnetic
field of amplitudeB1 is applied along thex axis. It is
easy to show that, during the application of the pulse,
elements ofQ are given by [3]

a ­ cos

µ
gBtp

2

∂
2 i cossud sin

µ
gBtp

2

∂
,

b ­ 2i sinu sin

µ
gBtp

2

∂
,

(10)

where u ­ tan21sv1yDvd, gB ­ sv2
1 1 Dv2d1y2, and

Dv ­ v 2 vc. After the pulse, these matrix elemen
will become

a ­ exp

µ
2i

Dvt
2

∂
,

b ­ 0 .
(11)

The resultantQ matrix will be given by the produc
of the individual matrices describing the evolution of t
current during each interval of time [3]:

Q ­ Q2Q1 .

Performing this matrix product, we find for the tran
verse component of the current

J2std ­
i
2

e2iDvt

∑
sinu sinsgBtpd

2 sin2u sin2

µ
gBtp

2

∂∏
. (12)
ts
en

is

e

d

e

e

-

At the resonance,Dv ­ 0, u ­ py2 and we have

Jx ­ 0 ,

Jy ­
sE0

2
sinsgB1tpd .

We see that thisfree-current decaywill be maximum
when gB1t ­ py2. We also see that the current i
reversed by the rotating field, whengB1t ­ p.

In order to calculateJ2std after a sequence of two
pulses, we follow the same procedure as above. Now
just have to calculate the product of four matrices and u
(10) and (11):

Q ­ Q4Q3Q2Q1 ,

whereQ4 describes the evolution of the current after th
second pulse,Q2 between them, andQ3 and Q1 during
their application. The result becomes simpler if we ma
the two pulses as having the same width; this mea
Q1 ­ Q3. With the same initial conditions as before, w
find

J2std ­ 2 2isE0

∑
cos

µ
gBtp

2

∂
1 i cosu sin

µ
gBtp

2

∂∏
3 sin3u sin3

µ
gBtp

2

∂
e2iDvst2Dtpd, (13)

whereDtp is the time interval between the pulses. In th
expression,t is measured from the second pulse.

The above expression represents acurrent echo. At the
resonance we have

J2 ­ 2isE0 sinsgB1tpd sin2

µ
gB1tp

2

∂
(14)

or, in terms of the components,

Jx ­ 0 ,

Jy ­ sE0 sinsgB1tpd sin2

µ
gB1tp

2

∂
.

These expressions are identical to that for the s
echo in the magnetic case, except that herejgj ­
eym ø 17.56 GHz kG21 is much larger than its nuclea
counterpart.

Figure 1 shows the current echo components cal
lated for tp ­ 1 ns, B1 ­ 10 G, Dtp ­ 100 ns, Dv ­
0.0 GHz [Fig. 1(a)], and Dv ­ 0.1 GHz [Fig. 1(b)].
(Here we have simplified our notation; it is implicit tha
Dv ­ 2pDn.) The relaxation time was taken ast ­
100 ns. These curves were obtained under the assu
tion of a Lorentzian distribution in the magnetic fiel
inhomogeneity.
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FIG. 1. Calculated current echo components for (a)v ­ vc
and (b) v 2 vc ­ 0.1 GHz. The relaxation time was take
ast ­ 100 ns (see text for details).

In this paper we have worked out solutions for t
equation of motion of electrons in various configur
tions of electric and magnetic fields by applying a mat
142
method developed by Jaynes [2]. We have shown t
the similarity between this problem and that of the motio
of the nuclear magnetization in a magnetic field leads
transient solutions which we have calledcurrent echoes
(and current FID’s). The observation of current echoe
could, in principle, be made in a similar way to NMR b
detecting the emf in a “pickup” coil, induced by the tran
sient current, with subsequent demodulation of the sign
which would then appear as in Fig. 1 [8]. If proved t
exist, current echoes could become a helpful tool in t
investigation of transport properties in various materia
through the measurement of their electron cyclotron re
nance spectra and relaxation times. The formalism dev
oped by Jaynes can easily be generalized to include m
than one relaxation time, and, much like in the magne
case, concepts such aselectron temperatureshould be in-
troduced. Current echoes could then open new possib
ties for the study of electron-electron and electron-latti
mechanisms of interaction in solids.
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