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New Iterative Perturbation Scheme for Lattice Models with Arbitrary Filling
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We derive a new perturbation scheme for treating the larged limit of lattice models at arbitrary
filling. The results are compared with exact diagonalization data for the Hubbard model and fou
be in good agreement. [S0031-9007(96)00438-3]
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In recent years there has been a renewed interest in
study of strongly correlated electron materials. These
terials exhibit interesting phenomena like the correlat
induced metal insulator transition [1–3]. A very prom
ing method capable of providing a theoretical descripti
perhaps, is the limit of large spatial dimensions [4], wh
defines a dynamical mean field theory for the proble
This limit can be mapped onto an impurity model toget
with a self-consistency condition which is characteris
for the specific model under consideration [5]. The m
ping allows one to apply several numerical and analyt
techniques which have been developed to analyze im
rity models over the years. There are different approac
which have been used for this purpose: qualitative an
sis of the mean field equations [5], quantum Monte Ca
methods [6–8], iterative perturbation theory (IPT) [5,
exact diagonalization methods [10,11], and the projec
self-consistent method, a renormalization technique [
However, each of these methods has its shortfalls. W
quantum Monte Carlo calculations are not applicable
the zero temperature limit, the exact diagonalization me
ods and the projective self-consistent method yield on
discrete number of poles for the density of states. Mo
over, the computational requirements of the exact dia
nalization and the quantum Monte Carlo methods are s
that they can only be implemented for the simplest Ham
tonians. To carry out realistic calculations it is necess
to have an accurate but fast algorithm for solving the
purity model. In this context iterative perturbation th
ory has turned out to be a useful and reliable tool for
case of half filling [13,14]. However, for finite dopin
the naive extension of the IPT scheme is known to g
unphysical results. There is still no method which can
applied away from half filling and which at the same tim
is powerful enough to treat more complicated models.

The aim of this paper is to close this gap by introduc
a new iterative perturbation scheme which is applicabl
arbitrary filling.

The (asymmetric) Anderson impurity model
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describes an impuritys fsd coupled to a bath of con
duction electronsscksd. The hybridization function is
given by Dsvd ­

P
k fV 2

k ysv 2 ekdg. Once a solution
is known for arbitrary parameters a large number of
tice models can be solved by iteration. An example is
Hubbard Hamiltonian,

H ­ 2
t

p
z

X
kijl,s

c
y
iscjs 1 U

X
i

ni"ni# , (2)

which can actually serve as an effective Hamiltonian
the description of doped transition metal oxides [15].
a Bethe lattice with infinite coordination numberz the
Hubbard model is connected to the impurity model by
following self-consistency condition:

Dsvd ­ t2Gsvd (3)

andef ­ 2m. The mapping requires that the propaga
of the lattice problem is given by the impurity Gree
function sG ­ Gfd. We setD := 2t ­ 1.

Below we derive the perturbation scheme for t
impurity model. Afterwards the scheme is applied to
Hubbard model. Some results for the doped system
presented, and the accuracy of our scheme is discu
We conclude with a summary and an outlook.

Derivation of the approximation scheme for the s
gle impurity model.—Here we derive the approximatio
scheme which, given the hybridization functionD(v) and
the impurity levelef , provides a solution of model (1)
For simplicity, we assume that there is no magnetic sy
metry breakingsns ­ n2s ­ nd. We also restrict us to
zero temperature. The procedure is an extension of
ordinary IPT scheme to finite doping. The success of
at half filling can be explained by the fact that it becom
exact not only in the weak but also in the strong coupl
limit [13]. Moreover, this approach captures the right lo
and high frequency behavior so that we are dealing w
an interpolation scheme between correct limits.

The idea of our approach is to construct a self-ene
expression which retains these features at arbitrary do
and reduces at half filling to the ordinary IPT result.

Ordinary IPT approximates the self-energy by its s

ond order contribution,
P

svd ø Un 1
P̃s2d

0 svd, where
© 1996 The American Physical Society 131
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X̃s2d

0 svd := U2
Z 0

2`
de1

Z `

0
de2 de3

rs0dse1drs0dse2drs0dse3d
v 1 e1 2 e2 2 e3 2 ih

1 U2
Z `

0
de1

Z 0

2`
de2 de3

rs0dse1drs0dse2drs0dse3d
v 1 e1 2 e2 2 e3 2 ih

, (4)
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with rs0d ­ s1ypdImG0. Here, the (advanced) Gree
functionG0svd is defined by

G0svd :=
1

v 1 m̃0 2 Dsvd
. (5)

The parameter̃m0 is given by2ef 2 Un. In particular, it
vanishes at half filling. The full Green function follow
from

Gf svd ­
1

G21
0 2 m̃0 2 ef 2

P
svd

. (6)

To ensure the correctness of this approximation sche
in different limits, we modify the self-energy functiona
as well as the definition of the parameterm̃0.

We start with an ansatz for the self-energy,X
intsvd ­ Un 1

A
P̃s2d

0 svd

1 2 B
P̃s2d

0 svd
. (7)

Here
P̃s2d

0 svd is the normal second order contributio
defined in Eq. (4). We determine the parameterA from
the condition that the self-energy has the exact beha
at high frequencies. Afterwards,B is determined from the
atomic limit.

The leading behavior for largev can be obtained by
expanding the Green function into a continuous fract
[16]: Gf svd ­ 1yfv 2 ef 2 a1 2 sa2 2 a

2
1dysv 1

· · ·dg. Here, ai marks the ith order moment of the
density of states. One can compute these quant
by evaluating a commutator (see [17]). We obta
for our modelGfsvd ­ 1yhv 2 ef 2 Un 2 f

P
k V 2

k 1

U2ns1 2 ndgysv 1 · · ·dj. The leading term of the self
energy is therefore given byX

svd ­ Un 1 U2ns1 2 nd
1
v

1 O

µµµµ
1
v

∂2∂∂∂
. (8)

Here n is the physical particle number given byn ­R0
2` dv ImGf svd. Equation (8) has to be compared wi
e

e

r

s

the large frequency limit of (4),X̃s2d

0 svd ­ U2n0s1 2 n0d
1
v

1 O

µµµµ
1
v

∂2∂∂∂
, (9)

wheren0 is a fictitious particle number determined fro
G0 [i.e., n0 ­

R0
2` dv ImG0svd]. From (7), (8), and (9)

we conclude

A ­
ns1 2 nd

n0s1 2 n0d
. (10)

ChoosingA in this way guarantees that our self-ener
is correct to order1yv. It should be noted from the
continuous fraction considered above that, conseque
the moments of the density of states up to second o
are reproduced exactly.

Next, we have to fixB. The exact impurity Green
function forVk ! 0 is given by [18]

Gfsvd ­
n

v 2 ef 2 U 2 ih
1

1 2 n
v 2 ef 2 ih

. (11)

This can be written as Gf svd ­ 1yfv 2 ef 2P
atomicsvdg whereX

atomicsvd ­ Un 1
ns1 2 ndU2

v 2 ef 2 s1 2 ndU 2 ih
.

(12)

This expression is to be compared with the atomic lim

of our ansatz (7). Sincẽ
Ps2d

0 svd ! U2n0s1 2 n0dysv 1

m̃0 2 ihd, we obtain

B ­
s1 2 ndU 1 ef 1 m̃0

n0s1 2 n0dU2 . (13)

Thus, the final result for our interpolating self-energy
X
intsvd ­ Un 1

fns1 2 ndyn0s1 2 n0dg
P̃s2d

0 svd

1 2 hfs1 2 ndU 1 ef 1 m̃0gyn0s1 2 n0dU2j
P̃s2d

0 svd
. (14)
e-

ncy
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Yet m̃0 is still a free parameter. We fix it imposing th
Friedel sum rule [19],

n ­
1
2

2
1
p

arctan

µ
ef 1

P
ints0d 1 ReDs0d
ImDs0d

∂
1

Z 1i`

2i`

dv

2pi
Gfsvd

≠Dsvd
≠v

. (15)
This statement, which is equivalent to the Luttinger th
orem [20]

R1i`

2i` sdvy2pidGf svd s≠
P

intsvdy≠vd ­ 0,
should be viewed as a condition on the zero freque
value of the self-energy to obtain the correct low ene
behavior. The use of the Friedel sum rule is the m
difference to earlier approximation schemes [21–23] a
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is essential to obtain a good agreement with the ex
diagonalization method.

So far, we considered three different limits: stro
coupling, zero frequency, and large frequency. It rema
to check the weak coupling limit. Taking into accou
that n ­ n0 and m̃0 ­ 2ef for U ­ 0, it follows that
(14) is indeed exact to orderU2.

The actual solution of the impurity model is determin
by a pair sm̃0, nd which satisfies Eqs. (4), (5), (6), (14
and (15). For the numerical implementation Broyde
method [24], a generalization of Newton’s method, h
turned out to be very powerful. Defining two func
tions f1sn, m̃0d := n 2

R0
2` dv ImGffn, m̃0g svd and

f2sn, m̃0d := n 2 nFriedelfn, m̃0g the impurity problem can
be solved by searching for the zeros off1 andf2 (nFriedel

is the particle number determined from the Friedel s
rule). The algorithm is very efficient as in most case
solution is found within 4 to 10 iterations.

Application to the Hubbard model.—After treating the
Anderson impurity model, we now apply the perturbati
scheme to the solution of the Hubbard model. Start
with a guess forD(v) one can solve the impurity
model using the scheme described above. This yield
propagatorGf ­ G, which can be used to determine
new hybridization functionD(v) according to (3). The
iteration is continued until convergence is attained.
is most accurate to perform the calculation first on
imaginary axis. Once the constantsA and B in the
interpolating self-energy are determined in this way, th
can be used to perform the iteration on the real axis.

In the case of the Hubbard model, the Lutting
theorem takes the simple form [25]

m0 ­ m 2
X

int sv ­ 0d, m0 := mjU­0 . (16)

This can be used to simplify the self-consistency pro
dure if m̃0 rather thanm is fixed. Starting with a gues
for G andm, one can computeG0, n, andn0. Afterwards
(14) yields

P
int svd and a newm is obtained from (16).

To illustrate the accuracy of our method we compar
with results obtained using the exact diagonalization al
rithm of Caffarel and Krauth [10] for 8 sites. Both meth
ods are in close agreement when used on the imagi
axis: As far as ImGsivd is concerned, the deviations be
tween both methods are only about 1% so that the cu
can hardly be distinguished. The real advantage of
perturbation scheme compared to the exact diagona
tion is disclosed when we display the spectra functio
obtained by these two methods on the real axis (Fig. 1

It is clear that the exact diagonalization is doing its b
in producing the correct spectral distribution. But it
unable to give a smooth density of states. Instead sev
sharp structures occur as a consequence of treating o
finite number of orbitals in the Anderson model.

To obtain a more meaningful comparison on the r
axis, we plotted in Fig. 2 the integrated spectral weig
Fsvd := s1ypd

Rv

2` dṽImGsṽd as obtained from exac
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FIG. 1. ImGsvd at T ­ 0 for U ­ 4D and hole doping
d ­ 0.14: iterative perturbation scheme (full line) vs exa
diagonalization (8 sites, dashed line).

diagonalization and our perturbation scheme. We fin
good agreement between both methods.

Similar to the half filled Hubbard model [7] it ca
be shown that for largeU there is a Mott transition.
Figure 3 shows the evolution of the spectral density
the doped Mott insulatorsU ­ 4Dd with increasing hole
doping d. The qualitative features are those expec
from the spectra of the single impurity [5] and are
agreement with the quantum Monte Carlo calculatio
[26]. For small doping there is a clear resonance pea
the Fermi level. Its width is given by the quasipartic
residueZ which near the Mott transition behaves lik
Z , mc 2 m. As d is increased, the peak broadens a
is shifted through the lower Hubbard band. At the sa
time the weight of the upper band decreases.

The most striking feature of the evolution of th
spectral density as a function of doping is the finite sh
of the Kondo resonance from the insulating band edge
the doping goes to zero. It was demonstrated analytic
that this is a genuine property of the exact solution of
Hubbard model in infinite dimensions using the project

FIG. 2. Integrated spectral weight forU ­ 4D and hole
doping d ­ 0.14: iterative perturbation scheme (full line) v
exact diagonalization (8 sites, dashed line).
133
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self-consistent method [27] and is one of the most strik
properties of the Hubbard model in large dimensio
This feature did not appear in the earlier studies
Hubbard model in large dimensions using Monte Ca
techniques [26] at higher temperatures, and is also
easily seen in exact diagonalization algorithms [15].

In this paper we introduced a new perturbation sche
for the solution of lattice models away from half filling
The basic idea is to construct an expression for the s
energy which interpolates between correct limits. In t
weak coupling limit our approximate self-energy is exa
to orderU2, and it is also exact in the atomic limit. Th
proper low frequency behavior is ensured by the Frie
sum rule (or, equivalently, the Luttinger theorem). Th
is important to obtain the right low energy features in t
spectral density. The overall distribution of the density
states, on the other hand, is determined by the spe
moments, which are reproduced exactly up to sec
order by satisfying the proper large frequency behav
More important our results are in very good agreem
with the exact diagonalization method and allowed us
obtain explicit results for the evolution of the spectr
function as a function of doping.

Since the algorithm described here is accurate and v
fast (a typical run to solve the Hubbard model takes 60
on a DEC alpha station 200 4y233), it has a wide range

FIG. 3. Evolution of the spectral function forU ­ 4D and
T ­ 0 with increasing hole dopingd.
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of applications. Two examples that come to mind a
the effects of disorder on the Hubbard model away fr
half filling and the study of realistic models with orbita
degeneracy. The latter is very important to make con
with realistic three dimensional transition metal oxides.
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