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New Iterative Perturbation Scheme for Lattice Models with Arbitrary Filling
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We derive a new perturbation scheme for treating the latdenit of lattice models at arbitrary
filling. The results are compared with exact diagonalization data for the Hubbard model and found to
be in good agreement. [S0031-9007(96)00438-3]
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In recent years there has been a renewed interest in tlescribes an impuritf f,) coupled to a bath of con-
study of strongly correlated electron materials. These maduction electronscx,). The hybridization function is
terials exhibit interesting phenomena like the correlatiorgiven by A(w) = 3 ([VZ/(w — €)]. Once a solution
induced metal insulator transition [1-3]. A very promis- is known for arbitrary parameters a large number of lat-
ing method capable of providing a theoretical descriptiontice models can be solved by iteration. An example is the
perhaps, is the limit of large spatial dimensions [4], whichHubbard Hamiltonian,
defines a dynamical mean field theory for the problem.

This limit can be mapped onto an impurity model together H = __L
with a self-consistency condition which is characteristic N (
for the specific model under consideration [5]. The map-

ping allows one to apply several numerical and analyticalvhich can actually serve as an effective Hamiltonian for
techniques which have been developed to analyze impuhe description of doped transition metal oxides [15]. On
rity models over the years. There are different approaches Bethe lattice with infinite coordination numberthe
which have been used for this purpose: qualitative analyHubbard model is connected to the impurity model by the
sis of the mean field equations [5], quantum Monte Carldollowing self-consistency condition:

methods [6—8], iterative perturbation theory (IPT) [5,9],

exact diagonalization methods [10,11], and the projective Alw) = 2G(w) 3)
self-consistent method, a renormalization technique [12].

However, each of these methods has its shortfalls. Whil o . .

guantum Monte Carlo calculations are not applicable ingndéf = —u. The mapping reqires that the propagator

the zero temperature limit, the exact diagonalization meth?Jng:ﬁ)r:?glci g;c))blwe Eet%vinz?y/:tTe Impurity Green

ods and the projective self-consistent method yield only a Below we derive the perturbation scheme for the

discrete number of poles for the density of states. Morel'mpurity model. Afterwards the scheme is applied to the

ﬁ;ﬁ;’ag:; %%rgr:ﬁ;at'ﬁgﬁluﬁqmgigegglgfr:;fh?ézc;g'igg' ubbard model. Some results for the doped system are
q resented, and the accuracy of our scheme is discussed.

tha_t they can only be |mplgm_ented for 'ghe S|'m.plest Ham|I—We conclude with a summary and an outlook.
tonians. To carry out realistic calculations it is necessar

to have an accurate but fast algorithm for solving the imY Derivation of the approximation scheme for the sin-
purity model. In this context iterative perturbation the—gle Impurity model—Here we derive the approximation

oy ha e ot 1 b & usefuland relale ool o ne 1T, €1 e Przaten tncke) o
case of half filling [13,14]. However, for finite doping For simplicity, we assume that there is no magnetic sym-
the naive extension of the IPT scheme is known to giv !

Snetry breakin = n_, = n). We also restrict us to
unphysical results. There is still no method which can b y dng = n—g = n)

lied ; half fil d which at th " ero temperature. The procedure is an extension of the
appiied away from half illing and which at the same ImeordinaryIPT scheme to finite doping. The success of IPT
is powerful enough to treat more complicated models.

The aim of this paper is to close this gap by introducingat half filling can be explained by the fact that it becomes

; . ; S : xact not only in the weak but also in the strong coupling
a new iterative perturbation scheme which is applicable &fmit [13]. Moreover, this approach captures the right low
arbitrary filling. ’

. . . and high frequency behavior so that we are dealing with
The (asymmetric) Anderson impurity mode| an interpolation scheme between correct limits.

Z C,T,,cjg + UZ nithi| , (2)

ij)o

Ho —e Z o+ Z et . The i(_jea of our approach is to construct a.self-energy
mp ! e S0 T . kCkoCka expression which retains these features at arbitrary doping
" 7 + bt and reduces at half filling to the ordinary IPT result.
+ > Vilelofo + fhewo) + US| fiff fr Ordinary IPT approximates the self-energy by its sec-
k,o

(1)  ond order contribution) (w) = Un + 25)2)((1)), where
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with p© = (1/7)ImG,. Here, the (advanced) Green the large frequency limit of (4),
function Go(w) is defined by -2 | 1 \2
Golw) = ——— . ) 5@ = vt =m o)) ©
o + o — Alw)
The parametefi, is given by—e; — Un. In particular, it ~ whereny is a fictitious particle number determined from
vanishes at half filling. The full Green function follows Gy [i.e.,ng = f(lm dw ImGy(w)]. From (7), (8), and (9)
from we conclude
1
o S T g — s ©
To ensure the correctness of this approximation scheme

in different limits, we modify the self-energy functional ChoosingA in this way guarantees that our self-energy

A= n(l — n)

~ no(1 = ng) (19)

as well as the definition of the paramefey. is correct to orderl/w. It should be noted from the
We start with an ansatz for the self-energy, continuous fraction considered above that, consequently,
Ai@) the moments of the density of states up to second order
_ 0 ()
> (w)=Un+ — o - (7)  are reproduced exactly.
1 = BY, (») Next, we have to fixB. The exact impurity Green
~(2) ) .. function forV, — 0 is given by [18]
Here >, (w) is the normal second order contribution
defined in Eq. (4). We determine the parameieirom n 1 —n
the condition that the self-energy has the exact behaviorGr(®) = —————— in L — i (11)
at high frequencies. AfterwardB,is determined from the ! !
atomic limit.

The leading behavior for large can be obtained by This can be written asGy(w) =1/[0 — € —

expanding the Green function into a continuous fractiorzatomic(w)] where

[16]: Gi(w) =1/[w — €y — a; — (az — ad)/(w + n(1 — n)U2
---)]. Here, a; marks theith order moment of the Zammic(w) =Un +
density of states. One can compute these quantities

by evaluating a commutator (see [17]). We obtain (12)
for our modelG (w) = 1/{w — ¢f — Un — [>; Vi +
U’n(1 — n)]/(w + ---)}. The leading term of the self-

w—€ — (1 —nU—in’

This expression is to be compared with the atomic limit

=)
energy is therefore given by of our ansatz (7). Sincg, (@) — U’ng(1 — no)/(w +
1 1\2 fto — in), we obtain
_ 2
Z(w)—Un+Un(1—n)Z+0(<;>). (8) (- U + e + i
B = . (13)
no(l — ng)U?

Here n is the physical particle number given by =
f(lw dw ImG(w). Equation (8) has to be compared with ~ Thus, the final result for our interpolating self-energy is

|
[n(1 — n)/no(1 — ng)]Sy (@)

L= {1 = U + ¢ + mol/no(1 — n)UL S (@)
|

Yet i is still a free parameter. We fix it imposing the This statement, which is equivalent to the Luttinger the-

D (@) =Un + (14)

Friedel sum rule [19], orem [20] [ (dw/27i)G (@) (80X im(w)/dw) = 0,
=L _ larctar( er + 2in(0) + RGA(0)> should be viewed as a condition on the zero frequency
2w ImA(0) value of the self-energy to obtain the correct low energy
T dw IA(w) behavior. The use of the Friedel sum rule is the main
+ jim 2mi Gylw) dw (15)  dgifference to earlier approximation schemes [21-23] and
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Im G(w)

is essential to obtain a good agreement with the exact )

diagonalization method.

So far, we considered three different limits: strong
coupling, zero frequency, and large frequency. It remains
to check the weak coupling limit. Taking into account
that n = no and ip = —e; for U = 0, it follows that
(14) is indeed exact to ordér>.

The actual solution of the impurity model is determined
by a pair (o, n) which satisfies Egs. (4), (5), (6), (14),
and (15). For the numerical implementation Broyden’s
method [24], a generalization of Newton’s method, has
turned out to be very powerful. Defining two func-
tions fi(n, o) :=n — f(lx dw ImGy[n, o] (w) and
f2(n, o) := n — nEgiedelln, fto] the impurity problem can
be solved by searching for the zerosfofand f> (npreqer  £/C- 1+ IMG(w) at 7 =0 for U =4D and hole doping
is the particle ngmber determingd from _the Friedel sunﬁia:g(?r']ﬁi'z;tt?(;ﬁt'(\éesi?gguéggﬂgg I;cer;t.eme (full line) vs exact
rule). The algorithm is very efficient as in most cases a
solution is found within 4 to 10 iterations.

Application to the Hubbard model-After treating the
Anderson impurity model, we now apply the perturbationdiagonalization and our perturbation scheme. We find a
scheme to the solution of the Hubbard model. Startinggood agreement between both methods.
with a guess forA(w) one can solve the impurity  Similar to the half filled Hubbard model [7] it can
model using the scheme described above. This yields e shown that for largeJ there is a Mott transition.
propagatorG, = G, which can be used to determine a Figure 3 shows the evolution of the spectral density of
new hybridization functionA(w) according to (3). The the doped Mott insulatofU = 4D) with increasing hole
iteration is continued until convergence is attained. Itdoping 6. The qualitative features are those expected
is most accurate to perform the calculation first on thefrom the spectra of the single impurity [5] and are in
imaginary axis. Once the constanfs and B in the agreement with the quantum Monte Carlo calculations
interpolating self-energy are determined in this way, they[26]. For small doping there is a clear resonance peak at
can be used to perform the iteration on the real axis. the Fermi level. Its width is given by the quasiparticle

In the case of the Hubbard model, the LuttingerresidueZ which near the Mott transition behaves like
theorem takes the simple form [25] Z ~ uc — m. Asé isincreased, the peak broadens and

is shifted through the lower Hubbard band. At the same
o = i — Zim (@ =0), wpo:= uly=o. (16) time the weight of the upper band decreases.
The most striking feature of the evolution of the
This can be used to simplify the self-consistency procespectral density as a function of doping is the finite shift
dure if i1y rather thanu is fixed. Starting with a guess of the Kondo resonance from the insulating band edge as
for G andu, one can comput&, n, andny. Afterwards the doping goes to zero. It was demonstrated analytically
(14) yieldsY ', (o) and a newu is obtained from (16). that this is a genuine property of the exact solution of the

To illustrate the accuracy of our method we compare itHubbard model in infinite dimensions using the projective
with results obtained using the exact diagonalization algo-
rithm of Caffarel and Krauth [10] for 8 sites. Both meth-
ods are in close agreement when used on the imaginary LOFL | tive perturbation scheme
axis: As far as It (iw) is concerned, the deviations be-
tween both methods are only about 1% so that the curves
can hardly be distinguished. The real advantage of our
perturbation scheme compared to the exact diagonaliza-
tion is disclosed when we display the spectra functions
obtained by these two methods on the real axis (Fig. 1).

It is clear that the exact diagonalization is doing its best
in producing the correct spectral distribution. But it is
unable to give a smooth density of states. Instead several
sharp structures occur as a consequence of treating only a
finite number of orbitals in the Anderson model.

To obtain a more meaningful comparison on the reaf 5 - Integrated spectral weight fo = 4D and hole

axis, we p|0ttedwin Fig. 2 the integrated spectral weightgoping 8 = 0.14: iterative perturbation scheme (full line) vs
F(w) = (1/7) [?., d®ImG(&) as obtained from exact exact diagonalization (8 sites, dashed line).
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self-consistent method [27] and is one of the most strikingpf applications. Two examples that come to mind are

properties of the Hubbard model in large dimensionsthe effects of disorder on the Hubbard model away from

This feature did not appear in the earlier studies ofalf filling and the study of realistic models with orbital

Hubbard model in large dimensions using Monte Carlodegeneracy. The latter is very important to make contact

techniques [26] at higher temperatures, and is also nawith realistic three dimensional transition metal oxides.

easily seen in exact diagonalization algorithms [15]. This work has been supported by the National Science
In this paper we introduced a new perturbation schem&oundation, DMR 95-29138.

for the solution of lattice models away from half filling.
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