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We discuss the effects of finite perturbations in fully developed turbulence by introducing a me
of the chaoticity degree associated to a given scale of the velocity field. This allows one to dete
the predictability time for noninfinitesimal perturbations, generalizing the usual concept of maxi
Lyapunov exponent. We also determine the scaling law for our indicator in the framework o
multifractal approach. We find that the scaling exponent is not sensitive to intermittency correc
but is an invariant of the multifractal models. A numerical test of the results is performed in the
model for the turbulent energy cascade. [S0031-9007(96)00922-2]
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The standard characterization of the chaotic behavio
a dynamical system is given by the maximum Lyapun
exponentlmax, which measures the typical exponent
rate of growth of an infinitesimal disturbance [1]. It
thus expected that the predictability time is proportio
to l21

max. The underlying point is that the growth of
perturbation is well described by the linear equations
the tangent vector even if this cannot be literally true
noninfinitesimal perturbations. There exist indeed ma
situations where the Lyapunov analysis has no releva
for the predictability problem and it is necessary
introduce indicators which are able to capture the esse
features of a chaotic system. For instance, when
or more characteristic time scales are present a d
identification of the Lyapunov and predictability time
leads to paradoxes as recently pointed out in Ref. [2].

In this Letter, we introduce a measure of the chao
ity degree related to the average doubling time that
tends the concept of Lyapunov exponent in the c
of noninfinitesimal perturbations. Our indicator is
scale-dependent Lyapunov exponent which becomes
ticularly useful when there exists a hierarchy of ch
acteristic times such as the eddy turn-over times
three-dimensional fully developed turbulence [3]. O
work may also be viewed as an extension of the w
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of Lorenz and Leith and Kraichnan on predictability, m
tivated by atmospheric forecast [4,5]—see also [6]—w
a proper account for the multifractal character of fully d
veloped three-dimensional turbulence.

In turbulent flows it is natural to argue that th
maximum Lyapunov exponent is roughly proportion
to the turn-over timet of eddies of the size of the
Kolmogorov lengthh (the viscous cutoff ) that is the
shortest characteristic time [7]. Denoting byV , L, and
to ­ VyL the typical velocity, size, and time of th
energy containing eddies, respectively, the turn-over t
of an eddy of size, is, by dimensional analysis,ts,d ,
tos,yLd12h, where h is the scaling exponent of th
velocity difference in the eddy

y, ; jysx0d 2 ysxdj , V s,yLdh, , ­ jx0 2 xj .
(1)

The viscous cutoff vanishes as a power of the Reyno
numberRe, i.e.,h , L Re21ys11hd. These relations imply
that the maximum Lyapunov exponent should scale as

lmax , 1ytshd , t21
o Rea with a ­

1 2 h
1 1 h

. (2)

In the Kolmogorov K41 theory [8],h ­ 1y3 for all
space pointsx so that a ­ 1y2, as first pointed out
© 1996 The American Physical Society
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by Ruelle [7]. However, the intermittency of energ
dissipation leads to the existence of a spectrum of poss
scaling exponentsh affecting the value ofa. In the
multifractal approach [9], the probability that the veloc
difference on scale, scales asy, , V s,yLdh is assumed
to beP,shd , s,yLd32Dshd. This ansatzcan be tested by
measuring the scaling of the structure functions

kyp
, l , V ps,yLdzp . (3)

In the K41 theory [8,10]zp ­ py3 while in the multi-
fractal scenario [9]zp is a nonlinear function ofp given
by the Legendre transform of the functionDshd, zp ­
minhfhp 2 Dshd 1 3g. Moreover, as a consequence
multifractality there is a spectrum of viscous cutoffs [1
since eachh selects a different damping scalehshd ,
L Re21ys11hd, and hence a spectrum of turn-over tim
tssshshdddd. To find the Lyapunov exponent, we have to
tegrate over theh distribution [12]

lmax ,
Z

t21ssshshddddPhshd dh

, t21
o

Z
shyLdh2Dshd12 dh , t21

o Rea . (4)

In the limit Re ! `, the integral can be estimated by t
saddle point and givesa ­ maxhfDshd 2 2 2 hgys1 1

hd. By using the functionDshd obtained with the random
beta model fit [9,13] one hasa ­ 0.459 . . . .

In the predictability problem, we are interested
defining the growth of an error on the velocity field. A
usual we consider the Euclidean norm in a box of volu
V

dystd ­

√
V 21

Z
d3xjy0sx, td 2 ysx, tdj2

!1y2

(5)

to introduce the notion of distance between two reali
tions of the velocity field,y andy0.

Then, the predictability timeTp is the time necessar
for an initial errordys0d ; d0 to become larger than
given but arbitrary threshold valueD:

Tp ­ maxft j dyst0d # D for t0 , tg . (6)

In a first approximation, neglecting the nonlinear terms
the evolution equation for the error growth and assum
that bothd0 andD are infinitesimal, one obtains

Tp , l21
max lnsDyd0d ø l21

max . (7)

In turbulence, such a relation would imply thatTP ,
t0 Re2a . This is contradictory with the quite intuitiv
expectation that the predictability time should be roug
proportional to the turn-over time of the energy contain
eddies on the large scales, and so practically indepen
of the Reynolds number [4,5].

The paradox stems from assuming the validity of
Lyapunov analysis for perturbationsdy that are much
larger than the typical velocity differenceyh , hytshd
on the dissipative length scaleh. In this case, the erro
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growth is nonexponential as it can be understood
simple heuristic arguments [4,5]. The problem can
faced by generalizing the concept of maximum Lyapun
exponent to the case of noninfinitesimal perturbatio
The generalization is particularly useful in systems w
many characteristic time scales.

For this purpose, it is convenient to consider the tim
Tr sdyd necessary for a perturbation to grow fromdy to
rdy, for a genericr . 1. For r ­ 2 this is the doubling
time of a perturbation. After performing an average ov
different realizations of the flow or, equivalently, a tim
average along a trajectoryystd in the phase space, w
introduce the scale-dependent Lyapunov exponent

lsdyd ­

ø
1

Tr sdyd

¿
ln r . (8)

Such a definition is consistent with the request of reco
ering the maximum Lyapunov exponent in the limit o
infinitesimal error, since

lim
dy!0

lsdyd ­ lmax . (9)

It is easy to estimate the scaling oflsdyd when the
perturbation is in the inertial rangeyh # dy # V . In
this case, following the phenomenological ideas of Lore
[4], the doubling time of an error of magnitudedy can
be identified with the turn-over timets,d of an eddy
with typical velocity differencey, , dy. Sincets,d ,
tos,yLdh21 , tosy,yV d121yh, one has

lsdyd , t21
o sdyyVd2b , b ­ 1yh 2 1 . (10)

Neglecting intermittency, i.e., using the Kolmogoro
value h ­ 1y3, gives b ­ 2. In the dissipative range
dy , yh, the error can be considered infinitesima
implying lsdyd ­ lmax.

The intermittency of energy dissipation reflects t
dynamical intermittency of the chaoticity degree, so th
our arguments based on dimensional analysis can
be fully correct. In the framework of the multifracta
approach, our indicator scales as

lsdyd , t21
o

Z
dhsdyyVdf32DshdgyhsdyyVd121yh, (11)

where we have used arguments similar to those lead
to (4) and the scaling factor, , LsdyyVd1yh. From the
inequalityDshd # 3h 1 2, which is analogous for turbu
lence of the standard inequalityfsad # a in multifrac-
tals, we have

2 1 h 2 Dshd
h

$ 22 for all h . (12)

Equality holds for h ­ h3, the exponent that real
izes the minimum in the Legendre transform for th
exponent of the third-order structure functionz3 ­
minhf3h 1 3 2 Dshdg ­ 1. Therefore a saddle poin
estimation of (11) gives
1263
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dy
2b ­ min
h

∑
2 1 h 2 Dshd

h

∏
­ 22 . (13)

An important consequence of multifractality follow
from the existence of a spectrum of dissipative cuto
hshd which reduces the effective inertial range where
scaling oflsdyd holds [11,14]. To be more specific, th
multifractal approach leads tohshd , L Re21ys11hd, and
the integral (11) has to be performed forehsdyd # h #

hmax, whereehsdyd is given by

dy , V Re2h̃sdydyf11h̃sdydg. (14)

As a consequence, the scalinglsdyd , t21
o sdyyVd2b

holds only fordy . V Re2h3ys11h3d, i.e., the inertial range
is reduced by intermittency. In the rangeV Re21y4 ,

dy , V Re2h3ys11h3d we expect a nontrivial shape o
lsdyd depending onDshd [14].

In order to test our results we have numerically stud
the GOY shell model [15,16] for the energy casca
in fully developed turbulence. This model mimics t
Navier-Stokes dynamics in the Fourier space. It
obtained by dividing the Fourier space into shells
wave numberskn , jkj , kn11. A complex scalarun

is associated with thenth shell individuated bykn ­
k02n. It represents the velocity difference over a len
scale, , k21

n . Only the interactions of a shell with it
nearest and next-nearest neighbors are taken into acc
The GOY model is described by the set ofN ordinary
differential equations:

d
dt

un ­ iknsanup
n11up

n12 1 bnup
n21up

n11 1 cnup
n22up

n21d

2 nk2
nun 1 fdn,4 . (15)

The coefficients arean ­ 1, bn ­ 21y4, cn ­ 21y8 and
b1 ­ bN ­ c1 ­ c2 ­ aN21 ­ aN ­ 0 on the boundary
shells. That model exhibits nonlinear exponentszp for
the structure functions [16], close to what is found
experimental data [13]. We have determined the sc
dependent Lyapunov exponent by a numerical integra
using the following procedure. First, we generate t
sets of initial conditionshunj and hu0

nj which are close
in the Euclidean distance. In practice,u0

n differs from
un by a small fraction of kjunj2l1y2. We have also
checked that the results do not change if we cons
two fields that are different only on small scales, i
if jun 2 u0

nj takes a small nonzero value only on t
last shells. Then, we follow the evolution ofhunstdj and
hu0

nstdj until the Euclidean distancedystd ­ s
P

n jun 2

u0
nj2d1y2 has reached a thresholddo small compared to

the velocity on the dissipative scale,yh , V Re21y4.
Further, we consider a sequence of thresholdsdj ­ rjdo

( j ­ 1, 2, . . .), and measure the timeTrsdjd needed to
increase the distancedu from dj to dj11. The procedure
is repeated for different realizations of the trajectoryunstd,
and average quantities are computed.
1264
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Figure 1 shows the scaling ofk1yTr sdydl (with r ­p
2 ) as a function ofdy in the GOY model. For

comparison we also plot the eddy turn-over times

t21
n ­ knkjunj2l1y2. (16)

One sees that there is a large range of small sca
where lsdyd ­ lmax while tn , tosunyV d2b. That is
a consequence of the reduction of the inertial ran
for the scale-dependent Lyapunov exponent. Note t
in the GOY modellmax ø 1022tshd21, although the
dependence of the two quantities on Re is the same.

To take into account the multifractal corrections w
rescale the data at different Re­ n21 using the multi-
scaling procedure [14]. The results are shown in Fig.
where lnk1yTr sdydlylnsReyRod is reported as a function
of lnsdyyVodylnsReyRod, Ro andVo being two fitting pa-
rameters. The data collapse is quite good. We stress
the scaling lawlsdyd , t21

o sdyyV d22 holds only in a
small inertial range. In the intermediate dissipative ran
the behavior is nontrivial and depends on the shape
Dshd and on finite Re corrections [14].

We conclude by noting that our scale-depende
Lyapunov exponentlsdyd has some similarity with the
concept of thee entropy recently discussed by Gaspa
and Wang [17–19] for the treatment of experimen
data. However, since the maximum Lyapunov expon
is more easily computable than the Kolmogorov-Sin
entropy, we expect that alsolsdyd is a much more
accessible quantity than thee entropy. Moreover, when
one knows the evolution law and has not to analy
-
n

r
,

FIG. 1. k1yTr sdydl (diamond) as a function ofdy for the
GOY model with N ­ 27, k0 ­ 0.05, f ­ s1 1 id 3 0.005
and n ­ 1029. The crosses are the inverse of the ed
turn-over timest21sdyd ­ knkjunj2l1y2 versusdy ­ kjunj2l1y2.
The straight line has slope22.
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FIG. 2. Multiscaling data collapse (see text). The resu
are obtained in the GOY model fork0 ­ 0.05, f ­ s1 1
id 3 0.005 and (diamond)N ­ 24 andn ­ 1028; (plus) N ­
27 and n ­ 1029; (square)N ­ 32 and n ­ 10210; (cross)
N ­ 35 and n ­ 10211. The straight line has slope22.
The fitting parameters areRo ­ 6 3 106, Vo ­ 5 3 1022, and
Re ­ n21.

experimental data, there are no particular limitatio
for estimatinglsdyd, such as the number of degrees
freedom involved.

In conclusion, when the perturbations are noninfinite
mal it is necessary to extend the definition of Lyapun
exponent to make it physically consistent. The gener
zation proposed in this Letter is particularly useful wh
many characteristic time scales are present. Our resu
lows one to get a quantitative control of the growth
perturbations which are noninfinitesimal, looking at t
average of the inverse doubling time. By this definiti
one has the two advantages of maintaining the link w
the forecast limitation of a system and of recovering
maximum Lyapunov exponent in the limit of infinitesim
perturbations. The scale-dependent Lyapunov expo
thus is an important tool of investigation of highly dime
sional dynamical systems and, far from being limited
the predictability problem of turbulent flows in geophysi
[4,5,20], it can assume a great relevance in the charac
zation of very different chaotic phenomena.
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