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We discuss the effects of finite perturbations in fully developed turbulence by introducing a measure
of the chaoticity degree associated to a given scale of the velocity field. This allows one to determine
the predictability time for noninfinitesimal perturbations, generalizing the usual concept of maximum
Lyapunov exponent. We also determine the scaling law for our indicator in the framework of the
multifractal approach. We find that the scaling exponent is not sensitive to intermittency corrections,
but is an invariant of the multifractal models. A numerical test of the results is performed in the shell
model for the turbulent energy cascade. [S0031-9007(96)00922-2]

PACS numbers: 47.27.Eq, 05.45.+b, 47.52.+], 64.60.Ak

The standard characterization of the chaotic behavior obf Lorenz and Leith and Kraichnan on predictability, mo-
a dynamical system is given by the maximum Lyapunoutivated by atmospheric forecast [4,5]—see also [6]—with
exponentAma, Which measures the typical exponential a proper account for the multifractal character of fully de-
rate of growth of an infinitesimal disturbance [1]. It is veloped three-dimensional turbulence.
thus expected that the predictability time is proportional In turbulent flows it is natural to argue that the
to AL, The underlying point is that the growth of a maximum Lyapunov exponent is roughly proportional
perturbation is well described by the linear equations foto the turn-over timer of eddies of the size of the
the tangent vector even if this cannot be literally true forKolmogorov lengthn (the viscous cutoff) that is the
noninfinitesimal perturbations. There exist indeed manyshortest characteristic time [7]. Denoting by L, and
situations where the Lyapunov analysis has no relevance, = V/L the typical velocity, size, and time of the
for the predictability problem and it is necessary toenergy containing eddies, respectively, the turn-over time
introduce indicators which are able to capture the essentialf an eddy of siz¢ is, by dimensional analysis;(€) ~
features of a chaotic system. For instance, when twe,(¢/L)!~", where h is the scaling exponent of the
or more characteristic time scales are present a direetelocity difference in the eddy
identification of the Lyapunov and predictability times _ no_ - h
leads to paradoxes as recently pointed out in Ref. [2]. ve = o) = v(@)l ~ VIE/LY,

In this Letter, we introduce a measure of the chaotic- (1)
ity degree related to the average doubling time that exThe viscous cutoff vanishes as a power of the Reynolds
tends the concept of Lyapunov exponent in the caseumberRe,i.e.,n ~ LRe /(7 These relations imply
of noninfinitesimal perturbations. Our indicator is athat the maximum Lyapunov exponent should scale as
scale-dependent Lyapunov exponent which becomes par- 1 —n
ticularly useful when there exists a hierarchy of char- Apax ~ 1/7(n) ~ 7, ' Re¢*  with a = . 2
acteristic times such as the eddy turn-over times in L+h
three-dimensional fully developed turbulence [3]. Our In the Kolmogorov K41 theory [8]s = 1/3 for all
work may also be viewed as an extension of the workspace pointsx so thata = 1/2, as first pointed out

= |x" — x|.
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by Ruelle [7]. However, the intermittency of energy growth is nonexponential as it can be understood by
dissipation leads to the existence of a spectrum of possiblmple heuristic arguments [4,5]. The problem can be
scaling exponents: affecting the value ofa. In the faced by generalizing the concept of maximum Lyapunov
multifractal approach [9], the probability that the velocity exponent to the case of noninfinitesimal perturbations.
difference on scalé scales as, ~ V(¢/L)" is assumed The generalization is particularly useful in systems with
to be P¢(h) ~ (¢/L)*~P™ . Thisansatzcan be tested by many characteristic time scales.
measuring the scaling of the structure functions For this purpose, it is convenient to consider the time
P\ __ p 4 T,(8v) necessary for a perturbation to grow fradw to
(we) ~ VL) o (3? rév, for a genericc > 1. Forr = 2 this is the doubling
In the K41 theory [8,10]f, = p/3 while in the multi-  time of a perturbation. After performing an average over
fractal scenario [9)), is a nonlinear function op given  ifferent realizations of the flow or, equivalently, a time
by the Legendre transform of the functidn(h), {, =  average along a trajectony(s) in the phase space, we

min,[hp — D(h) + 3]. Moreover, as a consequence of introduce the scale-dependent Lyapunov exponent
multifractality there is a spectrum of viscous cutoffs [11], .
Inr. 8
Tr(av)> ' ®)

since each: selects a different damping scaig(h) ~ A(Sv) = <
LRe /041 and hence a spectrum of turn-over times

7(n(h)). To find the Lyapunov exponent, we have t0 in- g ;¢ 4 definition is consistent with the request of recov-
tegrate over thé distribution [12] ering the maximum Lyapunov exponent in the limit of

_ infinitesimal error, since
Amax ~ f 7 (n(h)Py(h) dh ,
allmo AOV) = Apax - 9

~ 7'0_1f(77/L)h_D(h)Jr2 dh ~1,'Re". (4) It is easy to estimate the scaling afsv) when the
perturbation is in the inertial range,, = dv = V. In
In the limit Re — o, the integral can be estimated by the this case, following the phenomenological ideas of Lorenz
saddle point and givea = max,[D(h) — 2 — h]/(1 +  [4], the doubling time of an error of magnitudi can
h). By using the functiorD () obtained with the random pe identified with the turn-over time(€) of an eddy
beta model fit [9,13] one has = 0.459.... with typical velocity differencevy, ~ Sv. Sincer(f) ~
In the predictability problem, we are interested inz,(¢/L)""' ~ 7,(ve/V)!"'/% one has
defining the growth of an error on the velocity field. As
usual v%/]e congsider the Euclidean normin a bo); of volume  A(6v) ~ 7, (Bu/v)F, B=1/h—1. (10)
% Neglecting intermittency, i.e., using the Kolmogorov
172 value h = 1/3, gives B = 2. In the dissipative range
du(r) = (V_lfd3X|v/(x,t) - v(x,t)|2> (5) v <w,, the error can be considered infinitesimal,
implying A(6v) = Amax.
to introduce the notion of distance between two realiza- The intermittency of energy dissipation reflects the
tions of the velocity fieldp andv'. dynamical intermittency of the chaoticity degree, so that
Then, the predictability timd’, is the time necessary our arguments based on dimensional analysis cannot
for an initial error v (0) = 8, to become larger than a be fully correct. In the framework of the multifractal
given but arbitrary threshold valu: approach, our indicator scales as

T, = maxt|sv(t') = A for i <1]. (6)
In a first approximation, neglecting the nonlinear terms otj\

the evolution equation for the error growth and assumin
that bothéy and A are infinitesimal, one obtains

(Sv) ~ T;Ifdh(au/V)B*DWh(5v/V)1*1/h, (11)

Yvhere we have used arguments similar to those leading
to (4) and the scaling factat ~ L(8v/V)"/". From the

Tp ~ Amax IN(A/80) = AL (7)  inequalityD(h) = 3h + 2, which is analogous for turbu-
lence of the standard inequalif(a) = « in multifrac-

In turbulence, such a relation would imply th@p ~
tals, we have

ToRe *. This is contradictory with the quite intuitive

expectation that the predictability time should be roughly 2+ h — D(h)

proportional to the turn-over time of the energy containing =72 foralla. (12)
eddies on the large scales, and so practically independent

of the Reynolds number [4,5]. Equality holds for h = h;, the exponent that real-

The paradox stems from assuming the validity of theizes the minimum in the Legendre transform for the
Lyapunov analysis for perturbationdv that are much exponent of the third-order structure functiofy =
larger than the typical velocity differenag, ~ n/7(n)  min,[3h + 3 — D(h)] = 1. Therefore a saddle point
on the dissipative length scalg. In this case, the error estimation of (11) gives

1263



VOLUME 77, NUMBER 7 PHYSICAL REVIEW LETTERS 12 AcusT 1996

5 - min[z +h - D(h)} — s (13) Figure 1 shows the scaling &l /T, (5v)) (with r =
h h ' Vv2) as a function ofév in the GOY model. For

. . . comparison we also plot the eddy turn-over times
An important consequence of multifractality follows

from the existence of a spectrum of dissipative cutoffs = k(|72 (16)
n(h)_ which reduces the effective inertial range W_h_ere thépne sees that there is a large range of small scales
scall'ng ofA(dv) holds [11,14]. To be moE?/(slri(]egzlflc, the \where A(6v) = Apay While 7, ~ 7,(u,/V) 8. That is
multifractal approach leads tq(4) ~ L Re Yyand g consequence of the reduction of the inertial range
the integral (11) has to be performed fo(5v) = 2 =  for the scale-dependent Lyapunov exponent. Note that
hmax, Whereh(8v) is given by in the GOY model A, = 107%7(n)~!, although the
i) 4T (5w dependence of the two quantities on Re is the same.
dv ~ v Re HovrHIov] (14) To take into account the multifractal corrections we
As a consequence, the scalingdv) ~ 7, '(5v/V)# resc_ale the data at different Re v ! using the mult_i—
holds only forsv > V Re /0% je. the inertial range Scaling procedure [14]. The results are shown in Fig. 2,
is reduced by intermittency. In the rangeRe /4 <  Where If1/T,(6v))/In(Re/R,) is reported as a function
sv < VRe"/I+h) we expect a nontrivial shape of of IN(8v/V,)/In(Re/R,), R, andV,, being two fitting pa-
A(8v) depending oD (h) [14]. rameters. The data collapse is quite good. We stress that
In order to test our results we have numerically studiedh® scaling lawA(5v) ~ 7';1_(51’/‘/)7_2 holds only in a
the GOY shell model [15,16] for the energy cascadesMall inertial range. In the intermediate dissipative range
in fully developed turbulence. This model mimics the the behavior is nontrivial and depends on the shape of
Navier-Stokes dynamics in the Fourier space. It isP (k) and on finite Re corrections [14].
obtained by dividing the Fourier space into shells of We conclude by noting that our scale-dependent
wave numbersk, < |k| < k,+;. A complex scalam, Lyapunov exponeni(dv) has some similarity with the
is associated with therth shell individuated byk, =  concept of thee entropy recently discussed by Gaspard
ko2". It represents the velocity difference over a lengthad Wang [17-19] for the treatment of experimental
scale¢ ~ k; 1. Only the interactions of a shell with its data. However, since the maximum Lyapunov exponent
nearest and next-nearest neighbors are taken into accoulft, more €asily computable than the Kolmogorov-Sinai

The GOY model is described by the set §fordinary ~ €ntropy, we expect that alsa(év) is a much more
differential equations: accessible quantity than theentropy. Moreover, when

one knows the evolution law and has not to analyze

. * * * * % *
Euﬂ - lkn(aﬂun+1un+2 + bﬂun—lun+1 + Cnun—2un—1)

— vkZu, + f8,4. (15) 1000

The coefficients are, = 1,b,, = —1/4,¢, = —1/8 and A
by = by = ¢; = ¢» = ay—1 = ay = 0on the boundary N *
shells. That model exhibits nonlinear exponetitsfor Y

the structure functions [16], close to what is found in  '°F S 3
experimental data [13]. We have determined the scale- + Y

dependent Lyapunov exponent by a numerical integration v

using the following procedure. First, we generate two 0°95%%%0 06 4

sets of initial conditions{u,} and {u),} which are close 0F °E % E
in the Euclidean distance. In practice, differs from
u, by a small fraction of(|u,|?)!/2. We have also I
checked that the results do not change if we consider .
two fields that are different only on small scales, i.e., 1F o g
if lu, — ul,| takes a small nonzero value only on the 2
last shells. Then, we follow the evolution &f, ()} and °
{u! ()} until the Euclidean distancév(¢) = (3., lu, —
u!,|)'/? has reached a thresholt}, small compared to Py Yva——— Y y
the velocity on the dissipative scale,, ~ V Re /4,

. : bt
Further, we consider a sequence of threshélds- /5, '

(j =1,2,..), and measure the tim&,(5;) needed to G 1. (1/7,(6v)) (diamond) as a function obv for the
) . J GOY model with N = 27, ky = 0.05, f = (1 + i) X 0.005
increase the distana® from 5; to §;+,. The procedure zn4, — 109, The crosses are the inverse of the eddy

is repeated for different realizations of the trajectofyr),  turn-over timesr—'(6v) = k,(|u,|)"/? versussv = {Ju, |)'/2.
and average quantities are computed. The straight line has slope?2.
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