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We investigate the zero temperature chiral phase transition in &V)Sghuge theory as the number
of fermions N, is varied. We argue that there exists a critical number of fermidis above
which there is no chiral symmetry breaking or confinement, and below which both chiral symmetry
breaking and confinement set in. We estimatge and discuss the nature of the phase transition.
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An SU(N) gauge theory, even at zero temperature, camaneous chiral symmetry breaking. It was argued that this
exist in different phases depending on the number of masssitical value is large enough to make th&v, expansion
less fermionsV, in the theory. The phases are definedreliable.
by whether or not chiral symmetry breaking takes place. An N, dependence similar to the one we describe here
For QCD with two or three light quarks, chiral symme- has been found itv = 1 supersymmetric QCD [5]. This
try breaking and confinement occur at roughly the samé¢heory is not asymptotically free for large enoujh, and
scale. By contrast, in any $) gauge theory, asymp- has an infrared, conformal fixed point for a rangeNgf
totic freedom (and hence chiral symmetry breaking andelow a certain value.
confinement) is lost if the number of fermions is larger than The Lagrangian of an SW) gauge theory is
a certain value= 11N /2 for fermions in the fundamental _ .
representation). L =ylig + gAT W + 3F,, F*", (1)

If the number of fermiongV, is reduced to just below . .
11N /2, an infrared fixed point will appear, determined by Wherey is a set ofN, four-component spinors, tg are
the first two terms in the beta function. By taking the the generators of SW), andg(u) is the gauge coupling
large N limit or by continuing to noninteger values of renormalized at some scale The renormalization group
Ny [1], the value of the coupling at the fixed point can (RG) equation for the running coupling is
be made arbitrarily small, making a perturbative analysis
reliable. Such a theory with a perturbative fixed point is a # o a(p) = Bla)
massless conformal theory. There is no chiral symmetry
breaking and no confinement. = —ba*(u) — ca’(u) — da*(p) — -+,

As Ny is reduced further, chiral symmetry breaking (2)

and confinement will set in. There have been lattice s . . .
Monte Carlo studies of thev, dependence of chiral “reré(s) =g ()/4m. With the Ny fermions in the

symmetry breaking [2]. For example, Kogut and SinCIairfu_ndamental representation, the first two coefficients are

[2] found that forN = 3 and Ny = 12 there is no chiral given by

symmetry breaking, while Browmt al.[2] have found

chiral symmetry breaking fav = 3 andN, = 8. In this

Letter we will estimate the critical valud/; at which

this transition occurs. We then investigate the properties = _ L( 2 N

of the phase transition fav, =~ N7. 7 242 34N~ 10NNy = 3
Our discussion will parallel an analysis of the chiral . . 1

phase transition in QED3 and QCD3 [3,4]. In a larfge The theory is asymptotically fre(_e >0 (N, < TN)'. .

expansion it was found that an appropriate effective cou’-A_‘t two Iqops, the theory has an mfrar_ed stable, ”OT‘”'V"""

pling has an infrared fixed point with strength proportionalf')“_Ed point if5 >0 andc < 0. In this case the fixed

to 1/N, and that asV; is lowered, the value of the fixed POINtIS at

point exceeds the critical value necessary to produce spon- ax = —b/c. (5)

1
b= — (1IN = 2Np), 3)

-1

Nf> . @)
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Recall that the coefficients andc are scheme indepen- ceeds a critical value:
dent [6], while the higher-order coefficients are scheme N
dependent. In fact one can always choose a renormal- a, = T _ T ,
ization scheme such that all the higher-order coefficients 3G:R)  3(N? - 1)

are zero; i.e., they can be removed by a redefinition ofyhere C,(R) is the quadratic Casimir of the representa-
the coupling (change of renormalization scheme)= tion . (A more general definition of the critical coupling
g+ Gig’ + Gog® + ---. Thus if a zeroas, of the 8 s that the anomalous dimension @i/ becomes 1 [9].)
function exists at two loops, it exists to any order in per-Thys we would expect that whe¥y is decreased below the
turbation theory [6]. Of course if the value af. is large value N at whicha. = a., the theory undergoes a tran-

enough, there could be important higher-order correctionsition to a phase where chiral symmetry is spontaneously
to Green’s functions of physical interest. Indeed, theifggken. The critical valug/§ is given by

perturbation expansion might not converge at all. In ad- )

dition, nonperturbative effects, such as spontaneous chiral NE — N< 100N~ — 66>. (12)
symmetry breaking, could eliminate even the existence of ! 25N2 — 15

the fixed point. If the quarks develop a dynamical massg, largeN, N¢ approachesiN, while for N = 3, N§

for example, then below this scale only gluons will con-;g just below 12. Note that this is consistent with lattice
tribute to theB function, and the perturbative fixed point QCD results [2], which suggest that< N¢ = 12

turns out to be only an approximate description, relevant” | s simple analysis reliable? After all, it could be that

above the chwa_l symmetry breaking scale. whena. is as large a&. the perturbative expansion for the
FOI’. Ny sufflc_|ently cIo_se tOUN/z’ the value of _the_ CJT potential has broken down. To address this question
coupling at the infrared fixed point can be made arbltrarllywe provide a crude estimate of the higher-order corrections
small. The RG equation for the running coupling can be[o the CJT potential. An explicit computation of the
written as next-to-leading term (or equivalently the next-to-leading
q 1 1 1 ala(pn) — ax] term in the gap equation) [10] fak. = «. produces an
b'”(;) T a alp) a—*ln<m>, additional factor of approximately = a.N /4. This is
©6) the factor remaining after the appropriate renormalizations
are absorbed into the definition of the coupling constant.
wherea = a(qg). Fora, a(u) < a. we can introduce a From Eq. (11) we see that
scale defined by

(11)

1

_ €= —"—""—+. (13)
A= ,uexr{—bl In(a* (a)(’u)> " 1( )}, (7) 6(1 — 1/N?)
O o o . . .
H H For QCD,e = 0.19. If higher orders in the computation
so that produce approximately this factor, the perturbative expan-
1 p 1 o sion of the CJT potential may be reliable. (It is worth not-
pol b In<X> + - In(a — a) (8) ingthatin condensed matter physics one can often (though

not always) obtain useful information from the Wilson-

Then forg > A the running coupling displays the usual Fisher expansion in a parameter that is set to 1 at the end of

perturbative behavior: the calculation.) The same may be true of various Green’s
{ functions encountered in the skeleton expansion of the CJT

a~ ——0 (9) potential.
bIn(g/A) We next explore the nature of the chiral phase transition
while for ¢ < A it approaches the fixed poiat.: atNy = N§ qnd its relation. to .confinement. It is useful
to consider first the behavior in the broken phage<
a ~ 7?* — . (10) Nf (ax > a.). Here eagh quark develops a dynamical
1+ e Hg/A)e massX(p). For Ny — N§ from below @. — a. from

above),>(p) can be determined by solving a linearized

We will suggest here that the breakdown of perturbationSChV‘”nger'Dyson gap equation in ladder approximation.
theory, described above, first happens due to the sporr2f momenta small compared 4q the effective coupling
taneous breaking of chiral symmetry, and that the phasg€ngth ise., while for momenta abova it falls accord-
transition can be described by an RG improved ladder agNd t© Ed- (9). The resulting solution f&(0) is [11]
proximation of the Cornwall-Jackiw-Tomboulis (CJT) [7] T

effective potential. It is well known [8] that in vectorlike 2(0) = A exr(—ﬁ) (14)
gauge theories the two-loop effective potential expressed @e/ e

as a functional of the quark self-energy becomes unstabl€he behavior of(p) as a function ofp will be discussed

to chiral symmetry breaking when the gauge coupling exshortly.

As Ny is decreased, the infrared fixed paintincreases.
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Once the dynamical mas¥ p) is formed, the fermions ric phase, all these modes would form a light, degenerate
decouple below this scale, leaving the pure gauge theomultiplet, becoming massless at the critical point [14].
behind. One might worry that this would invalidate the We examine the correlation length by working in the
above gap equation analysis since it relies on the fixedymmetric phase and searching for poles in the (flavor and
point which exists only when the fermions contribute to thecolor-singlet) quark-antiquark scattering amplitude, com-
B function. This is not a problem, however, since it canputed in the same (RG improved, ladder) approximation
be shown that whe(0) < A the dominant momentum leading to Eq. (14). The analysis is similar to that car-
range in the gap equation, leading to the exponentialied out for QED3 [4]. If the transition is second order,
behavior of Eq. (14), i&(0) < p < A. Inthisrange, the then at least one pole should move to zero momentum as
fermions are effectively massless and the coupling doewe approach the critical point (i.e., the correlation length
appear to be approaching an infrared fixed point. Noteshould diverge). We take the incoming (Euclidean) mo-
that the condition2(0) < A is indeed satisfied foN;,  mentum of the initial quark and antiquark to hg2, but
sufficiently close tavy. keep a nonzero momentum transfer by assigning outgoing

Below the scalex(0) the quarks can be integrated out; momentag/2 * p for the final quark and antiquark. Any
thus the effectiveB function has no fixed point and the light scalar resonances should make their presence known
gluons are confined. The confinement scale can be estby producing a pole in the scattering amplitude (when con-
mated by noting that at the quark decoupling sc(6), tinued to Minkowskig?).
the effective coupling constant is of order. A simple If the Dirac indices of the initial quark and antiquark are
estimate using Egs. (2)—(4) then reveals that the confinex and p, and those of the final state quark and antiquark
ment scale is roughly the same order of magnitude as thare o and 7, then the scattering amplitude can be written
chiral symmetry breaking scale. Wha# is reduced suf-  (for smallg) asT,o+(p,q) = 81,85:T(p,q)/p* + -,
ficiently belowN; so thata. is not close tax., both%(0)  where the - - indicates pseudoscalar, vector, axial-vector,
and the confinement scale become of order The lin-  and tensor components, and we have factored ppt to
ear approximation to the gap equation will then no longemakeT (p, g) dimensionless. We contract Dirac indices so
be valid, and it will probably no longer be the case thatthat we obtain the Bethe-Salpeter equation for the scalar
higher-order contributions to the effective potential can bes-channel scattering amplitudE( p, ¢), containing only
argued to be small. t-channel gluon exchanges. H> > ¢2, then ¢* will

It is interesting to compare the behavior of the brokensimply act as an infrared cutoff in the loop integrations.
phase forN; nearN; to the walking technicolor gauge The Bethe-Salpeter equation in the scalar channel for
theories discussed recently in the literature [12]. We have < A is
argued here that foN, just below Ny, the dynamical
breaking is governed by a linearized ladder gap equation s a. [P 1 X
with a couplinga. just abovea,.. As the momentunp T(p.q) =~ —m* + —f dk*T(k,q) — +
) o ” . a, da, ) k da,
increasesg ( p) stays neat. (it “walks”) until p becomes It i 5
of order A, and only falls above this scale. It can then % f dk2 T(k, q) p- (15)
be seen [13] that the dynamical masép) falls as1/p p? B o
(i.e., the anomalous dimension @) is ~1) for 2(0) <
p < A and only begins to fall more rapidly (d¥p®) at  where A is the scale introduced in Eq. (7). [Note that
larger momenta. This is precisely the walking behaviorcontributions from the integration regiok? > A2 are
employed in technicolor theories and referred to there agyppressed by a factep? /A2, and a fallinga(k).] The
high momentum enhancement. In that case, howevefyst term in Eq. (15) is simply one gluon exchange. We
there was no IR fixed point to keep the function near  haye used Landau gaugé € 1) where the quark wave-
zero and slow the running of the coupling. It was notediynction renormalization vanishes to lowest order. Be-
instead that the same effect would emerge ifffeinction  cause of the existence of the fixed point, it is a good
was small at each order by virtue of partial cancellationgpproximation to have replaced(p) and a(p — k) by
between fermions and bosons. a. at momentum scales below.

From the smooth behavior of the order parameiés) For momentap? > ¢2, Eq. (15) can be converted to

[Eq. (14)], it would naively appear that the chiral phasey gifferential equation with appropriate boundary condi-
transition atNy = Nj (. = a.) is second order. Inthis tions. The solutions have the form

Letter we will use the phrase “second order” to refer ex-

clusively to a phase transition where the correlation length 2\ L+lp 2\ 1-1y

diverges as the critical point is approached from either T(p,q) = A(q)<P_2>- 4 B(q)<p_2>2 " e
side. In other words, there is a light excitation coupling A A

to the order parameter that becomes massless at the criti-

cal point. In the broken phase, this mode would be presenheren = /1 — a./a.. The coefficientsA and B can
along with the massless Goldstone modes. Inthe symmebe determined by substituting this solution back into
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Eq. (15). This gives higher-order corrections to our computation are small.

—2r2(] — ) 2/A2) 5+ Further study of this question as well as lattice Monte
A= 7 (1 =m) (q°/A7) =2 . Carlo studies of the zero temperature phase transition

(L+m)  1=[1=n)/1+nPg*/A»)" would help to confirm or disprove our conclusions.
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