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We investigate the zero temperature chiral phase transition in an SUsNd gauge theory as the numbe
of fermions Nf is varied. We argue that there exists a critical number of fermionsNc

f , above
which there is no chiral symmetry breaking or confinement, and below which both chiral sym
breaking and confinement set in. We estimateNc

f and discuss the nature of the phase transiti
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An SUsNd gauge theory, even at zero temperature,
exist in different phases depending on the number of m
less fermionsNf in the theory. The phases are defin
by whether or not chiral symmetry breaking takes pla
For QCD with two or three light quarks, chiral symm
try breaking and confinement occur at roughly the sa
scale. By contrast, in any SUsNd gauge theory, asymp
totic freedom (and hence chiral symmetry breaking a
confinement) is lost if the number of fermions is larger th
a certain value (­ 11Ny2 for fermions in the fundamenta
representation).

If the number of fermionsNf is reduced to just below
11Ny2, an infrared fixed point will appear, determined
the first two terms in the beta function. By taking t
large N limit or by continuing to noninteger values o
Nf [1], the value of the coupling at the fixed point ca
be made arbitrarily small, making a perturbative analy
reliable. Such a theory with a perturbative fixed point i
massless conformal theory. There is no chiral symm
breaking and no confinement.

As Nf is reduced further, chiral symmetry breakin
and confinement will set in. There have been latt
Monte Carlo studies of theNf dependence of chira
symmetry breaking [2]. For example, Kogut and Sincl
[2] found that forN ­ 3 andNf ­ 12 there is no chiral
symmetry breaking, while Brownet al. [2] have found
chiral symmetry breaking forN ­ 3 andNf ­ 8. In this
Letter we will estimate the critical valueNc

f at which
this transition occurs. We then investigate the proper
of the phase transition forNf ø Nc

f .
Our discussion will parallel an analysis of the chi

phase transition in QED3 and QCD3 [3,4]. In a largeNf

expansion it was found that an appropriate effective c
pling has an infrared fixed point with strength proportion
to 1yNf , and that asNf is lowered, the value of the fixe
point exceeds the critical value necessary to produce s
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taneous chiral symmetry breaking. It was argued that t
critical value is large enough to make the1yNf expansion
reliable.

An Nf dependence similar to the one we describe h
has been found inN ­ 1 supersymmetric QCD [5]. This
theory is not asymptotically free for large enoughNf , and
has an infrared, conformal fixed point for a range ofNf

below a certain value.
The Lagrangian of an SUsNd gauge theory is

L ­ cfi≠y 1 gsmdAyaTagc 1
1
4 Fa

mnFamn , (1)

wherec is a set ofNf four-component spinors, theTa are
the generators of SUsNd, andgsmd is the gauge coupling
renormalized at some scalem. The renormalization group
(RG) equation for the running coupling is

m
≠

≠m
asmd ­ bsad

; 2ba2smd 2 ca3smd 2 da4smd 2 · · · ,
(2)

whereasmd ­ g2smdy4p . With the Nf fermions in the
fundamental representation, the first two coefficients
given by

b ­
1

6p
s11N 2 2Nf d , (3)

c ­
1

24p2

µ
34N2 2 10NNf 2 3

N2 2 1
N

Nf

∂
. (4)

The theory is asymptotically free ifb . 0 (Nf ,
11
2 N).

At two loops, the theory has an infrared stable, nontriv
fixed point if b . 0 and c , 0. In this case the fixed
point is at

ap ­ 2byc . (5)
© 1996 The American Physical Society
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Recall that the coefficientsb andc are scheme indepen
dent [6], while the higher-order coefficients are sche
dependent. In fact one can always choose a renor
ization scheme such that all the higher-order coefficie
are zero; i.e., they can be removed by a redefinition
the coupling (change of renormalization scheme)g0 ­
g 1 G1g3 1 G2g5 1 · · ·. Thus if a zero,ap, of the b

function exists at two loops, it exists to any order in p
turbation theory [6]. Of course if the value ofap is large
enough, there could be important higher-order correcti
to Green’s functions of physical interest. Indeed, th
perturbation expansion might not converge at all. In
dition, nonperturbative effects, such as spontaneous c
symmetry breaking, could eliminate even the existenc
the fixed point. If the quarks develop a dynamical ma
for example, then below this scale only gluons will co
tribute to theb function, and the perturbative fixed poi
turns out to be only an approximate description, relev
above the chiral symmetry breaking scale.

For Nf sufficiently close to11Ny2, the value of the
coupling at the infrared fixed point can be made arbitra
small. The RG equation for the running coupling can
written as

b ln

µ
q
m

∂
­

1
a

2
1

asmd
2

1
ap

ln

µ
afasmd 2 apg
asmd sa 2 apd

∂
,

(6)

wherea ­ asqd. For a, asmd , ap we can introduce a
scale defined by

L ­ m exp

∑
2

1
bap

ln

µ
ap 2 asmd

asmd

∂
2

1
basmd

∏
, (7)

so that

1
a

­ b ln

µ
q
L

∂
1

1
ap

ln

µ
a

ap 2 a

∂
. (8)

Then forq ¿ L the running coupling displays the usu
perturbative behavior:

a ø
1

b lnsqyLd
, (9)

while for q ø L it approaches the fixed pointap:

a ø
ap

1 1 e21sqyLdbap
. (10)

As Nf is decreased, the infrared fixed pointap increases.
We will suggest here that the breakdown of perturbat
theory, described above, first happens due to the s
taneous breaking of chiral symmetry, and that the ph
transition can be described by an RG improved ladder
proximation of the Cornwall-Jackiw-Tomboulis (CJT) [
effective potential. It is well known [8] that in vectorlik
gauge theories the two-loop effective potential expres
as a functional of the quark self-energy becomes unst
to chiral symmetry breaking when the gauge coupling
l-
s
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ceeds a critical value:

ac ;
p

3C2sRd
­

2pN
3sN2 2 1d

, (11)

whereC2sRd is the quadratic Casimir of the represen
tion R. (A more general definition of the critical couplin
is that the anomalous dimension ofcc becomes 1 [9].)
Thus we would expect that whenNf is decreased below th
valueNc

f at whichap ­ ac, the theory undergoes a tran
sition to a phase where chiral symmetry is spontaneou
broken. The critical valueNc

f is given by

Nc
f ­ N

µ
100N2 2 66
25N2 2 15

∂
. (12)

For largeN , Nc
f approaches4N, while for N ­ 3, Nc

f
is just below 12. Note that this is consistent with latti
QCD results [2], which suggest that8 , Nc

f # 12.
Is this simple analysis reliable? After all, it could be th

whenap is as large asac the perturbative expansion for th
CJT potential has broken down. To address this ques
we provide a crude estimate of the higher-order correcti
to the CJT potential. An explicit computation of th
next-to-leading term (or equivalently the next-to-leadi
term in the gap equation) [10] forap ø ac produces an
additional factor of approximatelye ­ acNy4p . This is
the factor remaining after the appropriate renormalizati
are absorbed into the definition of the coupling consta
From Eq. (11) we see that

e ­
1

6s1 2 1yN2d
. (13)

For QCD,e ø 0.19. If higher orders in the computatio
produce approximately this factor, the perturbative exp
sion of the CJT potential may be reliable. (It is worth no
ing that in condensed matter physics one can often (tho
not always) obtain useful information from the Wilso
Fisher expansion in a parameter that is set to 1 at the en
the calculation.) The same may be true of various Gree
functions encountered in the skeleton expansion of the
potential.

We next explore the nature of the chiral phase transit
at Nf ­ Nc

f and its relation to confinement. It is usef
to consider first the behavior in the broken phaseNf ,

Nc
f (ap . ac). Here each quark develops a dynamic

massSspd. For Nf ! Nc
f from below (ap ! ac from

above),Sspd can be determined by solving a linearize
Schwinger-Dyson gap equation in ladder approximati
For momenta small compared toL, the effective coupling
strength isap, while for momenta aboveL it falls accord-
ing to Eq. (9). The resulting solution forSs0d is [11]

Ss0d ø L exp

µ
2

pp
apyac 2 1

∂
. (14)

The behavior ofSspd as a function ofp will be discussed
shortly.
1215
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Once the dynamical massSspd is formed, the fermions
decouple below this scale, leaving the pure gauge the
behind. One might worry that this would invalidate t
above gap equation analysis since it relies on the fi
point which exists only when the fermions contribute to
b function. This is not a problem, however, since it c
be shown that whenSs0d ø L the dominant momentum
range in the gap equation, leading to the exponen
behavior of Eq. (14), isSs0d , p , L. In this range, the
fermions are effectively massless and the coupling d
appear to be approaching an infrared fixed point. N
that the conditionSs0d ø L is indeed satisfied forNf

sufficiently close toNc
f .

Below the scaleSs0d the quarks can be integrated ou
thus the effectiveb function has no fixed point and th
gluons are confined. The confinement scale can be
mated by noting that at the quark decoupling scaleSs0d,
the effective coupling constant is of orderac. A simple
estimate using Eqs. (2)–(4) then reveals that the confi
ment scale is roughly the same order of magnitude as
chiral symmetry breaking scale. WhenNf is reduced suf-
ficiently belowNc

f so thatap is not close toac, bothSs0d
and the confinement scale become of orderL. The lin-
ear approximation to the gap equation will then no lon
be valid, and it will probably no longer be the case th
higher-order contributions to the effective potential can
argued to be small.

It is interesting to compare the behavior of the brok
phase forNf near Nc

f to the walking technicolor gaug
theories discussed recently in the literature [12]. We h
argued here that forNf just below Nc

f , the dynamical
breaking is governed by a linearized ladder gap equa
with a couplingap just aboveac. As the momentump
increases,aspd stays nearap (it “walks”) until p becomes
of order L, and only falls above this scale. It can th
be seen [13] that the dynamical massSspd falls as1yp
(i.e., the anomalous dimension ofcc is ø1) for Ss0d ,

p , L and only begins to fall more rapidly (as1yp2) at
larger momenta. This is precisely the walking behav
employed in technicolor theories and referred to there
high momentum enhancement. In that case, howe
there was no IR fixed point to keep theb function near
zero and slow the running of the coupling. It was no
instead that the same effect would emerge if theb function
was small at each order by virtue of partial cancellatio
between fermions and bosons.

From the smooth behavior of the order parameterSs0d
[Eq. (14)], it would naively appear that the chiral pha
transition atNf ­ Nc

f (ap ­ ac) is second order. In this
Letter we will use the phrase “second order” to refer
clusively to a phase transition where the correlation len
diverges as the critical point is approached from eit
side. In other words, there is a light excitation coupli
to the order parameter that becomes massless at the
cal point. In the broken phase, this mode would be pre
along with the massless Goldstone modes. In the sym
1216
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ric phase, all these modes would form a light, degener
multiplet, becoming massless at the critical point [14].

We examine the correlation length by working in th
symmetric phase and searching for poles in the (flavor a
color-singlet) quark-antiquark scattering amplitude, co
puted in the same (RG improved, ladder) approximati
leading to Eq. (14). The analysis is similar to that ca
ried out for QED3 [4]. If the transition is second orde
then at least one pole should move to zero momentum
we approach the critical point (i.e., the correlation leng
should diverge). We take the incoming (Euclidean) m
mentum of the initial quark and antiquark to beqy2, but
keep a nonzero momentum transfer by assigning outgo
momentaqy2 6 p for the final quark and antiquark. Any
light scalar resonances should make their presence kn
by producing a pole in the scattering amplitude (when co
tinued to Minkowskiq2).

If the Dirac indices of the initial quark and antiquark a
l andr, and those of the final state quark and antiqua
ares andt, then the scattering amplitude can be writte
(for smallq) asTlrstsp, qd ­ dlrdstT sp, qdyp2 1 · · · ,
where the· · · indicates pseudoscalar, vector, axial-vecto
and tensor components, and we have factored out1yp2 to
makeT sp, qd dimensionless. We contract Dirac indices s
that we obtain the Bethe-Salpeter equation for the sca
s-channel scattering amplitudeTsp, qd, containing only
t-channel gluon exchanges. Ifp2 ¿ q2, then q2 will
simply act as an infrared cutoff in the loop integration
The Bethe-Salpeter equation in the scalar channel
p ø L is

T sp, qd ø
ap

ac
p2 1

ap

4ac

Z p2

q2
dk2 Tsk, qd

1
k2

1
ap

4ac

3
Z L2

p2
dk2 T sk, qd

p2

k4
, (15)

where L is the scale introduced in Eq. (7). [Note tha
contributions from the integration regionk2 . L2 are
suppressed by a factorp2yL2, and a fallingaskd.] The
first term in Eq. (15) is simply one gluon exchange. W
have used Landau gauge (j ­ 1) where the quark wave-
function renormalization vanishes to lowest order. B
cause of the existence of the fixed point, it is a go
approximation to have replacedaspd and asp 2 kd by
ap at momentum scales belowL.

For momentap2 . q2, Eq. (15) can be converted to
a differential equation with appropriate boundary cond
tions. The solutions have the form

Tsp, qd ­ Asqd
µ

p2

L2

∂ 1

2
1 1

2
h

1 Bsqd
µ

p2

L2

∂ 1

2
2 1

2
h

, (16)

whereh ­
p

1 2 apyac. The coefficientsA andB can
be determined by substituting this solution back in
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Eq. (15). This gives

A ­
22p2s1 2 hd2

s1 1 hd
sq2yL2d2 1

2
1 1

2
h

1 2 fs1 2 hdys1 1 hdg2sq2yL2dh
,

(17)

B ­
2p2s1 2 hd sq2yL2d2 1

2
1 1

2
h

1 2 fs1 2 hdys1 1 hdg2sq2yL2dh
. (18)

Note that there is an infrared divergence in the limitq2 !
0 in both Eqs. (17) and (18). That this is an infrar
divergence rather than a pole corresponding to a bo
state can be seen from the fact that the divergence e
for arbitrarily weak coupling (ap ! 0). In fact, it can
already be seen at ordera2

p in the one-loop (two gluon
exchange) diagram. As required by the Kinoshita-L
Nanenberg theorem [15], this infrared divergence will
canceled in a physical scattering process by the emis
of soft quanta.

If we denote the location of the poles of the functio
A andB in the complexq2 plane byq2

0, we have

jq2
0j ­ L2

µ
1 1 h

1 2 h

∂2yh

. (19)

We see that there is no pole that approaches the o
q2

0 ­ 0 as ap ! ac. Thus the correlation length doe
not diverge, and the transition is not second order.
is not conventionally first order either since the ord
parameter vanishes continuously at the critical poi
Note that the behavior of the zero temperature chiral ph
transition is different from the finite temperature case
to the presence of long-range gauge forces. At fi
temperatures, gluons are screened, and thus there are
short-range forces present and only conventional firs
second order transitions are possible.

To conclude, we have argued that as the numbe
quark flavors,Nf , is reduced, QCD-like theories in fou
dimensions undergo a chiral phase transition at a cri
valueNc

f [Eq. (12)]. ForNf , Nc
f , chiral symmetries ar

spontaneously broken, while they are unbroken forNf .

Nc
f . We have explored the nature of the chiral ph

transition, arguing that it can be described using the Q
gap equation in ladder approximation (equivalently
two-loop approximation to the CJT potential). We ha
also argued that even though the order parameter van
at the critical point, the correlation length does not dive
(i.e., the phase transition is not second order). The cri
behavior described here is similar to that found in QE
and QCD3 [3,4]. We have, of course, not proven t
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higher-order corrections to our computation are sm
Further study of this question as well as lattice Mon
Carlo studies of the zero temperature phase transi
would help to confirm or disprove our conclusions.

We thank S. Chivukula, A. Cohen, P. Damgaar
S. Hsu, M. Luty, and R. Sundrum for helpful discussion
This work was supported in part by the Department of E
ergy under Contracts No. DE-FG02-92ER40704, No. D
FG02-91ER40676, and No. DE-FG-02-84ER40153.

[1] T. Banks and A. Zaks, Nucl. Phys.B196, 189 (1982).
[2] J. B. Kogut and D. K. Sinclair, Nucl. Phys.B295 [FS21],

465 (1988); F. Brownet al.,Phys. Rev. D46, 5655 (1992).
[3] T. Appelquist, D. Nash, and L. C. R. Wijewardhana, Phy

Rev. Lett.60, 2575 (1988); D. Nash, Phys. Rev. Lett.62,
3024 (1989); T. Appelquist and D. Nash, Phys. Rev. Le
64, 721 (1990).

[4] T. Appelquist, J. Terning, and L. C. R. Wijewardhan
Phys. Rev. Lett.75, 2081 (1995).

[5] For a recent review, see K. Intriligator and N. Seiber
Report No. hep-thy9509066.

[6] D. J. Gross, inLes Houches 1975, Proceedings, Met
ods In Field Theory(North-Holland, Amsterdam, 1976)
pp. 141, 178.

[7] J. M. Cornwall, R. Jackiw, and E. Tomboulis, Phys. Re
D 10, 2428 (1974).

[8] T. Maskawa and H. Nakajima, Prog. Theor. Phys.52, 1326
(1974); 54, 860 (1976); R. Fukuda and T. Kugo, Nuc
Phys.B117, 250 (1976); P. I. Fomin and V. A. Miransky
Phys. Lett.64B, 166 (1976).

[9] H. Georgi and A. Cohen, Nucl. Phys.B314, 7 (1989).
[10] T. Appelquist, K. Lane, and U. Mahanta, Phys. Rev. Le

61, 1553 (1988).
[11] V. A. Miransky, Nuovo Cimento Soc. Ital. Fis.90A, 149

(1985); V. A. Miransky and P. I. Fomin, Sov. J. Part. Nuc
16, 203 (1985).

[12] B. Holdom, Phys. Rev. D24, 1441 (1981); B. Holdom,
Phys. Lett.150B, 301 (1985); K. Yamawaki, M. Bando
and K. Matumoto, Phys. Rev. Lett.56, 1335 (1986);
T. Appelquist, D. Karabali, and L. C. R. Wijewardhan
Phys. Rev. Lett.57, 957 (1986); T. Appelquist and
L. C. R. Wijewardhana, Phys. Rev. D35, 774 (1987);
T. Appelquist and L. C. R. Wijewardhana, Phys. Rev.
36, 568 (1987).

[13] T. Appelquist, inParticles and Fields (Mexican School)
edited by J. L. Lucio and A. Zepeda (World Scientifi
Singapore, 1992).

[14] Y. Nambu and G. Jona-Lasinio, Phys. Rev.122, 345
(1961).

[15] T. Kinoshita, J. Math Phys. (N.Y.)3, 650 (1962); T. D.
Lee and M. Nauenberg, Phys. Rev.33, B1549 (1964).
1217


