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Common Trends in the Critical Behavior of the Ising and Directed Walk Models
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We consider layered two-dimensional Ising and directed walk models and show that the two problems
are inherently related. The information about the zero-field thermodynamical properties of the Ising
model is contained in the transfer matrix of the directed walk. For several hierarchical and aperiodic
distributions of the couplings, critical exponents for the two problems are obtained exactly through
renormalization. [S0031-9007(96)00814-9]
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The Ising model (IM) and the directed walk (DW) a
among the most studied problems in lattice statistics.
IM is a standard model for magnetic or liquid-gas ph
transitions, whereas the DW can be used to describe li
fluctuating objects such as directed polymers, flux lines
interfaces in two-dimensional systems.

The IM is exactly solvable in two dimensions [1] an
the solution can be generalized for layered systems
different types of distributions for the interlayer couplin
such as periodic [2], quasiperiodic [3], aperiodic [4,5], a
random [6]. The DW is probably the simplest nontriv
problem in statistical mechanics of which exact results
be obtained on homogeneous [7], inhomogeneous [8],
random [9] lattices.

In this Letter, we present a hitherto unnoticed conn
tion between the IM and the DW in two dimensions. Bo
problems are considered on layered lattices, such tha
walk is directed along the translationally invariant dire
tion. We show that the complete solution of the DW, i
the diagonalization of its transfer matrix (TM), provid
all the necessary information to obtain the zero-field th
modynamical properties and correlation functions of
IM. The DW approach, which is simpler, is then us
to perform an exact renormalization-group (RG) study
the TM eigenvalue problem for self-similar distributio
of the couplings. The critical properties of the IM and
DW are governed by two different fixed points of the sa
RG transformation.

Let us first present the hidden relation between
two problems. We consider a layered IM in the extre
anisotropic limit [10]. The transfer matrix going in th
direction parallel to the layers is exps2tH d, wheret is
the lattice spacing in the Euclidian time direction, andH
the Hamiltonian of a quantum Ising chain:

H ­ 2
1
2

LX
k­1

hksz
k 2

1
2

L21X
k­1

Jks
x
k s

x
k11 . (1)

The si ’s are Pauli spin operators, the transverse fi
hk ­ h plays the role of the temperature, and the c
plingsJk are nonperiodic.

Following Lieb et al. [11] and Pfeuty [12],H can be
transformed into a free-fermion model,
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H ­
LX

q­1

Lq

µ
hy

q hq 2
1
2

∂
, (2)

in terms of the fermion creation and annihilation operat
hy

q , hq. The fermion excitationsLq are non-negative and
satisfy the set of equations

LqCqskd ­ 2hkFqskd 2 JkFqsk 1 1d ,

LqFqskd ­ 2Jk21Cqsk 2 1d 2 hkCqskd ,
(3)

with the boundary conditionsJ0 ­ JL ­ 0. The Fq ’s
and Cq’s, which are related to the coefficients of a c
nonical transformation, are normalized. They enter i
the expressions of correlation functions and thermo
namical quantities [11,12].

Usually one proceeds by eliminating eitherCq or Fq

in (3), and the excitations are deduced from the solution
an eigenvalue problem. This last step can be avoided
introducing a2L-dimensional vectorVq with components
Vqs2k 2 1d ­ 2Fqskd, Vqs2kd ­ Cqskd and noticing
that the relations in Eq. (3) correspond to the eigenva
problem for the matrix:

T ­

0BBBBBB@
0 h1 0 0 0 0 · · ·
h1 0 J1 0 0 0 · · ·
0 J1 0 h2 0 0 · · ·
0 0 h2 0 J2 0 · · ·
...

...
. ..

. ..

1CCCCCCA , (4)

which can be interpreted as the TM of a DW proble
on two interpenetrating, diagonally layered square lattic
The walker makes steps with weightshk andJk between
first-neighbor sites on one of the two lattices.

ChangingFq into 2Fq in Vq, the eigenvector corre
sponding to2Lq is obtained. Thus all the informatio
about the DW and the IM is contained into that part
the spectrum withLq $ 0. Later on we shall restrict our
selves to this sector.

Let us now consider the correlation lengths in t
direction parallel to the layers for both problems. For t
DW it can be expressed as a function of the two lead
eigenvalues of the TM with

j
DW
k ­

∑
ln

µ
LL

LL21

∂∏21

.
LL

LL 2 LL21
. (5)
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Thus j
DW
k is proportional to the inverse gap at the t

of the spectrum. For the IM in the disordered phase
correlation length is the inverse of the lowest excitat
energy ofH in Eq. (2) so that

j
IM
k , L21

1 . (6)

L1 is also the lowest eigenvalue in the spectrum of
TM. In the ordered phaseL1 ­ 0 and the correlation
length involves the second eigenvalueL2.

Approaching one of the two critical points, the corr
lation length of the problem is diverging and the co
responding part in the TM spectrum displays a sca
behavior. Let us consider a finite system with transve
sizeL ¿ 1 and denote byDLi eitherLL 2 LL2i for the
DW or Li itself for the IM with i ø L. When lengths
are rescaled by a factor ofb . 1, i.e., withL0 ­ Lyb, the
gaps are assumed to behave as

sDLid0 ­ byL DLi , (7)

whereyL is the gap exponent which is generally differe
at different parts of the spectrum. This leads to the fin
size behavior

DLisLd , L2yL . (8)

Thus from Eqs. (5) and (6) the longitudinal correlati
lengths arejk , LyL . Since j' , L, the anisotropy
exponentz, such asjk , j

z
', is given byz ­ yL. For

the DW one is interested in the transverse fluctuati
which are characterized by the wandering exponenw
throughj' , j

w
k ; thusw ­ y21

L .
The scaling properties of the spectrum ofT are

conveniently studied using RG techniques. We cons
different self-similar lattices for which exact RG tran
formations can be worked out so that we obtain ex
results about the critical properties of both the IM and
DW. In the following the transverse field is assumed
be constant and equal toh.

Hierarchical sequence.—We start with a hierarchica
lattice in which the couplingsJk follow the Huberman-
Kerszberg sequence [13],

Jk ­ RnJ , k ­ 2ns2m 1 1d , n, m ­ 0, 1, . . . , (9)

with 0 , R , 1. The eigenvalue problem forT corre-
sponds to the second-order difference equations

Tj,j21V sj 2 1d 2 LV sjd 1 Tj,j11V sj 1 1d ­ 0 ,

(10)
wherej ­ 1, . . . , 2L. To construct an exact recursion w
eliminate from these equations components of the fo
V s4l 1 2d, V s4l 1 3d which are connected to aJ cou-
pling [indicated by crosses in Fig. 1(a)]. After such a de
mation the tripletsh, J, hd is replaced by a renormalize
field h0, and keepingR unchanged, the remaining co
plings becomeJ 0 ­ RJ due to the hierarchical structur
of the sequence. Thus the renormalized equations k
the original form withL changed intoL0. Introducing the
reduced variablesl ­ Jyh and bL ­ Lyh, one arrives at
p
he
n

e

-
r-
g

se

t
ite

n

ns

er
-
ct
e

to

e
rm

i-

-

eep

FIG. 1. Matrix-elementsTj,j11 as a function ofj for different
nonperiodic sequences: (a) hierarchical, (b) period doubli
(c) three folding, and (d) paper folding. Components of t
eigenvector to be decimated out in the RG transformation
denoted by crosses. The heights of solid vertical bars indic
the strength of the couplings; the grey bars stand for the fie

the two-parameter recursion:

bL0 ­
bL
l

≥bL2 2 l2 2 1
¥

, l0 ­ R
≥bL2 2 l2

¥
. (11)

The RG transformation has two nontrivial fixed point
governing the scaling of the eigenstates at the top of
spectrum (DW) and atL ­ 0 (IM), respectively. The
line bL ­ 0, corresponding to the IM situation, is invarian
under the RG transformation in Eq. (11). Along th
line, starting with a ferromagnetic model withl . 0,
after one recursion step the system is transformed
an antiferromagnetic model withl , 0. The critical IM
with lc ­ 1yR is transformed into the IM fixed point
which is situated atlp ­ 21yR. At the IM fixed point
the leading eigenvalue of the transformation ise1 ­ R 1

1yR and the anisotropy exponent of the hierarchical IM
given by

z ­ yL ­
lnsR 1 1yRd

ln 2
. (12)

Thus scaling in the hierarchical IM close to the critic
point is essentially anisotropic.

Scaling of the eigenstates at the top of the spectrum
governed by the DW fixed point situated at

lp ­
R

1 2 R
, bLp ­

p
1 2 R 1 R2

1 2 R
, (13)

and the leading eigenvalue is given by

e1 ­
1
R

1 R 1
1
2

1

∑µ
1
R

1 R 1
1
2

∂2

2 2

∏1y2

.

(14)
Thus the wandering exponent of the walk is

w ­
1

yL

­
ln 2
ln e1

. (15)
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In the homogeneous model, withR ­ 1, the DW fixed
point is shifted to infinity sincebLp ! `, lp ! `, and
along the separatrixbLyl ! 1. To evaluate the scalin
behavior, we introduce new variablesk ­ 1yl andD ­
sbLyld2 2 1, in terms of which the fixed point is give
by kp ­ 0 andDp ­ 0. Then the separatrix is a straig
line: Dskd ­ apk, with ap ­ 2, and according to Eq. (11
one point of thesk, Dd plane withD ­ ak will transform
into sssk0 ­ kya, D0 ­ s1 2 2ya2dDddd. Thusa0 ­ a2 2 2
and the leading eigenvalue of the transformation ise1 ­
4; consequently,w ­ 1yyL ­ 1y2, in agreement with
known results [7]. We note thatwsRd is discontinuous
at R ­ 1, since from Eq. (15) limR!12

wsRd , 1y2.
Period-doubling sequence.—In our next example, th

couplings Jk are generated according to the perio
doubling sequence [14] which follows from the subs
tution A ! AB andB ! AA. Here and in the following
the couplings are parametrized asJA ­ J andJB ­ RJ.

In an exact RG transformation, six sites out of ei
have to be decimated, as indicated in Fig. 1(b). As
ciating new couplingsh0 with the decimated blocks, on
obtains a recursion in terms ofh0 andL0 while l andRl,
thus the ratioR, remain unchanged. In terms of the r
duced parameters the RG transformation reads asbL0 ­

bL
Rl3

sc 2 dd , l0 ­
c

Rl2
, (16)

with c ­ bL2s2bL2 1 1 1 l2d2 2 R2l2sbL2 2 l2d2 and
d ­ sbL2 2 1d2 2 l2 bL2s1 1 R2d 1 l2s1 1 R2l2d. The
IM fixed point of the transformation is atbLp ­ 0 and
lp ­ 2R21y3, with the leading eigenvaluee1 ­ sR1y3 1

R21y3d2. Since the rescaling factor of the transformat
is b ­ 4, we obtain

z ­
lnsR1y3 1 R21y3d

ln 2
(17)

for the anisotropy exponent of the period-doubling IM.
The top of the spectrum, corresponding to the D

problem, scales to a fixed point withbL ! `, l ! `, butbLyl ! R. In terms of the variablesk ­ 1yl andD ­
sbLyld2 2 R2, the fixed point is atkp ­ 0 and Dp ­ 0,
while the separatrix, close to the fixed point, is of the fo
Dskd ­ apk2 1 Osk4d, with ap ­ s

p
2 R 2 2R2dys1 2

R2d. Then, according to Eq. (16), a point of thesk, Dd
plane with D ­ ak2 will transform to sk0 , k2, D0 ,
D1y2d. This type of scaling behavior is compatible with
essential singularity in the gaps at the top of the spectr

DLi , exps2CLsd , (18)
with s ­ 1y2, since the rescaling factor isb ­ 4.
Thus the parallel correlation length of the DW is giv
by j

DW
k , expsCL1y2d and the transverse fluctuations

the walk grow anomalously, on a logarithmic scale:
kfXstd 2 Xs0dg2l1y2 , ln2std . (19)

Here Xstd denotes the position of the walker at timet.
We note that the same asymptotic behavior is found in
1208
-

,

e

Sinai model [15] of a one-dimensional random walk in
random environment.

Three-folding sequence.—The three-folding sequence
is generated by the substitutionsA ! ABA, B ! ABB
[16]. In the RG transformation—as indicated i
Fig. 1(c)—blocks of four sites are decimated out. B
cause of the asymmetric nature of the blocks, after one
step the transfer matrix becomes asymmetric also:Tj,j11y
Tj11,j ­ s for j even, while Tj,j11yTj11,j ­ s21 for
j odd.

The recursion relations in this case are more con
niently expressed using the variablesL̃ ­ LyJ, m ­
hyJ, ands, while R remains unchanged:

L̃0 ­ L̃

∑µ
1 2

c
e

∂ µ
1 2

d
e

∂∏1y2

, m0 ­ m3 R
e

, (20)

with c ­ m2sL̃2 2 m2 2 R2d, d ­ m2sL̃2 2 m2 2 1d,
ande ­ sL̃2 2 1d sL̃2 2 R2d 2 m2L̃2. We note that the
asymmetry parameters, such thats0 ­ ssc 2 ed sd 2 ed,
does not enter into the recursions forL̃ andm.

At the IM fixed pointsL̃p ­ 0, mp ­ R1y2d the leading
eigenvalue of the RG transformation ise1 ­ fs2 1 Rd 3

s2 1 R21dg1y2, thus the anisotropy exponent is given by

z ­
lns2 1 Rd s2 1 R21d

2 ln 3
. (21)

The DW fixed point is again at infinity: L̃p ­ `,
mp ­ `, with L̃pymp ­ 1. The scaling behavior at this
fixed point is similar to that in the period-doubling cas
The eigenvalues at the top of the spectrum show
essential singularity like in Eq. (18) withs ­ 1y2 and
the transverse fluctuations grow on a logarithmic scale
in Eq. (19).

Paper-folding sequence.—Finally, we consider the
paper-folding sequence [16] which is generated by
two-letter substitutions AA ! AABA, AB ! AABB,
BA ! ABBA, and BB ! ABBB. In the RG transfor-
mation, decimating out blocks of two sites [Fig. 1(d)
alternating field variablesh1 and h2 are generated for
odd and even lattice sites, respectively. Furthermore,
transfer matrix becomes asymmetric and the asymme
parameters are different for odd and even elements.
a consequence, the exact RG transformation conta
altogether six parameters. Here we just present
scaling behavior at the two nontrivial fixed points; deta
of the calculation will be presented elsewhere [17].

At the IM fixed point, the anisotropy exponent is con
tinuously varying and given by

z ­
lns1 1 Rd s1 1 R21d

ln 4
. (22)

At the DW fixed point the scaling is again of the stretch
exponential form with a leading behavior for transver
fluctuations given by Eq. (19).

Let us now turn to a discussion of the critical behavi
we have obtained for the IM and the DW. All the ape
riodic IM’s we considered are strongly anisotropic wit
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a continuously varying anisotropy exponent. In the
tended parameter space there is a line of fixed points
rametrized by the coupling ratioR. The critical behavior
of the DW’s is also found to be anomalous: the lines
fixed points of the nonperiodic systems are disconne
from the fixed point of the homogeneous ones. For the
erarchical model the wandering exponent is discontinu
at R ­ 1, whereas for the other sequences the transv
fluctuations grow on the same logarithmic scale.

The difference between the IM and the DW on the sa
lattice can be understood using a relevance-irrelevance
terion [4] which is a counterpart for aperiodic systems
the Harris criterion [18] for random ones. The crosso
exponent associated with a layered nonperiodic pertu
tion is [4] f ­ 1 1 nsV 2 1d, wheren is the exponen
of the correlation length,perpendicular to the layers,for
the unperturbed system andV is a wandering exponen
[19] which characterizes the fluctuations in the coupli
Jk around their averageJ as

PL
k­1sJk 2 Jd , LV.

All the nonperiodic sequences we considered h
V ­ 0. For the IM with n ­ 1 the crossover exponen
vanishes. Thus the perturbation is marginal, which
plains the continuous variation of the anisotropy ex
nent. On the other hand, for the anisotropic DW w
n' ­ 1y2, the crossover exponent isf ­ 1y2 and the
perturbation is relevant. This is again in agreement w
our results.
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