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Common Trends in the Critical Behavior of the Ising and Directed Walk Models
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We consider layered two-dimensional Ising and directed walk models and show that the two problems
are inherently related. The information about the zero-field thermodynamical properties of the Ising
model is contained in the transfer matrix of the directed walk. For several hierarchical and aperiodic
distributions of the couplings, critical exponents for the two problems are obtained exactly through
renormalization. [S0031-9007(96)00814-9]

PACS numbers: 05.50.+(q, 64.60.Ak, 68.35.Rh
The Ising model (II_\/I) and the di_recteq walk (_D\_N) are A = i Aty — 1 @)
among the most studied problems in lattice statistics. The Mg Mg 2’
IM is a standard model for magnetic or liquid-gas phase _ _ o
transitions, whereas the DW can be used to describe linedt terms of the fermion creation and annihilation operators
fluctuating objects such as directed polymers, flux lines, of1d» m4- The fermion excitationd,, are non-negative and

interfaces in two-dimensional systems. satisfy the set of equations

The IM is exactly solvable in two dimensions [1] and Ay, (k) = —h®, (k) — D (k + 1), 3
the solution can be generalized for layered systems with 3)
different types of distributions for the interlayer couplings Ag®@y(k) = =T Wk — 1) = hWy(k),

such as periodic [2], quasiperiodic [3], aperiodic [4,5], andwith the boundary conditiondy = J;, = 0. The ®,’s
random [6]. The DW is probably the simplest nontrivial and W,’s, which are related to the coefficients of a ca-
problem in statistical mechanics of which exact results carmomca| transformation, are normalized. They enter into
be obtained on homogeneous [7], inhomogeneous [8], anghe expressions of correlation functions and thermody-
random [9] lattices. namical quantities [11,12].

In this Letter, we present a hitherto unnoticed connec- Usually one proceeds by eliminating eithd, or @,
tion between the IM and the DW in two dimensions. Bothin (3), and the excitations are deduced from the solution of
problems are considered on layered lattices, such that theh eigenvalue problem. This last step can be avoided by
walk is directed along the translationally invariant direc- introducing a2L-dimensional vectoV, with components
tion. We show that the complete solution of the DW, i.e. Ve(2k — 1) = =D, k), V,(2k) =W (k) and noticing
the diagonalization of its transfer matrix (TM), provides that the relations in Eq. (3) correspond to the eigenvalue
all the necessary information to obtain the zero-field therproblem for the matrix:

modynamical properties and correlation functions of the 0O kb, 0 0 0 0
IM. The DW approach, which is simpler, is then used Bk 0 J, 0 0 0
to perform an exact renormalization-group (RG) study of o Ji 0 h 0 0
. o NN T = 1 2 , (4)
the TM eigenvalue problem for self-similar distributions 0 0 hy 0 J, 0O

of the couplings. The critical properties of the IM and

DW are governed by two different fixed points of the same

RG transformation. which can be interpreted as the TM of a DW problem
Let us first present the hidden relation between theyn two interpenetrating, diagonally layered square lattices.

two problems. We consider a layered IM in the extremeThe walker makes steps with weighits and J;, between

anisotropic limit [10]. The transfer matrix going in the first-neighbor sites on one of the two lattices.

direction parallel to the layers is ekprH ), wherer is Changing®, into —®, in V,, the eigenvector corre-
the lattice spacing in the Euclidian time direction, @kl sponding to—A, is obtained. Thus all the information
the Hamiltonian of a quantum Ising chain: about the DW and the IM is contained into that part of
| & the spectrum with\, = 0. Later on we shall restrict our-
H = —— Z hyoi — Z Jioroisy . (1)  selves to this sector.
25 k=1 Let us now consider the correlation lengths in the

irection parallel to the layers for both problems. For the
W it can be expressed as a function of the two leading
eigenvalues of the TM with

The o;'s are Pauli spin operators, the transverse fiel
hi, = h plays the role of the temperature, and the cou-
plingsJ; are nonperiodic.

Following Lieb et al. [11] and Pfeuty [12],{ can be DW A 17! Ar
transformed into a free-fermion model, ar = [|n<AL1>} = AL — Ay (5)
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Thus &)V is proportional to the inverse gap at the top R2]
of the spectrum. For the IM in the disordered phase the hoJ RJ
correlation length is the inverse of the lowest excitation x | x | x| x| | x| (a)
energy of H in Eq. (2) so that RJ
gt~ Ay 6) hJ
A, is also the lowest eigenvalue in the spectrum of the x|x[x[x|x]x| | |x]x|x]x]|x]x (b)
TM. In the ordered phasd; = 0 and the correlation Rl
length involves the second eigenvalie. hJ | .
Approaching one of the two critical points, the corre- x[x x> | [x]|x[x|x x|x|x|x| (c)
lation length of the problem is diverging and the cor-
responding part in the TM spectrum displays a scaling h; J h; |
behavior. Let us consider a finite system with transverse _x|x | [x|x| | [x|x XIX | ()

EI\ZA(/%L >i 1.?“?]:(16”?;6 ?ﬁAi.,[e':therALL _V\j\hLii 1|°0r tftlﬁ FIG. 1. Matrix-elementd; ;. as a function ofj for different
or A; Itseli for the 1M with 1 < L. vnen 'engis  nonperiodic sequences: “(a) hierarchical, (b) period doubling,
are rescaled by a factor 6f> 1, i.e., withL’ = L/b, the  (c) three folding, and (d) paper folding. Components of the

gaps are assumed to behave as eigenvector to be decimated out in the RG transformation are
AAY = BUAAA denoted by crosses. The heights of solid vertical bars indicate
(AA) = D™ i (7) the strength of the couplings; the grey bars stand for the field.

wherey, is the gap exponent which is generally different
at different parts of the spectrum. This leads to the finithe two-parameter recursion:
size behavior ~

AA(L) ~ L7, ® A= %
Thus from Egs. (5) and .(6) the longitudinal (_:orrelatlon.l_he RG transformation has two nontrivial fixed points,
lengths are¢y ~ L™. Since £, ~ L, the anisotropy overning the scaling of the eigenstates at the top of the
exponentz, such asé ~ £9, is given byz = y,. For 9 9 9 g P

the DW one is interested in the transverse quctuationé:{peclrum (bw) and a.t\ =0 (M), r.espe.ctlvgly'. The
which are characterized by the wandering exponent line A = 0, corresponding to the IM situation, is invariant
through¢, ~ &'; thusw = vil gnder thg RG _transformanon in Eq. (11). _Along this

The scaling properties of the spectrum @f are line, starting Wlth a ferromagnetic mpdel with > 0, _
conveniently studied using RG techniques. We conside®ft€r one recursion step the system is transformed into
different self-similar lattices for which exact RG trans- an antiferromagnetic model with < 0. The critical IM
formations can be worked out so that we obtain exactVith Ac = 1/R is tra}knsformed into the IM fixed point,
results about the critical properties of both the IM and theVhich is situated ah® = —1/R. At the IM fixed point
DW. In the following the transverse field is assumed toth€ leading eigenvalue of the transformatioris= R +

(A2 =22 =1), ¥ =Rr(A*- ). @)

be constant and equal to 1/R and the anisotropy exponent of the hierarchical IM is
Hierarchical sequence—We start with a hierarchical 9iven by
lattice in which the couplingg follow the Huberman- In(R + 1/R)
Kerszberg sequence [13], ZEINT Ty (12)
Je =R, k=2"Cm+1), nm=01.., () Thys scaling in the hierarchical IM close to the critical
with 0 < R < 1. The eigenvalue problem fdf corre- point is essentially anisotropic.
sponds to the second-order difference equations Scaling of the eigenstates at the top of the spectrum is
TV — 1) — AV(j) + TV + 1) = 0, governed by the DW fixed point situated at
A R A V1 — R + R?
(10) =R Rl I RERE g
wherej = 1,...,2L. To construct an exact recursion we 1 —R 1 —R
eliminate from these equations components of the fornand the leading eigenvalue is given by
V(41 + 2), V(41 + 3) which are connected to & cou- ) 12
pling [indicated by crossesin Fig. 1(a)]. Aftersuchadeci- o — L 4 p 4+ L 4 [(i LR+ i) _ 2} '
mation the triplet(s, J, k) is replaced by a renormalized R 2 2
field A/, and keepingR unchanged, the remaining cou- (14)
plings become/’ = RJ due to the hierarchical structure th deri t of th i
of the sequence. Thus the renormalized equations kee-g“Js € wandering exponent of the walk 1S
the original form withA changeg inta\’. Introducing the 1 In2
reduced variablea = J/h andA = A/h, one arrives at W= y_A lne (15)
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In the homogeneous model, with = 1, the DW fixed  Sinai model [15] of a one-dimensional random walk in a
point is shifted to infinity sinceA* — o, A* — o, and  random environment.

along the separatriz&/)l — 1. To evaluate the scaling . Three-folding sequencef.'l'h.e three-folding sequence
behavior, we introduce new variables= 1/A andA = '3 generated by the substitutions— ABA, B — ABB

. . . S [16]. In the RG transformation—as indicated in
(A/X)?* — 1, in terms of which the fixed point is given = L - : )
by k* = 0 andA* — 0. Then the separatrix is a straight Fig. 1(c)—blocks of four sites are decimated out. Be

line: A(x) = a*x, with a* = 2, and according to Eq. (11) cause of the asymmetric nature of the blocks, after one RG

one point of thex, A) plane withA = ax will transform ;tgp Fhi t;a?osrfer. n;?/té'z( b\?\/ﬁ%?? .aS);r;'me"[rE iy??'}g/r
into (' = k/a, A" = (1 — 2/a*)A). Thusa' = a®> — 2 jtLy J ' JitUE gt

, . C Jj odd.

and the leading eigenvalue of the transformatioe,is= The recursion relations in this case are more conve-
4; consequentlyw = 1/yy = 1/2, in agreement with niently expressed using the variablds= A/J, u =
known results [7]. We note that(R) is discontinuous h/J, ands, while R remains unchanged: ’
atR = 1, since from Eq. (15) li—;_ w(R) < 1/2. ' ’ L2 '

Period-doubling sequence-In our next example, the s _ AKl B g)(l B i)} = M3§ (20)
couplings J; are generated according to the period- e e ’ e’
doubling sequence [14] which follows from the substi-\ith » = p2(A? — w2 — RY), d = p?(A2 — p? - 1),
tution A - AB andB — AA._ Here and in the following, g4, = (A2 — 1) (A2 — R?) — u2A2. We note that the
the couplings are parametrized.Bs= J andJg = RJ. asymmetry parameter such that’ = s(c — e) (d — e),

In an exact RG transformation, six sites out of eightygoes not enter into the recursions fbrand,u.
have to be decimated, as indicated in Fig. 1(b). ASSO- At the IM fixed point(A* = 0, u* = R'/?) the leading
ciating new couplings:’ with the decimated blocks, one eigenvalue of the RG transformationds = [(2 + R) X
obtains a recursion in terms 6f and A" while A andRA, (374 g=1)]1/2, thus the anisotropy exponent is given by
thus the ratioR, remain unchanged. In terms of the re- 1
duced parameters the RG transformation reads as 7z = In@ + I;)I (23+ R™) (21)

n

A c ! L . s
= - = =7, (16) The DW fixed point is again at infinity: A* = oo,

RA RA L e B el poin : . .
_ A - Sty - =, with A*/u* = 1. The scaling behavior at this
with ¢ = A*(=A% + 1 + A%)° = R°A°(A” — A%)7 and  fixed point is similar to that in the period-doubling case.
d=(A*—1)> = 2*A*(1 + R*) + A*(1 + R?A?). The The eigenvalues at the top of the spectrum show an
IM fixed point of the transformation is aA* = 0 and  essential singularity like in Eq. (18) witr = 1/2 and

A (c—d), A

A" = —R~1/3 with the leading eigenvalug, = (R!/> +  the transverse fluctuations grow on a logarithmic scale as

R™!/3)2. Since the rescaling factor of the transformationin Eq. (19).

is b = 4, we obtain Paper-folding sequence-Finally, we consider the
In(R'? + R™1/3) paper-folding sequence [16] which is generated by the

(17)  two-letter substitutions AA — AABA, AB — AABB,
BA — ABBA, and BB — ABBB. In the RG transfor-
The top of the spectrum, corresponding to the DWmation,_deci_mating out blocks of two sites [Fig. 1(d)],

) ) A alternating field variabled:; and n, are generated for
problem, scales to a fixed point with — =, A — <, but 544 and even lattice sites, respectively. Furthermore, the
A/A — R. Interms of the variableg = 1/A andA = transfer matrix becomes asymmetric and the asymmetry
(A/A)* — R?, the fixed point is at* = 0 andA* = 0,  parameters are different for odd and even elements. As
while the separatrix, close to the fixed point, is of the forma consequence, the exact RG transformation contains

In2
for the anisotropy exponent of the period-doubling IM.

A(k) = a*k? + O(k*), with a* = (V2R — 2R?)/(1 — altogether six parameters. Here we just present the
R?). Then, according to Eq. (16), a point of tlie,A)  scaling behavior at the two nontrivial fixed points; details
plane with A = ax? will transform to (v’ ~ x>, A’ ~  of the calculation will be presented elsewhere [17].

A'/2). This type of scaling behavior is compatible with an At the IM fixed point, the anisotropy exponent is con-
essential singularity in the gaps at the top of the spectruntjnuously varying and given by

AA; ~ exp(=CL?), (18) In(1 + R)(1 + R™Y)

. _ . . @ 7 = (22)
with o = 1/2, since the rescaling factor i$ = 4. In4

Thus the parallel l%)rrelanon length of the DW is given ot the DW fixed point the scaling is again of the stretched

by £" ~ exp(CL'*) and the transverse fluctuations of exponential form with a leading behavior for transverse
the walk grow anomalously, on a logarithmic scale: fluctuations given by Eq. (19).

X)) = XOP)"* ~ In*(r). (19) Let us now turn to a discussion of the critical behavior

Here X(r) denotes the position of the walker at time we have obtained for the IM and the DW. All the ape-

We note that the same asymptotic behavior is found in theiodic IM’s we considered are strongly anisotropic with
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