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We prove that the inequalitypP/dv < 0 is the stability criterion for dark solitons of the
one-dimensional nonlinear Schrodinger equation with general nonlinearity. Herés the
soliton’s velocity, and P renormalized momentum®? = (i/2) [(y ¥ — ™) (1 — po/l|?) dx.
[S0031-9007(96)00864-2]

PACS numbers: 03.40.Kf, 42.65.Tg, 47.37.+q

The static dark solitons of the nonlinear Schrodinger is also attracted by thspatial dark solitons. Physically,
equation (NLS) can be classified under two broad classespatial dark soliton is a self-trapped dark band (or a more
Bubblesare one-, two-, and three-dimensiomaintopo- complicated pattern in the case of higher-dimensional spa-
logical solitons arising typically in models with com- tial soliton) superimposed on an otherwise uniform back-
peting interactions [1,2]. The static bubbles are alwayground illumination where the self-defocusing is balanced
unstable [1-3], and this property endows them withby the diffraction of the band. Mathematically, it is a so-
a transparent physical interpretation as nuclei of thdution of the very same NLS equation wherdenotes the
first order phase transitions. Recent experimental resuligropagation coordinate. Spatial solitons were observed
where vapor bubbles in superfluitHe were nucleated in Kerr and photovoltaic media [9]; the envisioned appli-
by a decompression wave [4], stimulated application ofcations include optical encoding, limiting, switching and
the NLS to the dynamical cavitation [5]. The secondcomputing, and nonlinear filtering [9,10].
class includes topological solitons of the Gross-Pitayevski The stability properties of dark solitons play the key
equation (alias repulsive NLS on the plane), and theirole in all these applications. It turned out that stability
one-dimensional counterparts, kinks. The repulsive NLSf the dark soliton is determined by its velocity. Namely,
equation provides a semiclassical description of neutratumerical simulations of traveling 1D bubbles [11] re-
superflows and its vortex solutions correspond to quanvealed the existence of a critical velocity, such that the
tum vortices. The current upsurge of interest in the NLSbubble is stable for > v, and unstable otherwise. This
description of*He is due to its capability of capturing property was confirmed by the numerical analysis of the
details of intricate dynamical mechanisms such as vortegpectrum of linearized excitations about the soliton [12].
nucleation and vortex-sound interaction [6]. Later it was observed [13] that the region> v, is well

The above classification (topological vs nontopologi-described by the inequaligP /v < 0, where
cal) is difficult to extend tdraveling dark solitons which T .
always have some topological properties (the phase ap- P = D) f_x(¢x¢ — ) dx — poArgys
proaches different values at different spatial infinities). o
One-dimensional traveling dark solitons have been experi- =L ] (i — ¢x¢*)<1 - &)dx 1)
mentally observed in optical fibers [7,8]; it was noticed 2 )" ||
that dark solitons are less influenced by noise, and theis the renormalized momentum. However, apart from
interaction is weaker than that of bright solitons. Thesdhe observation that the criteriof?/dv < 0 yields a
facts suggest the feasibility of the use of dark solitons incondition of the minimality of energy on trial functions of
optical communications [8]. A lot of interest in optics some special form [14], no proof of it has been given so
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far. Consequently, both the accuracy and range of validitwherep = ¢ + ¢7, and! the identity matrix. Finally,
of this criterion has remained an open question. In thisy is a positive constant which will be fixed later on.

Letter we propose such a proof.

In order that the soliton be stabl&, should be positive

We consider the NLS equation with a general non-definite; thus we need to examine eigenvalued of

linearity

ilpt + lpxx + F(|¢|2)¢ = 0’ (2)
where F(pg) = 0 for some positive constang,. The

traveling dark soliton is a localized solution with(x, t) =
¢ (%) wherex = x — vt and ¢ (x) satisfies

—ivd, + i + FlI))p =0, 3
together with the nonvanishing boundary conditions
d(x) — Jpoe ' asx — *o, 4)

Equation (2) with the boundary conditions (4) has three in
tegrals of motion: “number of particles” (or “complemen-

ASWY = A6V, (12)
It is instructive, however, to start with eigenvalues of the
operatorH. It has two zero eigenvalueF:d’ = H/® =
0, and exactly one negative eigenvalye

HZ(x) = nZ(x), n <0. (13)
To prove the latter, we first notice that when= 0, we
can chooseb;(x) = 0 andH becomes diagonal:

o L 0
tary power')N = [~_(I¢s]* — po) dx; energy H = < 0° L1>, (14)
E= [fm{llpxlz + U(lyP)}dx, () where the Schrodinger operatoks and L; have obvi-
" ous zero modesLy¢’ = (—9*> — F — 2F,¢2)¢' = 0;
where U(p) = — [}, F(p)dp; and momentum Eq. (1). 1,4 — (—3> — F)¢ = 0. As we mentioned, the quies-

The last term in Eq. (1) is essential for solutions with cent gark solitons can be classified as either kinks or bub-
nonvanishing boundary conditions. The addition of thisyjes  Kink is a monotonically growing real function, with
term makesP functionally differentiable and therefore #(0) = 0. Since ¢'(x) is nowhere vanishing, the zero

compatible with the Hamiltonian structure of the mOdeleigenvalue ofL, is the minimum eigenvalue. On the

[14]. (For Lagrangian formulation, see [15].)
Stability—We first show that wherdP/dv < 0, the

other hand, sinceb(x) is a zero mode of.; and it has
one nodel; has (one) eigenvalug < 0 with a nodeless

dark soliton is stable. To this end, we construct theeigenfunction. The case of bubbles is similar; the quies-

Liapunov functional out of two constants of motion:

LIY]=E — E, — v(P — P,) + %(P ~ P, (6)

cent bubble is a nowhere vanishing real solution, with just
one extremumg’(0) = 0. HenceL, is positive definite
while Ly has only one negative eigenvalue Thus in

Here E, = E[¢] and P, = P[¢] are the energy and both casegi has one and only one negative eigenvalue.

momentum of the dark solitog (¥). We did not include

As v deviates from zero, the negative eigenvalge

the number of particles since, as it was demonstrated iR the operatorf will move along the real axis, but can

[1,2,14],N is irrelevant for the stability analysis.
For small deviationsdéy(x,t) = (x,1) — ¢(X), we
have

L[y]=(6W,A8V), (7

never pass through the origin. Indeed, assugne» 0,
with the corresponding eigenfunctidi(x) approaching
someZy(x). For allv the eigenfunctiorZ (x) will be or-
thogonal to bothb’(x) andJ®(x), since eigenfunctions of

a Hermitean operator pertaining to different eigenvalues

where 6% is a two-component real vector com- are orthogonal. By continuityZ,, ®') = (Zy,J®) = 0

posed of the real and imaginary part éf): 6V =
(Resy,Im8y)T, and the integro-differential operatdr
is defined as

ASY = HSW + a(JD',8¥)JD'. (8)

Here’ = d/dx; the vectord is constructed out ofr and

¢r: D = (g, P17, Wheredr(x) + id;(x) = ¢(x), and

H is a matrix differential operator

d? d
H = _d—le + va] + Vx), 9
J= <(1) _01> (10)
vy = —(F* 2F, ¢k 2F,drdy 1)
2F,prpsr  F +2F, 7 )’

follows and soZj is linearly independent ob’ andJ®.
However, the null space @f is spanned by the eigenfunc-
tions®’ andJd and therefore there can be no third inde-
pendent eigenfunction with zero eigenvalue [12]. Hence
n cannot approach zero. For the same reason no addi-
tional negative eigenvalues can emerge whes varied.

Thus the operatoH — Al is invertible for allA = 0
such thatx # 7, and Eq. (12) becomes, for these

SV = —a(J®' 8V)(H — AP,

Here we have assumed tHdtb’, %) # 0; the converse
will be discussed below. Taking the scalar product with
J®', we obtain

g) =a(®' ,(H—-ADJ®)+1=0. (15
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When A — 7 = 0, the functiong(A) — Fo. This can
be observed by decomposing®’ into parts parallel
and orthogonal t&(x): J®'(x) = CZ(x) + Y(x), where
C =constandZ,Y) = 0. Then

CZ(x)
n—A

(H— M)'Jd'(x) = + o(x),

where o = (H — AI)"'Y. The vectorY(x) belongs to
the invariant subspace df, which is orthogonal to the
eigenfunctionZ(x). The vectoro(x) is in the same
subspace and therefofer,Z) = 0. The functiong(A)
becomes

aC?

g(A) = + a(Y,(H - AD"'Y) +1, (16)

where the second term is finite and positive forahls 0.
Sendingh — 1 = 0, we getg(A) — Foo,

Next, sinceJ®’ is orthogonal to both zero modes of
H,i.e. tod’ andJ®d, the functionH 'J®’ is bounded.
More precisely, comparing to the relation

Ho®/ov = —JD/,

which arises by differentiating Eq. (3),
H 'J®' = —9d/9gv. Hence,
— — +1,

, 8<1)>
= — — )l +1=
g(0) a<JCI), ™ 1 > a9

where we have used the fact that®’, Jod/ov) =
dP/dv. AssumingdP/dv < 0 and choosinga suffi-
ciently large, we can always ensure tigad) < 0. Con-
sequently, sincg(A) is a monotonically growing function
of A:

17)

(18)

dg

dA
Eqg. (15) cannot be satisfied for any < 0 and the
operatorA does not have negative eigenvalues.

It remains for us to consider perturbatioasl with
(J@',8¥) = 0. In this case the minimum of the func-
tional L = L[¢ + 8¢] occurs at solutions to the equa-
tion

a(JP',(H — A)72JD') >0, (19)

H8W = AT + BJD, (20)

where B is the Lagrange multiplier. Solving fo6¥
and substituting intqJ®’, §¥) = 0 yields (J®',(H —
AI)"1J®') = 0. From the above analysis it follows,
however, that this equation cannot be satisfiedifer 0,
and so minL = A6WV,56¥) > 0.

Thus the functionall [] is positive definite [16] and
the soliton is stable fonP/ov < 0. This inequality is
a priori satisfied when the velocity approaches the

velocity of sound wavesy — ¢ = ,/2poU,,(po). Inthis

transonic limit the moving dark soliton is described [1] by
the soliton of the Korteweg—de Vries equation which is

given by an explicit formula; it is straightforward to verify
that it satisfiesoP/ov < 0. When the velocity goes

while the expansion ofl ®’

down fromc, the derivatived P /ov can become positive;
this happens, for instance, for the bubbles [1,2,12,14]. Let
us show that in the regiofi? /dv > 0, the dark soliton is
unstable.

Instability.—We consider a neighborhood of the critical
velocity v = v, where the derivativedP/dv changes
its sign. Linearizing Eg. (2) about the solitah(x) and
assuming that, forv < v.., the perturbationsV(x, r)
depends on time as$V¥ = Z(¥)e, we arrive at the
eigenvalue problem

HZ(x) = MZ(x),  Z(x%) =0, (21)

with H and J as in (9) and (10), respectively. Let-
ting v = v, + €, we can expandd in powers ofe:
P(x;v) = Do(x) + €D (x) + €2Py(x) + ---. Accord-
ingly, the operatorH expands asH = Hy + eH; +
€*H, + ---. A priori, it is not obvious howa should
scale asv — v.,. In the case of the cubic-quintic non-
linearity, numerical analysis suggests that- € [12]; in
general, however, other powers @ftannot be ruled out.
Notice that Eq. (21) is an eigenvalue problem for a non-
Hermitean operatot] ' H, and soA does not have to be

we have analytic ine. However, the only admissible nonanalytic

scaling isA ~ €!/2; other fractal powers would not do.
(This follows from the fact that eigenvalues of the oper-
ator J~'H must always come in quadruplets; — A, A*,
and—A\* [17].) Consequently, in generalexpands as

A=€A + ery + €%a3 + -+, (22)
and the corresponding eigenfuncti@fx) as
Z(x) = Zo(x) + €2Z1(x) + €Zo(x) + ---. (23)

Substituting the above expansions into (21), we obtain a
chain of equations:

HyZy =0, (24)
HoZi = \JZy, (25)
HoZy = J(MZy + MZy) — H\Zy, (26)
HoZs = J(AM3Zo + MZy + MZo) — HiZy,  (27)
HoZy = J(AMZy + MZs + A3Zy + MZp)

— H\Z, — HyZ,. (28)

In order to solve these equations, we will make use of a
series of useful identities. Expanding Eq. (17kigives

H()(I)l = —J(I)(/), (29)

2Hy®, + HP, = —J®; s
HJ® = 0 produces
H D) + Hyd| =0,

(30)

(31)

H()(I)é + Hl(Di + HQ(I)(/) =0, (32)
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HoJ®, + HiJPy = 0. (33) tional suggested and numerically studied in [19]: =

The only asymptotically decaying solution to Eq. (24)E — oN — vlIl, wherell = (i/2) [y — Yotp”) dox.

: _ N : First, sincell is a nondifferentiable momentum/ is
|(5292)0(;cv)e g eqé(l).(x)Sibitilljglg(]xl)m(()Tﬁ?sngﬂi(fr? gr:jaér;i?jgeéo a nondifferentiable functional. Second, evenif had

up t the aditon of a near combnaton o anda, - P2€7 Ciferentanie (whih s e o e cefing poner
but these terms cancel in all scalar products below.) it P ’

is important to notice that the first-order correctin(x) ? ragg]g Qtf sr,]table veloaz_lrt]les for Wh.'cﬁ IS E?Ot p05|—f h
tends to a nonzero constant vector columnxas *co. Ive definite, however. [The reason is the absence of the

. terma(P — P,)? from £.] For instance, in the case of
This means that for larger| we haveeZi(x) > Z2(x) R : . oSt
and the hierarchy of Egs. (24)—(28) is not valid, Inthe dark soliton of the repulsive cubic NLS (which is of

: - course stable for alb), the numerical analysis of [19] pre-
particular, Eq. (25) should be replaced, fof= =, by dicts stability only for sufficiently large velocities.

HoZ, = €'?),JZ,, (34) The instability argument presented here was obtained
during my stay at Université d'Orsay in December 1992.
I am grateful to Anne de Bouard for her invaluable re-
u” marks and efforts to render the argument mathematically
zZ — | 4 k- — 35 . X
1(x) <v* )exp( =), * < (35) rigorous. This research was supported by the FRD of
South Africa.

the solution of which decays as

wherek+ = €21, /(v F ¢) + 0(’/?), and u~ /v~ =
+tanu + O(e'/?). Since Rep,/Im¢, — *tanu as
x — *oo, we conclude that the near-field solutigh =
— 1P matches continuously to the asymptotes (35).

Next, one of the two solvability conditions of Eq. (26
is
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