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We prove that the inequality≠Py≠y , 0 is the stability criterion for dark solitons of th
one-dimensional nonlinear Schrödinger equation with general nonlinearity. Herey is the
soliton’s velocity, and P renormalized momentum:P ­ siy2d

R
scp

x c 2 cxcpd s1 2 r0yjcj2d dx.
[S0031-9007(96)00864-2]

PACS numbers: 03.40.Kf, 42.65.Tg, 47.37.+q
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The static dark solitons of the nonlinear Schröding
equation (NLS) can be classified under two broad clas
Bubblesare one-, two-, and three-dimensionalnontopo-
logical solitons arising typically in models with com
peting interactions [1,2]. The static bubbles are alw
unstable [1–3], and this property endows them w
a transparent physical interpretation as nuclei of
first order phase transitions. Recent experimental re
where vapor bubbles in superfluid4He were nucleated
by a decompression wave [4], stimulated application
the NLS to the dynamical cavitation [5]. The seco
class includes topological solitons of the Gross-Pitaye
equation (alias repulsive NLS on the plane), and th
one-dimensional counterparts, kinks. The repulsive N
equation provides a semiclassical description of neu
superflows and its vortex solutions correspond to qu
tum vortices. The current upsurge of interest in the N
description of 4He is due to its capability of capturin
details of intricate dynamical mechanisms such as vo
nucleation and vortex-sound interaction [6].

The above classification (topological vs nontopolo
cal) is difficult to extend totraveling dark solitons which
always have some topological properties (the phase
proaches different values at different spatial infinitie
One-dimensional traveling dark solitons have been exp
mentally observed in optical fibers [7,8]; it was notic
that dark solitons are less influenced by noise, and t
interaction is weaker than that of bright solitons. Th
facts suggest the feasibility of the use of dark solitons
optical communications [8]. A lot of interest in optic
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is also attracted by thespatial dark solitons. Physically,
spatial dark soliton is a self-trapped dark band (or a mo
complicated pattern in the case of higher-dimensional s
tial soliton) superimposed on an otherwise uniform bac
ground illumination where the self-defocusing is balanc
by the diffraction of the band. Mathematically, it is a so
lution of the very same NLS equation wheret denotes the
propagation coordinate. Spatial solitons were observ
in Kerr and photovoltaic media [9]; the envisioned app
cations include optical encoding, limiting, switching an
computing, and nonlinear filtering [9,10].

The stability properties of dark solitons play the ke
role in all these applications. It turned out that stabili
of the dark soliton is determined by its velocity. Namel
numerical simulations of traveling 1D bubbles [11] re
vealed the existence of a critical velocityycr such that the
bubble is stable fory . ycr and unstable otherwise. Thi
property was confirmed by the numerical analysis of t
spectrum of linearized excitations about the soliton [1
Later it was observed [13] that the regiony . ycr is well
described by the inequality≠Py≠y , 0, where

P ­
i
2

Z `

2`
scp

x c 2 cxcpd dx 2 r0Argc

Ç1`

2`

­
i
2

Z `

2`
scp

x c 2 cxcpd
µ
1 2

r0

jcj2

∂
dx (1)

is the renormalized momentum. However, apart fro
the observation that the criterion≠Py≠y , 0 yields a
condition of the minimality of energy on trial functions o
some special form [14], no proof of it has been given
© 1996 The American Physical Society 1193
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far. Consequently, both the accuracy and range of vali
of this criterion has remained an open question. In
Letter we propose such a proof.

We consider the NLS equation with a general no
linearity

ict 1 cxx 1 Fsjcj2dc ­ 0 , (2)

where Fsr0d ­ 0 for some positive constantr0. The
traveling dark soliton is a localized solution withcsx, td ­
fsx̃d wherex̃ ­ x 2 yt andfsxd satisfies

2iyfx 1 fxx 1 Fsjfj2df ­ 0 , (3)

together with the nonvanishing boundary conditions

fsxd °!
p

r0 e7im asx °! 6` . (4)

Equation (2) with the boundary conditions (4) has three
tegrals of motion: “number of particles” (or “compleme
tary power”)N ­

R`
2`sjcj2 2 r0d dx; energy

E ­
Z `

2`

hjcxj2 1 Usjcj2dj dx , (5)

where Usrd ­ 2
Rr

r0
Fsrd dr; and momentum Eq. (1)

The last term in Eq. (1) is essential for solutions w
nonvanishing boundary conditions. The addition of t
term makesP functionally differentiable and therefor
compatible with the Hamiltonian structure of the mod
[14]. (For Lagrangian formulation, see [15].)

Stability.—We first show that when≠Py≠y , 0, the
dark soliton is stable. To this end, we construct
Liapunov functional out of two constants of motion:

L fcg ­ E 2 Es 2 ysP 2 Psd 1
a

4
sP 2 Psd2. (6)

Here Es ­ Effg and Ps ­ Pffg are the energy an
momentum of the dark solitonfsx̃d. We did not include
the number of particles since, as it was demonstrate
[1,2,14],N is irrelevant for the stability analysis.

For small deviationsdcsx̃, td ­ csx, td 2 fsx̃d, we
have

L fcg ­ sdC, LdCd , (7)

where dC is a two-component real vector com
posed of the real and imaginary part ofdc: dC ­
sRedc, Im dcdT , and the integro-differential operatorL

is defined as

LdC ­ HdC 1 asJF0, dCdJF0. (8)

Here0 ; dydx; the vectorF is constructed out offR and
fI : F ­ sfR, fIdT , wherefRsxd 1 ifIsxd ­ fsxd, and
H is a matrix differential operator

H ­ 2
d2

dx2 I 1 y
d
dx

J 1 V sxd , (9)

J ­

µ
0 21
1 0

∂
, (10)

V sxd ­ 2

√
F 1 2Frf

2
R 2FrfRfI

2FrfRfI F 1 2Frf
2
I

!
, (11)
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wherer ­ f
2
R 1 f

2
I , andI the identity matrix. Finally,

a is a positive constant which will be fixed later on.
In order that the soliton be stable,L should be positive

definite; thus we need to examine eigenvalues ofL:

LdC ­ ldC . (12)

It is instructive, however, to start with eigenvalues of th
operatorH. It has two zero eigenvalues:HF0 ­ HJF ­
0, and exactly one negative eigenvalueh:

HZsxd ­ hZsxd, h , 0 . (13)

To prove the latter, we first notice that wheny ­ 0, we
can choosefIsxd ; 0 andH becomes diagonal:

H ­

µ
L0 0
0 L1

∂
, (14)

where the Schrödinger operatorsL0 and L1 have obvi-
ous zero modes:L0f0 ­ s2≠2 2 F 2 2Frf2df0 ­ 0;
L1f ­ s2≠2 2 Fdf ­ 0. As we mentioned, the quies
cent dark solitons can be classified as either kinks or b
bles. Kink is a monotonically growing real function, wit
fs0d ­ 0. Since f0sxd is nowhere vanishing, the zero
eigenvalue ofL0 is the minimum eigenvalue. On the
other hand, sincefsxd is a zero mode ofL1 and it has
one node,L1 has (one) eigenvalueh , 0 with a nodeless
eigenfunction. The case of bubbles is similar; the quie
cent bubble is a nowhere vanishing real solution, with ju
one extremum:f0s0d ­ 0. HenceL1 is positive definite
while L0 has only one negative eigenvalueh. Thus in
both casesH has one and only one negative eigenvalue

As y deviates from zero, the negative eigenvalueh

of the operatorH will move along the real axis, but can
never pass through the origin. Indeed, assumeh ! 0,
with the corresponding eigenfunctionZsxd approaching
someZ0sxd. For all y the eigenfunctionZsxd will be or-
thogonal to bothF0sxd andJFsxd, since eigenfunctions of
a Hermitean operator pertaining to different eigenvalu
are orthogonal. By continuitysZ0, F0d ­ sZ0, JFd ­ 0
follows and soZ0 is linearly independent ofF0 andJF.
However, the null space ofH is spanned by the eigenfunc
tionsF0 andJF and therefore there can be no third ind
pendent eigenfunction with zero eigenvalue [12]. Hen
h cannot approach zero. For the same reason no a
tional negative eigenvalues can emerge wheny is varied.

Thus the operatorH 2 lI is invertible for all l # 0
such thatl fi h, and Eq. (12) becomes, for thesel,

dC ­ 2asJF0, dCd sH 2 lId21JF0.

Here we have assumed thatsJF0, dCd fi 0; the converse
will be discussed below. Taking the scalar product w
JF0, we obtain

gsld ; asssJF0, sH 2 lId21JF0ddd 1 1 ­ 0 . (15)
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When l ! h 6 0, the functiongsld ! 7`. This can
be observed by decomposingJF0 into parts parallel
and orthogonal toZsxd: JF0sxd ­ CZsxd 1 Ysxd, where
C ­ const andsZ, Y d ­ 0. Then

sH 2 lId21JF0sxd ­
CZsxd
h 2 l

1 ssxd ,

where s ­ sH 2 lId21Y . The vectorY sxd belongs to
the invariant subspace ofH, which is orthogonal to the
eigenfunction Zsxd. The vector ssxd is in the same
subspace and thereforess, Zd ­ 0. The functiongsld
becomes

gsld ­
aC2

h 2 l
1 asssY , sH 2 lId21Y ddd 1 1 , (16)

where the second term is finite and positive for alll # 0.
Sendingl ! h 6 0, we getgsld ! 7`.

Next, sinceJF0 is orthogonal to both zero modes
H, i.e., toF0 andJF, the functionH21JF0 is bounded.
More precisely, comparing to the relation

H≠Fy≠y ­ 2JF0, (17)

which arises by differentiating Eq. (3), we ha
H21JF0 ­ 2≠Fy≠y. Hence,

gs0d ­ 2a

µ
JF0,

≠F

≠y

∂
1 1 ­

a

2
≠P
≠y

1 1 , (18)

where we have used the fact that2sF0, J≠Fy≠yd ­
≠Py≠y. Assuming≠Py≠y , 0 and choosinga suffi-
ciently large, we can always ensure thatgs0d , 0. Con-
sequently, sincegsld is a monotonically growing function
of l:

dg
dl

­ asssJF0, sH 2 lId22JF0ddd . 0 , (19)

Eq. (15) cannot be satisfied for anyl , 0 and the
operatorL does not have negative eigenvalues.

It remains for us to consider perturbationsdC with
sJF0, dCd ­ 0. In this case the minimum of the func
tional L ­ L ff 1 dcg occurs at solutions to the equ
tion

HdC ­ ldC 1 bJF0, (20)

where b is the Lagrange multiplier. Solving fordC

and substituting intosJF0, dCd ­ 0 yields sssJF0, sH 2

lId21JF0ddd ­ 0. From the above analysis it follows
however, that this equation cannot be satisfied forl , 0,
and so minL ­ lsdC, dCd . 0.

Thus the functionalL fcg is positive definite [16] and
the soliton is stable for≠Py≠y , 0. This inequality is
a priori satisfied when the velocityy approaches the
velocity of sound waves,y ! c ­

q
2r0Urrsr0d. In this

transonic limit the moving dark soliton is described [1]
the soliton of the Korteweg–de Vries equation which
given by an explicit formula; it is straightforward to verif
that it satisfies≠Py≠y , 0. When the velocity goes
s

down fromc, the derivative≠Py≠y can become positive
this happens, for instance, for the bubbles [1,2,12,14].
us show that in the region≠Py≠y . 0, the dark soliton is
unstable.

Instability.—We consider a neighborhood of the critic
velocity y ­ ycr where the derivative≠Py≠y changes
its sign. Linearizing Eq. (2) about the solitonfsx̃d and
assuming that, fory , ycr , the perturbationdCsx̃, td
depends on time asdC ­ Zsx̃delt, we arrive at the
eigenvalue problem

HZsxd ­ lJZsxd, Zs6`d ­ 0 , (21)

with H and J as in (9) and (10), respectively. Le
ting y ­ ycr 1 e, we can expandF in powers of e:
Fsx; yd ­ F0sxd 1 eF1sxd 1 e2F2sxd 1 · · · . Accord-
ingly, the operatorH expands asH ­ H0 1 eH1 1

e2H2 1 · · · . A priori, it is not obvious howl should
scale asy ! ycr . In the case of the cubic-quintic non
linearity, numerical analysis suggests thatl , e [12]; in
general, however, other powers ofe cannot be ruled out
Notice that Eq. (21) is an eigenvalue problem for a n
Hermitean operator,J21H, and sol does not have to b
analytic ine. However, the only admissible nonanaly
scaling isl , e1y2; other fractal powers would not do
(This follows from the fact that eigenvalues of the op
ator J21H must always come in quadruplets:l, 2l, lp,
and2lp [17].) Consequently, in generall expands as

l ­ e1y2l1 1 el2 1 e3y2l3 1 · · · , (22)

and the corresponding eigenfunctionZsxd as

Zsxd ­ Z0sxd 1 e1y2Z1sxd 1 eZ2sxd 1 · · · . (23)

Substituting the above expansions into (21), we obta
chain of equations:

H0Z0 ­ 0 , (24)

H0Z1 ­ l1JZ0 , (25)

H0Z2 ­ Jsl2Z0 1 l1Z1d 2 H1Z0 , (26)

H0Z3 ­ Jsl3Z0 1 l2Z1 1 l1Z2d 2 H1Z1 , (27)

H0Z4 ­ Jsl2Z2 1 l1Z3 1 l3Z1 1 l4Z0d

2 H1Z2 2 H2Z0 . (28)

In order to solve these equations, we will make use o
series of useful identities. Expanding Eq. (17) ine gives

H0F1 ­ 2JF0
0 , (29)

2H0F2 1 H1F1 ­ 2JF0
1 , (30)

while the expansion ofHF0 ­ HJF ­ 0 produces

H1F0
0 1 H0F0

1 ­ 0 , (31)

H0F0
2 1 H1F0

1 1 H2F0
0 ­ 0 , (32)
1195
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H0JF1 1 H1JF0 ­ 0 . (33)

The only asymptotically decaying solution to Eq. (2
is Z0sxd ­ F

0
0. Substituting into (25) and comparing t

(29), we getZ1sxd ­ 2l1F1sxd. (This solution is defined
up to the addition of a linear combination ofF

0
0 andJF0

but these terms cancel in all scalar products below.)
is important to notice that the first-order correctionZ1sxd
tends to a nonzero constant vector column asx ! 6`.
This means that for largejxj we haveeZ2

1 sxd ¿ Z2
0 sxd

and the hierarchy of Eqs. (24)–(28) is not valid.
particular, Eq. (25) should be replaced, forx ! 6`, by

H0Z1 ­ e1y2l1JZ1 , (34)

the solution of which decays as

Z1sxd °!

µ
u6

y6

∂
expsk6xd, x °! 6` , (35)

where k6 ­ e1y2l1ysy 7 cd 1 Ose3y2d, and u6yy6 ­
6 tanm 1 Ose1y2d. Since RefyyIm fy ! 6 tanm as
x ! 6`, we conclude that the near-field solutionZ1 ­
2l1F1 matches continuously to the asymptotes (35).

Next, one of the two solvability conditions of Eq. (26
is

l1sF0
0, JZ1d 2 sF0

0, H1F0
0d ­ 0 .

Using (31), the second term vanishes and we end up w

l2
1sF0

0, JF1d ­
l

2
1

2
≠P
≠y

­ 0 . (36)

Notice that we have written2l1F1 for Z1; this is
admissible since the contribution of the asymptotes (
to the scalar product is exponentially small. Ifl1 fi

0, we obtain≠Py≠y ­ 0. Otherwise, we use Eq. (31
to solve Eq. (26) explicitly:Z2 ­ F

0
1 2 l2F1. This is

again nonvanishing at infinities, but, in the first plac
we know how to consistently correct the asymptot
and in the second, the asymptotes do not contribute
the scalar product below. Using Eqs. (31) and (33) it
straightforward to check that the solvability condition f
Eq. (27) is always satisfied, while the one for Eq. (2
reads

l2sF0
0, JZ2d 1 l3sF0

0, JZ1d 2 sF0
0, H2Z0d2

sF0
0, H1Z2d ­ 0 .

Using (30) and (32), we arrive atl2
2sF0

0, JF1d ­ 0,
whence, again, eitherl2

2 ­ 0 or ≠Py≠y ­ 0. If we as-
sume thatl2 ­ 0, the condition≠Py≠y ­ 0 will reap-
pear at the levelOse3d, and so forth. Thus independent
of the actual scaling oflsed, the eigenvalue may van
ish only when≠Py≠y ­ 0—and this is exactly what we
needed to prove [18].

Finally, we would like to remark that the first attempt
construct the Liapunov functional for the dark soliton w
made in Ref. [19]. There are two principal distinctio
between our Liapunov functional Eq. (6) and the fun
1196
)

It

th

5)

,
,
to
s

)

s

-

tional suggested and numerically studied in [19]:L̃ ­
E 2 vN 2 yP, whereP ­ siy2d

R
scp

x c 2 cxcpd dx.
First, sinceP is a nondifferentiable momentum,̃L is
a nondifferentiable functional. Second, even if̃L had
been differentiable (which is one of the defining prope
ties of Liapunov functionals), there would have still be
a range of “stable” velocities for whichL̃ is not posi-
tive definite, however. [The reason is the absence of
term asP 2 Psd2 from L̃ .] For instance, in the case o
the dark soliton of the repulsive cubic NLS (which is o
course stable for ally), the numerical analysis of [19] pre
dicts stability only for sufficiently large velocities.

The instability argument presented here was obtain
during my stay at Université d’Orsay in December 199
I am grateful to Anne de Bouard for her invaluable r
marks and efforts to render the argument mathematic
rigorous. This research was supported by the FRD
South Africa.
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